| /* |
| * 8253/8254 interval timer emulation |
| * |
| * Copyright (c) 2003-2004 Fabrice Bellard |
| * Copyright (c) 2006 Intel Corporation |
| * Copyright (c) 2007 Keir Fraser, XenSource Inc |
| * Copyright (c) 2008 Intel Corporation |
| * Copyright 2009 Red Hat, Inc. and/or its affiliates. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| * |
| * Authors: |
| * Sheng Yang <sheng.yang@intel.com> |
| * Based on QEMU and Xen. |
| */ |
| |
| #define pr_fmt(fmt) "pit: " fmt |
| |
| #include <linux/kvm_host.h> |
| #include <linux/slab.h> |
| |
| #include "ioapic.h" |
| #include "irq.h" |
| #include "i8254.h" |
| #include "x86.h" |
| |
| #ifndef CONFIG_X86_64 |
| #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) |
| #else |
| #define mod_64(x, y) ((x) % (y)) |
| #endif |
| |
| #define RW_STATE_LSB 1 |
| #define RW_STATE_MSB 2 |
| #define RW_STATE_WORD0 3 |
| #define RW_STATE_WORD1 4 |
| |
| /* Compute with 96 bit intermediate result: (a*b)/c */ |
| static u64 muldiv64(u64 a, u32 b, u32 c) |
| { |
| union { |
| u64 ll; |
| struct { |
| u32 low, high; |
| } l; |
| } u, res; |
| u64 rl, rh; |
| |
| u.ll = a; |
| rl = (u64)u.l.low * (u64)b; |
| rh = (u64)u.l.high * (u64)b; |
| rh += (rl >> 32); |
| res.l.high = div64_u64(rh, c); |
| res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c); |
| return res.ll; |
| } |
| |
| static void pit_set_gate(struct kvm *kvm, int channel, u32 val) |
| { |
| struct kvm_kpit_channel_state *c = |
| &kvm->arch.vpit->pit_state.channels[channel]; |
| |
| WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| |
| switch (c->mode) { |
| default: |
| case 0: |
| case 4: |
| /* XXX: just disable/enable counting */ |
| break; |
| case 1: |
| case 2: |
| case 3: |
| case 5: |
| /* Restart counting on rising edge. */ |
| if (c->gate < val) |
| c->count_load_time = ktime_get(); |
| break; |
| } |
| |
| c->gate = val; |
| } |
| |
| static int pit_get_gate(struct kvm *kvm, int channel) |
| { |
| WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| |
| return kvm->arch.vpit->pit_state.channels[channel].gate; |
| } |
| |
| static s64 __kpit_elapsed(struct kvm *kvm) |
| { |
| s64 elapsed; |
| ktime_t remaining; |
| struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; |
| |
| if (!ps->period) |
| return 0; |
| |
| /* |
| * The Counter does not stop when it reaches zero. In |
| * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to |
| * the highest count, either FFFF hex for binary counting |
| * or 9999 for BCD counting, and continues counting. |
| * Modes 2 and 3 are periodic; the Counter reloads |
| * itself with the initial count and continues counting |
| * from there. |
| */ |
| remaining = hrtimer_get_remaining(&ps->timer); |
| elapsed = ps->period - ktime_to_ns(remaining); |
| |
| return elapsed; |
| } |
| |
| static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c, |
| int channel) |
| { |
| if (channel == 0) |
| return __kpit_elapsed(kvm); |
| |
| return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); |
| } |
| |
| static int pit_get_count(struct kvm *kvm, int channel) |
| { |
| struct kvm_kpit_channel_state *c = |
| &kvm->arch.vpit->pit_state.channels[channel]; |
| s64 d, t; |
| int counter; |
| |
| WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| |
| t = kpit_elapsed(kvm, c, channel); |
| d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); |
| |
| switch (c->mode) { |
| case 0: |
| case 1: |
| case 4: |
| case 5: |
| counter = (c->count - d) & 0xffff; |
| break; |
| case 3: |
| /* XXX: may be incorrect for odd counts */ |
| counter = c->count - (mod_64((2 * d), c->count)); |
| break; |
| default: |
| counter = c->count - mod_64(d, c->count); |
| break; |
| } |
| return counter; |
| } |
| |
| static int pit_get_out(struct kvm *kvm, int channel) |
| { |
| struct kvm_kpit_channel_state *c = |
| &kvm->arch.vpit->pit_state.channels[channel]; |
| s64 d, t; |
| int out; |
| |
| WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| |
| t = kpit_elapsed(kvm, c, channel); |
| d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC); |
| |
| switch (c->mode) { |
| default: |
| case 0: |
| out = (d >= c->count); |
| break; |
| case 1: |
| out = (d < c->count); |
| break; |
| case 2: |
| out = ((mod_64(d, c->count) == 0) && (d != 0)); |
| break; |
| case 3: |
| out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); |
| break; |
| case 4: |
| case 5: |
| out = (d == c->count); |
| break; |
| } |
| |
| return out; |
| } |
| |
| static void pit_latch_count(struct kvm *kvm, int channel) |
| { |
| struct kvm_kpit_channel_state *c = |
| &kvm->arch.vpit->pit_state.channels[channel]; |
| |
| WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| |
| if (!c->count_latched) { |
| c->latched_count = pit_get_count(kvm, channel); |
| c->count_latched = c->rw_mode; |
| } |
| } |
| |
| static void pit_latch_status(struct kvm *kvm, int channel) |
| { |
| struct kvm_kpit_channel_state *c = |
| &kvm->arch.vpit->pit_state.channels[channel]; |
| |
| WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock)); |
| |
| if (!c->status_latched) { |
| /* TODO: Return NULL COUNT (bit 6). */ |
| c->status = ((pit_get_out(kvm, channel) << 7) | |
| (c->rw_mode << 4) | |
| (c->mode << 1) | |
| c->bcd); |
| c->status_latched = 1; |
| } |
| } |
| |
| static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) |
| { |
| struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, |
| irq_ack_notifier); |
| int value; |
| |
| spin_lock(&ps->inject_lock); |
| value = atomic_dec_return(&ps->pending); |
| if (value < 0) |
| /* spurious acks can be generated if, for example, the |
| * PIC is being reset. Handle it gracefully here |
| */ |
| atomic_inc(&ps->pending); |
| else if (value > 0) |
| /* in this case, we had multiple outstanding pit interrupts |
| * that we needed to inject. Reinject |
| */ |
| queue_kthread_work(&ps->pit->worker, &ps->pit->expired); |
| ps->irq_ack = 1; |
| spin_unlock(&ps->inject_lock); |
| } |
| |
| void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_pit *pit = vcpu->kvm->arch.vpit; |
| struct hrtimer *timer; |
| |
| if (!kvm_vcpu_is_bsp(vcpu) || !pit) |
| return; |
| |
| timer = &pit->pit_state.timer; |
| mutex_lock(&pit->pit_state.lock); |
| if (hrtimer_cancel(timer)) |
| hrtimer_start_expires(timer, HRTIMER_MODE_ABS); |
| mutex_unlock(&pit->pit_state.lock); |
| } |
| |
| static void destroy_pit_timer(struct kvm_pit *pit) |
| { |
| hrtimer_cancel(&pit->pit_state.timer); |
| flush_kthread_work(&pit->expired); |
| } |
| |
| static void pit_do_work(struct kthread_work *work) |
| { |
| struct kvm_pit *pit = container_of(work, struct kvm_pit, expired); |
| struct kvm *kvm = pit->kvm; |
| struct kvm_vcpu *vcpu; |
| int i; |
| struct kvm_kpit_state *ps = &pit->pit_state; |
| int inject = 0; |
| |
| /* Try to inject pending interrupts when |
| * last one has been acked. |
| */ |
| spin_lock(&ps->inject_lock); |
| if (ps->irq_ack) { |
| ps->irq_ack = 0; |
| inject = 1; |
| } |
| spin_unlock(&ps->inject_lock); |
| if (inject) { |
| kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false); |
| kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false); |
| |
| /* |
| * Provides NMI watchdog support via Virtual Wire mode. |
| * The route is: PIT -> PIC -> LVT0 in NMI mode. |
| * |
| * Note: Our Virtual Wire implementation is simplified, only |
| * propagating PIT interrupts to all VCPUs when they have set |
| * LVT0 to NMI delivery. Other PIC interrupts are just sent to |
| * VCPU0, and only if its LVT0 is in EXTINT mode. |
| */ |
| if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0) |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvm_apic_nmi_wd_deliver(vcpu); |
| } |
| } |
| |
| static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) |
| { |
| struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer); |
| struct kvm_pit *pt = ps->kvm->arch.vpit; |
| |
| if (ps->reinject || !atomic_read(&ps->pending)) { |
| atomic_inc(&ps->pending); |
| queue_kthread_work(&pt->worker, &pt->expired); |
| } |
| |
| if (ps->is_periodic) { |
| hrtimer_add_expires_ns(&ps->timer, ps->period); |
| return HRTIMER_RESTART; |
| } else |
| return HRTIMER_NORESTART; |
| } |
| |
| static void create_pit_timer(struct kvm *kvm, u32 val, int is_period) |
| { |
| struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; |
| s64 interval; |
| |
| if (!ioapic_in_kernel(kvm) || |
| ps->flags & KVM_PIT_FLAGS_HPET_LEGACY) |
| return; |
| |
| interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ); |
| |
| pr_debug("create pit timer, interval is %llu nsec\n", interval); |
| |
| /* TODO The new value only affected after the retriggered */ |
| hrtimer_cancel(&ps->timer); |
| flush_kthread_work(&ps->pit->expired); |
| ps->period = interval; |
| ps->is_periodic = is_period; |
| |
| ps->timer.function = pit_timer_fn; |
| ps->kvm = ps->pit->kvm; |
| |
| atomic_set(&ps->pending, 0); |
| ps->irq_ack = 1; |
| |
| /* |
| * Do not allow the guest to program periodic timers with small |
| * interval, since the hrtimers are not throttled by the host |
| * scheduler. |
| */ |
| if (ps->is_periodic) { |
| s64 min_period = min_timer_period_us * 1000LL; |
| |
| if (ps->period < min_period) { |
| pr_info_ratelimited( |
| "kvm: requested %lld ns " |
| "i8254 timer period limited to %lld ns\n", |
| ps->period, min_period); |
| ps->period = min_period; |
| } |
| } |
| |
| hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval), |
| HRTIMER_MODE_ABS); |
| } |
| |
| static void pit_load_count(struct kvm *kvm, int channel, u32 val) |
| { |
| struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state; |
| |
| WARN_ON(!mutex_is_locked(&ps->lock)); |
| |
| pr_debug("load_count val is %d, channel is %d\n", val, channel); |
| |
| /* |
| * The largest possible initial count is 0; this is equivalent |
| * to 216 for binary counting and 104 for BCD counting. |
| */ |
| if (val == 0) |
| val = 0x10000; |
| |
| ps->channels[channel].count = val; |
| |
| if (channel != 0) { |
| ps->channels[channel].count_load_time = ktime_get(); |
| return; |
| } |
| |
| /* Two types of timer |
| * mode 1 is one shot, mode 2 is period, otherwise del timer */ |
| switch (ps->channels[0].mode) { |
| case 0: |
| case 1: |
| /* FIXME: enhance mode 4 precision */ |
| case 4: |
| create_pit_timer(kvm, val, 0); |
| break; |
| case 2: |
| case 3: |
| create_pit_timer(kvm, val, 1); |
| break; |
| default: |
| destroy_pit_timer(kvm->arch.vpit); |
| } |
| } |
| |
| void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start) |
| { |
| u8 saved_mode; |
| if (hpet_legacy_start) { |
| /* save existing mode for later reenablement */ |
| saved_mode = kvm->arch.vpit->pit_state.channels[0].mode; |
| kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */ |
| pit_load_count(kvm, channel, val); |
| kvm->arch.vpit->pit_state.channels[0].mode = saved_mode; |
| } else { |
| pit_load_count(kvm, channel, val); |
| } |
| } |
| |
| static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev) |
| { |
| return container_of(dev, struct kvm_pit, dev); |
| } |
| |
| static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev) |
| { |
| return container_of(dev, struct kvm_pit, speaker_dev); |
| } |
| |
| static inline int pit_in_range(gpa_t addr) |
| { |
| return ((addr >= KVM_PIT_BASE_ADDRESS) && |
| (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); |
| } |
| |
| static int pit_ioport_write(struct kvm_vcpu *vcpu, |
| struct kvm_io_device *this, |
| gpa_t addr, int len, const void *data) |
| { |
| struct kvm_pit *pit = dev_to_pit(this); |
| struct kvm_kpit_state *pit_state = &pit->pit_state; |
| struct kvm *kvm = pit->kvm; |
| int channel, access; |
| struct kvm_kpit_channel_state *s; |
| u32 val = *(u32 *) data; |
| if (!pit_in_range(addr)) |
| return -EOPNOTSUPP; |
| |
| val &= 0xff; |
| addr &= KVM_PIT_CHANNEL_MASK; |
| |
| mutex_lock(&pit_state->lock); |
| |
| if (val != 0) |
| pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n", |
| (unsigned int)addr, len, val); |
| |
| if (addr == 3) { |
| channel = val >> 6; |
| if (channel == 3) { |
| /* Read-Back Command. */ |
| for (channel = 0; channel < 3; channel++) { |
| s = &pit_state->channels[channel]; |
| if (val & (2 << channel)) { |
| if (!(val & 0x20)) |
| pit_latch_count(kvm, channel); |
| if (!(val & 0x10)) |
| pit_latch_status(kvm, channel); |
| } |
| } |
| } else { |
| /* Select Counter <channel>. */ |
| s = &pit_state->channels[channel]; |
| access = (val >> 4) & KVM_PIT_CHANNEL_MASK; |
| if (access == 0) { |
| pit_latch_count(kvm, channel); |
| } else { |
| s->rw_mode = access; |
| s->read_state = access; |
| s->write_state = access; |
| s->mode = (val >> 1) & 7; |
| if (s->mode > 5) |
| s->mode -= 4; |
| s->bcd = val & 1; |
| } |
| } |
| } else { |
| /* Write Count. */ |
| s = &pit_state->channels[addr]; |
| switch (s->write_state) { |
| default: |
| case RW_STATE_LSB: |
| pit_load_count(kvm, addr, val); |
| break; |
| case RW_STATE_MSB: |
| pit_load_count(kvm, addr, val << 8); |
| break; |
| case RW_STATE_WORD0: |
| s->write_latch = val; |
| s->write_state = RW_STATE_WORD1; |
| break; |
| case RW_STATE_WORD1: |
| pit_load_count(kvm, addr, s->write_latch | (val << 8)); |
| s->write_state = RW_STATE_WORD0; |
| break; |
| } |
| } |
| |
| mutex_unlock(&pit_state->lock); |
| return 0; |
| } |
| |
| static int pit_ioport_read(struct kvm_vcpu *vcpu, |
| struct kvm_io_device *this, |
| gpa_t addr, int len, void *data) |
| { |
| struct kvm_pit *pit = dev_to_pit(this); |
| struct kvm_kpit_state *pit_state = &pit->pit_state; |
| struct kvm *kvm = pit->kvm; |
| int ret, count; |
| struct kvm_kpit_channel_state *s; |
| if (!pit_in_range(addr)) |
| return -EOPNOTSUPP; |
| |
| addr &= KVM_PIT_CHANNEL_MASK; |
| if (addr == 3) |
| return 0; |
| |
| s = &pit_state->channels[addr]; |
| |
| mutex_lock(&pit_state->lock); |
| |
| if (s->status_latched) { |
| s->status_latched = 0; |
| ret = s->status; |
| } else if (s->count_latched) { |
| switch (s->count_latched) { |
| default: |
| case RW_STATE_LSB: |
| ret = s->latched_count & 0xff; |
| s->count_latched = 0; |
| break; |
| case RW_STATE_MSB: |
| ret = s->latched_count >> 8; |
| s->count_latched = 0; |
| break; |
| case RW_STATE_WORD0: |
| ret = s->latched_count & 0xff; |
| s->count_latched = RW_STATE_MSB; |
| break; |
| } |
| } else { |
| switch (s->read_state) { |
| default: |
| case RW_STATE_LSB: |
| count = pit_get_count(kvm, addr); |
| ret = count & 0xff; |
| break; |
| case RW_STATE_MSB: |
| count = pit_get_count(kvm, addr); |
| ret = (count >> 8) & 0xff; |
| break; |
| case RW_STATE_WORD0: |
| count = pit_get_count(kvm, addr); |
| ret = count & 0xff; |
| s->read_state = RW_STATE_WORD1; |
| break; |
| case RW_STATE_WORD1: |
| count = pit_get_count(kvm, addr); |
| ret = (count >> 8) & 0xff; |
| s->read_state = RW_STATE_WORD0; |
| break; |
| } |
| } |
| |
| if (len > sizeof(ret)) |
| len = sizeof(ret); |
| memcpy(data, (char *)&ret, len); |
| |
| mutex_unlock(&pit_state->lock); |
| return 0; |
| } |
| |
| static int speaker_ioport_write(struct kvm_vcpu *vcpu, |
| struct kvm_io_device *this, |
| gpa_t addr, int len, const void *data) |
| { |
| struct kvm_pit *pit = speaker_to_pit(this); |
| struct kvm_kpit_state *pit_state = &pit->pit_state; |
| struct kvm *kvm = pit->kvm; |
| u32 val = *(u32 *) data; |
| if (addr != KVM_SPEAKER_BASE_ADDRESS) |
| return -EOPNOTSUPP; |
| |
| mutex_lock(&pit_state->lock); |
| pit_state->speaker_data_on = (val >> 1) & 1; |
| pit_set_gate(kvm, 2, val & 1); |
| mutex_unlock(&pit_state->lock); |
| return 0; |
| } |
| |
| static int speaker_ioport_read(struct kvm_vcpu *vcpu, |
| struct kvm_io_device *this, |
| gpa_t addr, int len, void *data) |
| { |
| struct kvm_pit *pit = speaker_to_pit(this); |
| struct kvm_kpit_state *pit_state = &pit->pit_state; |
| struct kvm *kvm = pit->kvm; |
| unsigned int refresh_clock; |
| int ret; |
| if (addr != KVM_SPEAKER_BASE_ADDRESS) |
| return -EOPNOTSUPP; |
| |
| /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ |
| refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; |
| |
| mutex_lock(&pit_state->lock); |
| ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) | |
| (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4)); |
| if (len > sizeof(ret)) |
| len = sizeof(ret); |
| memcpy(data, (char *)&ret, len); |
| mutex_unlock(&pit_state->lock); |
| return 0; |
| } |
| |
| void kvm_pit_reset(struct kvm_pit *pit) |
| { |
| int i; |
| struct kvm_kpit_channel_state *c; |
| |
| mutex_lock(&pit->pit_state.lock); |
| pit->pit_state.flags = 0; |
| for (i = 0; i < 3; i++) { |
| c = &pit->pit_state.channels[i]; |
| c->mode = 0xff; |
| c->gate = (i != 2); |
| pit_load_count(pit->kvm, i, 0); |
| } |
| mutex_unlock(&pit->pit_state.lock); |
| |
| atomic_set(&pit->pit_state.pending, 0); |
| pit->pit_state.irq_ack = 1; |
| } |
| |
| static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask) |
| { |
| struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier); |
| |
| if (!mask) { |
| atomic_set(&pit->pit_state.pending, 0); |
| pit->pit_state.irq_ack = 1; |
| } |
| } |
| |
| static const struct kvm_io_device_ops pit_dev_ops = { |
| .read = pit_ioport_read, |
| .write = pit_ioport_write, |
| }; |
| |
| static const struct kvm_io_device_ops speaker_dev_ops = { |
| .read = speaker_ioport_read, |
| .write = speaker_ioport_write, |
| }; |
| |
| /* Caller must hold slots_lock */ |
| struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags) |
| { |
| struct kvm_pit *pit; |
| struct kvm_kpit_state *pit_state; |
| struct pid *pid; |
| pid_t pid_nr; |
| int ret; |
| |
| pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL); |
| if (!pit) |
| return NULL; |
| |
| pit->irq_source_id = kvm_request_irq_source_id(kvm); |
| if (pit->irq_source_id < 0) { |
| kfree(pit); |
| return NULL; |
| } |
| |
| mutex_init(&pit->pit_state.lock); |
| mutex_lock(&pit->pit_state.lock); |
| spin_lock_init(&pit->pit_state.inject_lock); |
| |
| pid = get_pid(task_tgid(current)); |
| pid_nr = pid_vnr(pid); |
| put_pid(pid); |
| |
| init_kthread_worker(&pit->worker); |
| pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker, |
| "kvm-pit/%d", pid_nr); |
| if (IS_ERR(pit->worker_task)) { |
| mutex_unlock(&pit->pit_state.lock); |
| kvm_free_irq_source_id(kvm, pit->irq_source_id); |
| kfree(pit); |
| return NULL; |
| } |
| init_kthread_work(&pit->expired, pit_do_work); |
| |
| kvm->arch.vpit = pit; |
| pit->kvm = kvm; |
| |
| pit_state = &pit->pit_state; |
| pit_state->pit = pit; |
| hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| pit_state->irq_ack_notifier.gsi = 0; |
| pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq; |
| kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); |
| pit_state->reinject = true; |
| mutex_unlock(&pit->pit_state.lock); |
| |
| kvm_pit_reset(pit); |
| |
| pit->mask_notifier.func = pit_mask_notifer; |
| kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier); |
| |
| kvm_iodevice_init(&pit->dev, &pit_dev_ops); |
| ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS, |
| KVM_PIT_MEM_LENGTH, &pit->dev); |
| if (ret < 0) |
| goto fail; |
| |
| if (flags & KVM_PIT_SPEAKER_DUMMY) { |
| kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops); |
| ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, |
| KVM_SPEAKER_BASE_ADDRESS, 4, |
| &pit->speaker_dev); |
| if (ret < 0) |
| goto fail_unregister; |
| } |
| |
| return pit; |
| |
| fail_unregister: |
| kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); |
| |
| fail: |
| kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier); |
| kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier); |
| kvm_free_irq_source_id(kvm, pit->irq_source_id); |
| kthread_stop(pit->worker_task); |
| kfree(pit); |
| return NULL; |
| } |
| |
| void kvm_free_pit(struct kvm *kvm) |
| { |
| struct hrtimer *timer; |
| |
| if (kvm->arch.vpit) { |
| kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev); |
| kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, |
| &kvm->arch.vpit->speaker_dev); |
| kvm_unregister_irq_mask_notifier(kvm, 0, |
| &kvm->arch.vpit->mask_notifier); |
| kvm_unregister_irq_ack_notifier(kvm, |
| &kvm->arch.vpit->pit_state.irq_ack_notifier); |
| mutex_lock(&kvm->arch.vpit->pit_state.lock); |
| timer = &kvm->arch.vpit->pit_state.timer; |
| hrtimer_cancel(timer); |
| flush_kthread_work(&kvm->arch.vpit->expired); |
| kthread_stop(kvm->arch.vpit->worker_task); |
| kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id); |
| mutex_unlock(&kvm->arch.vpit->pit_state.lock); |
| kfree(kvm->arch.vpit); |
| } |
| } |