| #include <linux/ceph/ceph_debug.h> |
| |
| #include <linux/crc32c.h> |
| #include <linux/ctype.h> |
| #include <linux/highmem.h> |
| #include <linux/inet.h> |
| #include <linux/kthread.h> |
| #include <linux/net.h> |
| #include <linux/slab.h> |
| #include <linux/socket.h> |
| #include <linux/string.h> |
| #ifdef CONFIG_BLOCK |
| #include <linux/bio.h> |
| #endif /* CONFIG_BLOCK */ |
| #include <linux/dns_resolver.h> |
| #include <net/tcp.h> |
| |
| #include <linux/ceph/ceph_features.h> |
| #include <linux/ceph/libceph.h> |
| #include <linux/ceph/messenger.h> |
| #include <linux/ceph/decode.h> |
| #include <linux/ceph/pagelist.h> |
| #include <linux/export.h> |
| |
| #define list_entry_next(pos, member) \ |
| list_entry(pos->member.next, typeof(*pos), member) |
| |
| /* |
| * Ceph uses the messenger to exchange ceph_msg messages with other |
| * hosts in the system. The messenger provides ordered and reliable |
| * delivery. We tolerate TCP disconnects by reconnecting (with |
| * exponential backoff) in the case of a fault (disconnection, bad |
| * crc, protocol error). Acks allow sent messages to be discarded by |
| * the sender. |
| */ |
| |
| /* |
| * We track the state of the socket on a given connection using |
| * values defined below. The transition to a new socket state is |
| * handled by a function which verifies we aren't coming from an |
| * unexpected state. |
| * |
| * -------- |
| * | NEW* | transient initial state |
| * -------- |
| * | con_sock_state_init() |
| * v |
| * ---------- |
| * | CLOSED | initialized, but no socket (and no |
| * ---------- TCP connection) |
| * ^ \ |
| * | \ con_sock_state_connecting() |
| * | ---------------------- |
| * | \ |
| * + con_sock_state_closed() \ |
| * |+--------------------------- \ |
| * | \ \ \ |
| * | ----------- \ \ |
| * | | CLOSING | socket event; \ \ |
| * | ----------- await close \ \ |
| * | ^ \ | |
| * | | \ | |
| * | + con_sock_state_closing() \ | |
| * | / \ | | |
| * | / --------------- | | |
| * | / \ v v |
| * | / -------------- |
| * | / -----------------| CONNECTING | socket created, TCP |
| * | | / -------------- connect initiated |
| * | | | con_sock_state_connected() |
| * | | v |
| * ------------- |
| * | CONNECTED | TCP connection established |
| * ------------- |
| * |
| * State values for ceph_connection->sock_state; NEW is assumed to be 0. |
| */ |
| |
| #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ |
| #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ |
| #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ |
| #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ |
| #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ |
| |
| /* |
| * connection states |
| */ |
| #define CON_STATE_CLOSED 1 /* -> PREOPEN */ |
| #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ |
| #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ |
| #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ |
| #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ |
| #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ |
| |
| /* |
| * ceph_connection flag bits |
| */ |
| #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop |
| * messages on errors */ |
| #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ |
| #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ |
| #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ |
| #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ |
| |
| static bool con_flag_valid(unsigned long con_flag) |
| { |
| switch (con_flag) { |
| case CON_FLAG_LOSSYTX: |
| case CON_FLAG_KEEPALIVE_PENDING: |
| case CON_FLAG_WRITE_PENDING: |
| case CON_FLAG_SOCK_CLOSED: |
| case CON_FLAG_BACKOFF: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) |
| { |
| BUG_ON(!con_flag_valid(con_flag)); |
| |
| clear_bit(con_flag, &con->flags); |
| } |
| |
| static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) |
| { |
| BUG_ON(!con_flag_valid(con_flag)); |
| |
| set_bit(con_flag, &con->flags); |
| } |
| |
| static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) |
| { |
| BUG_ON(!con_flag_valid(con_flag)); |
| |
| return test_bit(con_flag, &con->flags); |
| } |
| |
| static bool con_flag_test_and_clear(struct ceph_connection *con, |
| unsigned long con_flag) |
| { |
| BUG_ON(!con_flag_valid(con_flag)); |
| |
| return test_and_clear_bit(con_flag, &con->flags); |
| } |
| |
| static bool con_flag_test_and_set(struct ceph_connection *con, |
| unsigned long con_flag) |
| { |
| BUG_ON(!con_flag_valid(con_flag)); |
| |
| return test_and_set_bit(con_flag, &con->flags); |
| } |
| |
| /* Slab caches for frequently-allocated structures */ |
| |
| static struct kmem_cache *ceph_msg_cache; |
| static struct kmem_cache *ceph_msg_data_cache; |
| |
| /* static tag bytes (protocol control messages) */ |
| static char tag_msg = CEPH_MSGR_TAG_MSG; |
| static char tag_ack = CEPH_MSGR_TAG_ACK; |
| static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; |
| |
| #ifdef CONFIG_LOCKDEP |
| static struct lock_class_key socket_class; |
| #endif |
| |
| /* |
| * When skipping (ignoring) a block of input we read it into a "skip |
| * buffer," which is this many bytes in size. |
| */ |
| #define SKIP_BUF_SIZE 1024 |
| |
| static void queue_con(struct ceph_connection *con); |
| static void cancel_con(struct ceph_connection *con); |
| static void con_work(struct work_struct *); |
| static void con_fault(struct ceph_connection *con); |
| |
| /* |
| * Nicely render a sockaddr as a string. An array of formatted |
| * strings is used, to approximate reentrancy. |
| */ |
| #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ |
| #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) |
| #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) |
| #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ |
| |
| static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; |
| static atomic_t addr_str_seq = ATOMIC_INIT(0); |
| |
| static struct page *zero_page; /* used in certain error cases */ |
| |
| const char *ceph_pr_addr(const struct sockaddr_storage *ss) |
| { |
| int i; |
| char *s; |
| struct sockaddr_in *in4 = (struct sockaddr_in *) ss; |
| struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; |
| |
| i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; |
| s = addr_str[i]; |
| |
| switch (ss->ss_family) { |
| case AF_INET: |
| snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, |
| ntohs(in4->sin_port)); |
| break; |
| |
| case AF_INET6: |
| snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, |
| ntohs(in6->sin6_port)); |
| break; |
| |
| default: |
| snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", |
| ss->ss_family); |
| } |
| |
| return s; |
| } |
| EXPORT_SYMBOL(ceph_pr_addr); |
| |
| static void encode_my_addr(struct ceph_messenger *msgr) |
| { |
| memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); |
| ceph_encode_addr(&msgr->my_enc_addr); |
| } |
| |
| /* |
| * work queue for all reading and writing to/from the socket. |
| */ |
| static struct workqueue_struct *ceph_msgr_wq; |
| |
| static int ceph_msgr_slab_init(void) |
| { |
| BUG_ON(ceph_msg_cache); |
| ceph_msg_cache = kmem_cache_create("ceph_msg", |
| sizeof (struct ceph_msg), |
| __alignof__(struct ceph_msg), 0, NULL); |
| |
| if (!ceph_msg_cache) |
| return -ENOMEM; |
| |
| BUG_ON(ceph_msg_data_cache); |
| ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", |
| sizeof (struct ceph_msg_data), |
| __alignof__(struct ceph_msg_data), |
| 0, NULL); |
| if (ceph_msg_data_cache) |
| return 0; |
| |
| kmem_cache_destroy(ceph_msg_cache); |
| ceph_msg_cache = NULL; |
| |
| return -ENOMEM; |
| } |
| |
| static void ceph_msgr_slab_exit(void) |
| { |
| BUG_ON(!ceph_msg_data_cache); |
| kmem_cache_destroy(ceph_msg_data_cache); |
| ceph_msg_data_cache = NULL; |
| |
| BUG_ON(!ceph_msg_cache); |
| kmem_cache_destroy(ceph_msg_cache); |
| ceph_msg_cache = NULL; |
| } |
| |
| static void _ceph_msgr_exit(void) |
| { |
| if (ceph_msgr_wq) { |
| destroy_workqueue(ceph_msgr_wq); |
| ceph_msgr_wq = NULL; |
| } |
| |
| ceph_msgr_slab_exit(); |
| |
| BUG_ON(zero_page == NULL); |
| kunmap(zero_page); |
| page_cache_release(zero_page); |
| zero_page = NULL; |
| } |
| |
| int ceph_msgr_init(void) |
| { |
| BUG_ON(zero_page != NULL); |
| zero_page = ZERO_PAGE(0); |
| page_cache_get(zero_page); |
| |
| if (ceph_msgr_slab_init()) |
| return -ENOMEM; |
| |
| /* |
| * The number of active work items is limited by the number of |
| * connections, so leave @max_active at default. |
| */ |
| ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); |
| if (ceph_msgr_wq) |
| return 0; |
| |
| pr_err("msgr_init failed to create workqueue\n"); |
| _ceph_msgr_exit(); |
| |
| return -ENOMEM; |
| } |
| EXPORT_SYMBOL(ceph_msgr_init); |
| |
| void ceph_msgr_exit(void) |
| { |
| BUG_ON(ceph_msgr_wq == NULL); |
| |
| _ceph_msgr_exit(); |
| } |
| EXPORT_SYMBOL(ceph_msgr_exit); |
| |
| void ceph_msgr_flush(void) |
| { |
| flush_workqueue(ceph_msgr_wq); |
| } |
| EXPORT_SYMBOL(ceph_msgr_flush); |
| |
| /* Connection socket state transition functions */ |
| |
| static void con_sock_state_init(struct ceph_connection *con) |
| { |
| int old_state; |
| |
| old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); |
| if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) |
| printk("%s: unexpected old state %d\n", __func__, old_state); |
| dout("%s con %p sock %d -> %d\n", __func__, con, old_state, |
| CON_SOCK_STATE_CLOSED); |
| } |
| |
| static void con_sock_state_connecting(struct ceph_connection *con) |
| { |
| int old_state; |
| |
| old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); |
| if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) |
| printk("%s: unexpected old state %d\n", __func__, old_state); |
| dout("%s con %p sock %d -> %d\n", __func__, con, old_state, |
| CON_SOCK_STATE_CONNECTING); |
| } |
| |
| static void con_sock_state_connected(struct ceph_connection *con) |
| { |
| int old_state; |
| |
| old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); |
| if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) |
| printk("%s: unexpected old state %d\n", __func__, old_state); |
| dout("%s con %p sock %d -> %d\n", __func__, con, old_state, |
| CON_SOCK_STATE_CONNECTED); |
| } |
| |
| static void con_sock_state_closing(struct ceph_connection *con) |
| { |
| int old_state; |
| |
| old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); |
| if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && |
| old_state != CON_SOCK_STATE_CONNECTED && |
| old_state != CON_SOCK_STATE_CLOSING)) |
| printk("%s: unexpected old state %d\n", __func__, old_state); |
| dout("%s con %p sock %d -> %d\n", __func__, con, old_state, |
| CON_SOCK_STATE_CLOSING); |
| } |
| |
| static void con_sock_state_closed(struct ceph_connection *con) |
| { |
| int old_state; |
| |
| old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); |
| if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && |
| old_state != CON_SOCK_STATE_CLOSING && |
| old_state != CON_SOCK_STATE_CONNECTING && |
| old_state != CON_SOCK_STATE_CLOSED)) |
| printk("%s: unexpected old state %d\n", __func__, old_state); |
| dout("%s con %p sock %d -> %d\n", __func__, con, old_state, |
| CON_SOCK_STATE_CLOSED); |
| } |
| |
| /* |
| * socket callback functions |
| */ |
| |
| /* data available on socket, or listen socket received a connect */ |
| static void ceph_sock_data_ready(struct sock *sk) |
| { |
| struct ceph_connection *con = sk->sk_user_data; |
| if (atomic_read(&con->msgr->stopping)) { |
| return; |
| } |
| |
| if (sk->sk_state != TCP_CLOSE_WAIT) { |
| dout("%s on %p state = %lu, queueing work\n", __func__, |
| con, con->state); |
| queue_con(con); |
| } |
| } |
| |
| /* socket has buffer space for writing */ |
| static void ceph_sock_write_space(struct sock *sk) |
| { |
| struct ceph_connection *con = sk->sk_user_data; |
| |
| /* only queue to workqueue if there is data we want to write, |
| * and there is sufficient space in the socket buffer to accept |
| * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() |
| * doesn't get called again until try_write() fills the socket |
| * buffer. See net/ipv4/tcp_input.c:tcp_check_space() |
| * and net/core/stream.c:sk_stream_write_space(). |
| */ |
| if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { |
| if (sk_stream_is_writeable(sk)) { |
| dout("%s %p queueing write work\n", __func__, con); |
| clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| queue_con(con); |
| } |
| } else { |
| dout("%s %p nothing to write\n", __func__, con); |
| } |
| } |
| |
| /* socket's state has changed */ |
| static void ceph_sock_state_change(struct sock *sk) |
| { |
| struct ceph_connection *con = sk->sk_user_data; |
| |
| dout("%s %p state = %lu sk_state = %u\n", __func__, |
| con, con->state, sk->sk_state); |
| |
| switch (sk->sk_state) { |
| case TCP_CLOSE: |
| dout("%s TCP_CLOSE\n", __func__); |
| case TCP_CLOSE_WAIT: |
| dout("%s TCP_CLOSE_WAIT\n", __func__); |
| con_sock_state_closing(con); |
| con_flag_set(con, CON_FLAG_SOCK_CLOSED); |
| queue_con(con); |
| break; |
| case TCP_ESTABLISHED: |
| dout("%s TCP_ESTABLISHED\n", __func__); |
| con_sock_state_connected(con); |
| queue_con(con); |
| break; |
| default: /* Everything else is uninteresting */ |
| break; |
| } |
| } |
| |
| /* |
| * set up socket callbacks |
| */ |
| static void set_sock_callbacks(struct socket *sock, |
| struct ceph_connection *con) |
| { |
| struct sock *sk = sock->sk; |
| sk->sk_user_data = con; |
| sk->sk_data_ready = ceph_sock_data_ready; |
| sk->sk_write_space = ceph_sock_write_space; |
| sk->sk_state_change = ceph_sock_state_change; |
| } |
| |
| |
| /* |
| * socket helpers |
| */ |
| |
| /* |
| * initiate connection to a remote socket. |
| */ |
| static int ceph_tcp_connect(struct ceph_connection *con) |
| { |
| struct sockaddr_storage *paddr = &con->peer_addr.in_addr; |
| struct socket *sock; |
| int ret; |
| |
| BUG_ON(con->sock); |
| ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, |
| IPPROTO_TCP, &sock); |
| if (ret) |
| return ret; |
| sock->sk->sk_allocation = GFP_NOFS; |
| |
| #ifdef CONFIG_LOCKDEP |
| lockdep_set_class(&sock->sk->sk_lock, &socket_class); |
| #endif |
| |
| set_sock_callbacks(sock, con); |
| |
| dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); |
| |
| con_sock_state_connecting(con); |
| ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), |
| O_NONBLOCK); |
| if (ret == -EINPROGRESS) { |
| dout("connect %s EINPROGRESS sk_state = %u\n", |
| ceph_pr_addr(&con->peer_addr.in_addr), |
| sock->sk->sk_state); |
| } else if (ret < 0) { |
| pr_err("connect %s error %d\n", |
| ceph_pr_addr(&con->peer_addr.in_addr), ret); |
| sock_release(sock); |
| con->error_msg = "connect error"; |
| |
| return ret; |
| } |
| |
| if (con->msgr->tcp_nodelay) { |
| int optval = 1; |
| |
| ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, |
| (char *)&optval, sizeof(optval)); |
| if (ret) |
| pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d", |
| ret); |
| } |
| |
| con->sock = sock; |
| return 0; |
| } |
| |
| static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) |
| { |
| struct kvec iov = {buf, len}; |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; |
| int r; |
| |
| r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); |
| if (r == -EAGAIN) |
| r = 0; |
| return r; |
| } |
| |
| static int ceph_tcp_recvpage(struct socket *sock, struct page *page, |
| int page_offset, size_t length) |
| { |
| void *kaddr; |
| int ret; |
| |
| BUG_ON(page_offset + length > PAGE_SIZE); |
| |
| kaddr = kmap(page); |
| BUG_ON(!kaddr); |
| ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); |
| kunmap(page); |
| |
| return ret; |
| } |
| |
| /* |
| * write something. @more is true if caller will be sending more data |
| * shortly. |
| */ |
| static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, |
| size_t kvlen, size_t len, int more) |
| { |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; |
| int r; |
| |
| if (more) |
| msg.msg_flags |= MSG_MORE; |
| else |
| msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ |
| |
| r = kernel_sendmsg(sock, &msg, iov, kvlen, len); |
| if (r == -EAGAIN) |
| r = 0; |
| return r; |
| } |
| |
| static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, |
| int offset, size_t size, bool more) |
| { |
| int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); |
| int ret; |
| |
| ret = kernel_sendpage(sock, page, offset, size, flags); |
| if (ret == -EAGAIN) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| static int ceph_tcp_sendpage(struct socket *sock, struct page *page, |
| int offset, size_t size, bool more) |
| { |
| int ret; |
| struct kvec iov; |
| |
| /* sendpage cannot properly handle pages with page_count == 0, |
| * we need to fallback to sendmsg if that's the case */ |
| if (page_count(page) >= 1) |
| return __ceph_tcp_sendpage(sock, page, offset, size, more); |
| |
| iov.iov_base = kmap(page) + offset; |
| iov.iov_len = size; |
| ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more); |
| kunmap(page); |
| |
| return ret; |
| } |
| |
| /* |
| * Shutdown/close the socket for the given connection. |
| */ |
| static int con_close_socket(struct ceph_connection *con) |
| { |
| int rc = 0; |
| |
| dout("con_close_socket on %p sock %p\n", con, con->sock); |
| if (con->sock) { |
| rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); |
| sock_release(con->sock); |
| con->sock = NULL; |
| } |
| |
| /* |
| * Forcibly clear the SOCK_CLOSED flag. It gets set |
| * independent of the connection mutex, and we could have |
| * received a socket close event before we had the chance to |
| * shut the socket down. |
| */ |
| con_flag_clear(con, CON_FLAG_SOCK_CLOSED); |
| |
| con_sock_state_closed(con); |
| return rc; |
| } |
| |
| /* |
| * Reset a connection. Discard all incoming and outgoing messages |
| * and clear *_seq state. |
| */ |
| static void ceph_msg_remove(struct ceph_msg *msg) |
| { |
| list_del_init(&msg->list_head); |
| BUG_ON(msg->con == NULL); |
| msg->con->ops->put(msg->con); |
| msg->con = NULL; |
| |
| ceph_msg_put(msg); |
| } |
| static void ceph_msg_remove_list(struct list_head *head) |
| { |
| while (!list_empty(head)) { |
| struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, |
| list_head); |
| ceph_msg_remove(msg); |
| } |
| } |
| |
| static void reset_connection(struct ceph_connection *con) |
| { |
| /* reset connection, out_queue, msg_ and connect_seq */ |
| /* discard existing out_queue and msg_seq */ |
| dout("reset_connection %p\n", con); |
| ceph_msg_remove_list(&con->out_queue); |
| ceph_msg_remove_list(&con->out_sent); |
| |
| if (con->in_msg) { |
| BUG_ON(con->in_msg->con != con); |
| con->in_msg->con = NULL; |
| ceph_msg_put(con->in_msg); |
| con->in_msg = NULL; |
| con->ops->put(con); |
| } |
| |
| con->connect_seq = 0; |
| con->out_seq = 0; |
| if (con->out_msg) { |
| ceph_msg_put(con->out_msg); |
| con->out_msg = NULL; |
| } |
| con->in_seq = 0; |
| con->in_seq_acked = 0; |
| } |
| |
| /* |
| * mark a peer down. drop any open connections. |
| */ |
| void ceph_con_close(struct ceph_connection *con) |
| { |
| mutex_lock(&con->mutex); |
| dout("con_close %p peer %s\n", con, |
| ceph_pr_addr(&con->peer_addr.in_addr)); |
| con->state = CON_STATE_CLOSED; |
| |
| con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ |
| con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); |
| con_flag_clear(con, CON_FLAG_WRITE_PENDING); |
| con_flag_clear(con, CON_FLAG_BACKOFF); |
| |
| reset_connection(con); |
| con->peer_global_seq = 0; |
| cancel_con(con); |
| con_close_socket(con); |
| mutex_unlock(&con->mutex); |
| } |
| EXPORT_SYMBOL(ceph_con_close); |
| |
| /* |
| * Reopen a closed connection, with a new peer address. |
| */ |
| void ceph_con_open(struct ceph_connection *con, |
| __u8 entity_type, __u64 entity_num, |
| struct ceph_entity_addr *addr) |
| { |
| mutex_lock(&con->mutex); |
| dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); |
| |
| WARN_ON(con->state != CON_STATE_CLOSED); |
| con->state = CON_STATE_PREOPEN; |
| |
| con->peer_name.type = (__u8) entity_type; |
| con->peer_name.num = cpu_to_le64(entity_num); |
| |
| memcpy(&con->peer_addr, addr, sizeof(*addr)); |
| con->delay = 0; /* reset backoff memory */ |
| mutex_unlock(&con->mutex); |
| queue_con(con); |
| } |
| EXPORT_SYMBOL(ceph_con_open); |
| |
| /* |
| * return true if this connection ever successfully opened |
| */ |
| bool ceph_con_opened(struct ceph_connection *con) |
| { |
| return con->connect_seq > 0; |
| } |
| |
| /* |
| * initialize a new connection. |
| */ |
| void ceph_con_init(struct ceph_connection *con, void *private, |
| const struct ceph_connection_operations *ops, |
| struct ceph_messenger *msgr) |
| { |
| dout("con_init %p\n", con); |
| memset(con, 0, sizeof(*con)); |
| con->private = private; |
| con->ops = ops; |
| con->msgr = msgr; |
| |
| con_sock_state_init(con); |
| |
| mutex_init(&con->mutex); |
| INIT_LIST_HEAD(&con->out_queue); |
| INIT_LIST_HEAD(&con->out_sent); |
| INIT_DELAYED_WORK(&con->work, con_work); |
| |
| con->state = CON_STATE_CLOSED; |
| } |
| EXPORT_SYMBOL(ceph_con_init); |
| |
| |
| /* |
| * We maintain a global counter to order connection attempts. Get |
| * a unique seq greater than @gt. |
| */ |
| static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) |
| { |
| u32 ret; |
| |
| spin_lock(&msgr->global_seq_lock); |
| if (msgr->global_seq < gt) |
| msgr->global_seq = gt; |
| ret = ++msgr->global_seq; |
| spin_unlock(&msgr->global_seq_lock); |
| return ret; |
| } |
| |
| static void con_out_kvec_reset(struct ceph_connection *con) |
| { |
| con->out_kvec_left = 0; |
| con->out_kvec_bytes = 0; |
| con->out_kvec_cur = &con->out_kvec[0]; |
| } |
| |
| static void con_out_kvec_add(struct ceph_connection *con, |
| size_t size, void *data) |
| { |
| int index; |
| |
| index = con->out_kvec_left; |
| BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); |
| |
| con->out_kvec[index].iov_len = size; |
| con->out_kvec[index].iov_base = data; |
| con->out_kvec_left++; |
| con->out_kvec_bytes += size; |
| } |
| |
| #ifdef CONFIG_BLOCK |
| |
| /* |
| * For a bio data item, a piece is whatever remains of the next |
| * entry in the current bio iovec, or the first entry in the next |
| * bio in the list. |
| */ |
| static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, |
| size_t length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| struct bio *bio; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_BIO); |
| |
| bio = data->bio; |
| BUG_ON(!bio); |
| |
| cursor->resid = min(length, data->bio_length); |
| cursor->bio = bio; |
| cursor->bvec_iter = bio->bi_iter; |
| cursor->last_piece = |
| cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); |
| } |
| |
| static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, |
| size_t *page_offset, |
| size_t *length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| struct bio *bio; |
| struct bio_vec bio_vec; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_BIO); |
| |
| bio = cursor->bio; |
| BUG_ON(!bio); |
| |
| bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); |
| |
| *page_offset = (size_t) bio_vec.bv_offset; |
| BUG_ON(*page_offset >= PAGE_SIZE); |
| if (cursor->last_piece) /* pagelist offset is always 0 */ |
| *length = cursor->resid; |
| else |
| *length = (size_t) bio_vec.bv_len; |
| BUG_ON(*length > cursor->resid); |
| BUG_ON(*page_offset + *length > PAGE_SIZE); |
| |
| return bio_vec.bv_page; |
| } |
| |
| static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, |
| size_t bytes) |
| { |
| struct bio *bio; |
| struct bio_vec bio_vec; |
| |
| BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); |
| |
| bio = cursor->bio; |
| BUG_ON(!bio); |
| |
| bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); |
| |
| /* Advance the cursor offset */ |
| |
| BUG_ON(cursor->resid < bytes); |
| cursor->resid -= bytes; |
| |
| bio_advance_iter(bio, &cursor->bvec_iter, bytes); |
| |
| if (bytes < bio_vec.bv_len) |
| return false; /* more bytes to process in this segment */ |
| |
| /* Move on to the next segment, and possibly the next bio */ |
| |
| if (!cursor->bvec_iter.bi_size) { |
| bio = bio->bi_next; |
| cursor->bio = bio; |
| if (bio) |
| cursor->bvec_iter = bio->bi_iter; |
| else |
| memset(&cursor->bvec_iter, 0, |
| sizeof(cursor->bvec_iter)); |
| } |
| |
| if (!cursor->last_piece) { |
| BUG_ON(!cursor->resid); |
| BUG_ON(!bio); |
| /* A short read is OK, so use <= rather than == */ |
| if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) |
| cursor->last_piece = true; |
| } |
| |
| return true; |
| } |
| #endif /* CONFIG_BLOCK */ |
| |
| /* |
| * For a page array, a piece comes from the first page in the array |
| * that has not already been fully consumed. |
| */ |
| static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, |
| size_t length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| int page_count; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_PAGES); |
| |
| BUG_ON(!data->pages); |
| BUG_ON(!data->length); |
| |
| cursor->resid = min(length, data->length); |
| page_count = calc_pages_for(data->alignment, (u64)data->length); |
| cursor->page_offset = data->alignment & ~PAGE_MASK; |
| cursor->page_index = 0; |
| BUG_ON(page_count > (int)USHRT_MAX); |
| cursor->page_count = (unsigned short)page_count; |
| BUG_ON(length > SIZE_MAX - cursor->page_offset); |
| cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; |
| } |
| |
| static struct page * |
| ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, |
| size_t *page_offset, size_t *length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_PAGES); |
| |
| BUG_ON(cursor->page_index >= cursor->page_count); |
| BUG_ON(cursor->page_offset >= PAGE_SIZE); |
| |
| *page_offset = cursor->page_offset; |
| if (cursor->last_piece) |
| *length = cursor->resid; |
| else |
| *length = PAGE_SIZE - *page_offset; |
| |
| return data->pages[cursor->page_index]; |
| } |
| |
| static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, |
| size_t bytes) |
| { |
| BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); |
| |
| BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); |
| |
| /* Advance the cursor page offset */ |
| |
| cursor->resid -= bytes; |
| cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; |
| if (!bytes || cursor->page_offset) |
| return false; /* more bytes to process in the current page */ |
| |
| if (!cursor->resid) |
| return false; /* no more data */ |
| |
| /* Move on to the next page; offset is already at 0 */ |
| |
| BUG_ON(cursor->page_index >= cursor->page_count); |
| cursor->page_index++; |
| cursor->last_piece = cursor->resid <= PAGE_SIZE; |
| |
| return true; |
| } |
| |
| /* |
| * For a pagelist, a piece is whatever remains to be consumed in the |
| * first page in the list, or the front of the next page. |
| */ |
| static void |
| ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, |
| size_t length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| struct ceph_pagelist *pagelist; |
| struct page *page; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); |
| |
| pagelist = data->pagelist; |
| BUG_ON(!pagelist); |
| |
| if (!length) |
| return; /* pagelist can be assigned but empty */ |
| |
| BUG_ON(list_empty(&pagelist->head)); |
| page = list_first_entry(&pagelist->head, struct page, lru); |
| |
| cursor->resid = min(length, pagelist->length); |
| cursor->page = page; |
| cursor->offset = 0; |
| cursor->last_piece = cursor->resid <= PAGE_SIZE; |
| } |
| |
| static struct page * |
| ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, |
| size_t *page_offset, size_t *length) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| struct ceph_pagelist *pagelist; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); |
| |
| pagelist = data->pagelist; |
| BUG_ON(!pagelist); |
| |
| BUG_ON(!cursor->page); |
| BUG_ON(cursor->offset + cursor->resid != pagelist->length); |
| |
| /* offset of first page in pagelist is always 0 */ |
| *page_offset = cursor->offset & ~PAGE_MASK; |
| if (cursor->last_piece) |
| *length = cursor->resid; |
| else |
| *length = PAGE_SIZE - *page_offset; |
| |
| return cursor->page; |
| } |
| |
| static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, |
| size_t bytes) |
| { |
| struct ceph_msg_data *data = cursor->data; |
| struct ceph_pagelist *pagelist; |
| |
| BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); |
| |
| pagelist = data->pagelist; |
| BUG_ON(!pagelist); |
| |
| BUG_ON(cursor->offset + cursor->resid != pagelist->length); |
| BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); |
| |
| /* Advance the cursor offset */ |
| |
| cursor->resid -= bytes; |
| cursor->offset += bytes; |
| /* offset of first page in pagelist is always 0 */ |
| if (!bytes || cursor->offset & ~PAGE_MASK) |
| return false; /* more bytes to process in the current page */ |
| |
| if (!cursor->resid) |
| return false; /* no more data */ |
| |
| /* Move on to the next page */ |
| |
| BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); |
| cursor->page = list_entry_next(cursor->page, lru); |
| cursor->last_piece = cursor->resid <= PAGE_SIZE; |
| |
| return true; |
| } |
| |
| /* |
| * Message data is handled (sent or received) in pieces, where each |
| * piece resides on a single page. The network layer might not |
| * consume an entire piece at once. A data item's cursor keeps |
| * track of which piece is next to process and how much remains to |
| * be processed in that piece. It also tracks whether the current |
| * piece is the last one in the data item. |
| */ |
| static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) |
| { |
| size_t length = cursor->total_resid; |
| |
| switch (cursor->data->type) { |
| case CEPH_MSG_DATA_PAGELIST: |
| ceph_msg_data_pagelist_cursor_init(cursor, length); |
| break; |
| case CEPH_MSG_DATA_PAGES: |
| ceph_msg_data_pages_cursor_init(cursor, length); |
| break; |
| #ifdef CONFIG_BLOCK |
| case CEPH_MSG_DATA_BIO: |
| ceph_msg_data_bio_cursor_init(cursor, length); |
| break; |
| #endif /* CONFIG_BLOCK */ |
| case CEPH_MSG_DATA_NONE: |
| default: |
| /* BUG(); */ |
| break; |
| } |
| cursor->need_crc = true; |
| } |
| |
| static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) |
| { |
| struct ceph_msg_data_cursor *cursor = &msg->cursor; |
| struct ceph_msg_data *data; |
| |
| BUG_ON(!length); |
| BUG_ON(length > msg->data_length); |
| BUG_ON(list_empty(&msg->data)); |
| |
| cursor->data_head = &msg->data; |
| cursor->total_resid = length; |
| data = list_first_entry(&msg->data, struct ceph_msg_data, links); |
| cursor->data = data; |
| |
| __ceph_msg_data_cursor_init(cursor); |
| } |
| |
| /* |
| * Return the page containing the next piece to process for a given |
| * data item, and supply the page offset and length of that piece. |
| * Indicate whether this is the last piece in this data item. |
| */ |
| static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, |
| size_t *page_offset, size_t *length, |
| bool *last_piece) |
| { |
| struct page *page; |
| |
| switch (cursor->data->type) { |
| case CEPH_MSG_DATA_PAGELIST: |
| page = ceph_msg_data_pagelist_next(cursor, page_offset, length); |
| break; |
| case CEPH_MSG_DATA_PAGES: |
| page = ceph_msg_data_pages_next(cursor, page_offset, length); |
| break; |
| #ifdef CONFIG_BLOCK |
| case CEPH_MSG_DATA_BIO: |
| page = ceph_msg_data_bio_next(cursor, page_offset, length); |
| break; |
| #endif /* CONFIG_BLOCK */ |
| case CEPH_MSG_DATA_NONE: |
| default: |
| page = NULL; |
| break; |
| } |
| BUG_ON(!page); |
| BUG_ON(*page_offset + *length > PAGE_SIZE); |
| BUG_ON(!*length); |
| if (last_piece) |
| *last_piece = cursor->last_piece; |
| |
| return page; |
| } |
| |
| /* |
| * Returns true if the result moves the cursor on to the next piece |
| * of the data item. |
| */ |
| static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, |
| size_t bytes) |
| { |
| bool new_piece; |
| |
| BUG_ON(bytes > cursor->resid); |
| switch (cursor->data->type) { |
| case CEPH_MSG_DATA_PAGELIST: |
| new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); |
| break; |
| case CEPH_MSG_DATA_PAGES: |
| new_piece = ceph_msg_data_pages_advance(cursor, bytes); |
| break; |
| #ifdef CONFIG_BLOCK |
| case CEPH_MSG_DATA_BIO: |
| new_piece = ceph_msg_data_bio_advance(cursor, bytes); |
| break; |
| #endif /* CONFIG_BLOCK */ |
| case CEPH_MSG_DATA_NONE: |
| default: |
| BUG(); |
| break; |
| } |
| cursor->total_resid -= bytes; |
| |
| if (!cursor->resid && cursor->total_resid) { |
| WARN_ON(!cursor->last_piece); |
| BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); |
| cursor->data = list_entry_next(cursor->data, links); |
| __ceph_msg_data_cursor_init(cursor); |
| new_piece = true; |
| } |
| cursor->need_crc = new_piece; |
| |
| return new_piece; |
| } |
| |
| static void prepare_message_data(struct ceph_msg *msg, u32 data_len) |
| { |
| BUG_ON(!msg); |
| BUG_ON(!data_len); |
| |
| /* Initialize data cursor */ |
| |
| ceph_msg_data_cursor_init(msg, (size_t)data_len); |
| } |
| |
| /* |
| * Prepare footer for currently outgoing message, and finish things |
| * off. Assumes out_kvec* are already valid.. we just add on to the end. |
| */ |
| static void prepare_write_message_footer(struct ceph_connection *con) |
| { |
| struct ceph_msg *m = con->out_msg; |
| int v = con->out_kvec_left; |
| |
| m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; |
| |
| dout("prepare_write_message_footer %p\n", con); |
| con->out_kvec_is_msg = true; |
| con->out_kvec[v].iov_base = &m->footer; |
| if (con->peer_features & CEPH_FEATURE_MSG_AUTH) { |
| if (con->ops->sign_message) |
| con->ops->sign_message(con, m); |
| else |
| m->footer.sig = 0; |
| con->out_kvec[v].iov_len = sizeof(m->footer); |
| con->out_kvec_bytes += sizeof(m->footer); |
| } else { |
| m->old_footer.flags = m->footer.flags; |
| con->out_kvec[v].iov_len = sizeof(m->old_footer); |
| con->out_kvec_bytes += sizeof(m->old_footer); |
| } |
| con->out_kvec_left++; |
| con->out_more = m->more_to_follow; |
| con->out_msg_done = true; |
| } |
| |
| /* |
| * Prepare headers for the next outgoing message. |
| */ |
| static void prepare_write_message(struct ceph_connection *con) |
| { |
| struct ceph_msg *m; |
| u32 crc; |
| |
| con_out_kvec_reset(con); |
| con->out_kvec_is_msg = true; |
| con->out_msg_done = false; |
| |
| /* Sneak an ack in there first? If we can get it into the same |
| * TCP packet that's a good thing. */ |
| if (con->in_seq > con->in_seq_acked) { |
| con->in_seq_acked = con->in_seq; |
| con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); |
| con->out_temp_ack = cpu_to_le64(con->in_seq_acked); |
| con_out_kvec_add(con, sizeof (con->out_temp_ack), |
| &con->out_temp_ack); |
| } |
| |
| BUG_ON(list_empty(&con->out_queue)); |
| m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); |
| con->out_msg = m; |
| BUG_ON(m->con != con); |
| |
| /* put message on sent list */ |
| ceph_msg_get(m); |
| list_move_tail(&m->list_head, &con->out_sent); |
| |
| /* |
| * only assign outgoing seq # if we haven't sent this message |
| * yet. if it is requeued, resend with it's original seq. |
| */ |
| if (m->needs_out_seq) { |
| m->hdr.seq = cpu_to_le64(++con->out_seq); |
| m->needs_out_seq = false; |
| } |
| WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); |
| |
| dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", |
| m, con->out_seq, le16_to_cpu(m->hdr.type), |
| le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), |
| m->data_length); |
| BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); |
| |
| /* tag + hdr + front + middle */ |
| con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); |
| con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); |
| con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); |
| |
| if (m->middle) |
| con_out_kvec_add(con, m->middle->vec.iov_len, |
| m->middle->vec.iov_base); |
| |
| /* fill in crc (except data pages), footer */ |
| crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); |
| con->out_msg->hdr.crc = cpu_to_le32(crc); |
| con->out_msg->footer.flags = 0; |
| |
| crc = crc32c(0, m->front.iov_base, m->front.iov_len); |
| con->out_msg->footer.front_crc = cpu_to_le32(crc); |
| if (m->middle) { |
| crc = crc32c(0, m->middle->vec.iov_base, |
| m->middle->vec.iov_len); |
| con->out_msg->footer.middle_crc = cpu_to_le32(crc); |
| } else |
| con->out_msg->footer.middle_crc = 0; |
| dout("%s front_crc %u middle_crc %u\n", __func__, |
| le32_to_cpu(con->out_msg->footer.front_crc), |
| le32_to_cpu(con->out_msg->footer.middle_crc)); |
| |
| /* is there a data payload? */ |
| con->out_msg->footer.data_crc = 0; |
| if (m->data_length) { |
| prepare_message_data(con->out_msg, m->data_length); |
| con->out_more = 1; /* data + footer will follow */ |
| } else { |
| /* no, queue up footer too and be done */ |
| prepare_write_message_footer(con); |
| } |
| |
| con_flag_set(con, CON_FLAG_WRITE_PENDING); |
| } |
| |
| /* |
| * Prepare an ack. |
| */ |
| static void prepare_write_ack(struct ceph_connection *con) |
| { |
| dout("prepare_write_ack %p %llu -> %llu\n", con, |
| con->in_seq_acked, con->in_seq); |
| con->in_seq_acked = con->in_seq; |
| |
| con_out_kvec_reset(con); |
| |
| con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); |
| |
| con->out_temp_ack = cpu_to_le64(con->in_seq_acked); |
| con_out_kvec_add(con, sizeof (con->out_temp_ack), |
| &con->out_temp_ack); |
| |
| con->out_more = 1; /* more will follow.. eventually.. */ |
| con_flag_set(con, CON_FLAG_WRITE_PENDING); |
| } |
| |
| /* |
| * Prepare to share the seq during handshake |
| */ |
| static void prepare_write_seq(struct ceph_connection *con) |
| { |
| dout("prepare_write_seq %p %llu -> %llu\n", con, |
| con->in_seq_acked, con->in_seq); |
| con->in_seq_acked = con->in_seq; |
| |
| con_out_kvec_reset(con); |
| |
| con->out_temp_ack = cpu_to_le64(con->in_seq_acked); |
| con_out_kvec_add(con, sizeof (con->out_temp_ack), |
| &con->out_temp_ack); |
| |
| con_flag_set(con, CON_FLAG_WRITE_PENDING); |
| } |
| |
| /* |
| * Prepare to write keepalive byte. |
| */ |
| static void prepare_write_keepalive(struct ceph_connection *con) |
| { |
| dout("prepare_write_keepalive %p\n", con); |
| con_out_kvec_reset(con); |
| con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); |
| con_flag_set(con, CON_FLAG_WRITE_PENDING); |
| } |
| |
| /* |
| * Connection negotiation. |
| */ |
| |
| static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, |
| int *auth_proto) |
| { |
| struct ceph_auth_handshake *auth; |
| |
| if (!con->ops->get_authorizer) { |
| con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; |
| con->out_connect.authorizer_len = 0; |
| return NULL; |
| } |
| |
| /* Can't hold the mutex while getting authorizer */ |
| mutex_unlock(&con->mutex); |
| auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); |
| mutex_lock(&con->mutex); |
| |
| if (IS_ERR(auth)) |
| return auth; |
| if (con->state != CON_STATE_NEGOTIATING) |
| return ERR_PTR(-EAGAIN); |
| |
| con->auth_reply_buf = auth->authorizer_reply_buf; |
| con->auth_reply_buf_len = auth->authorizer_reply_buf_len; |
| return auth; |
| } |
| |
| /* |
| * We connected to a peer and are saying hello. |
| */ |
| static void prepare_write_banner(struct ceph_connection *con) |
| { |
| con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); |
| con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), |
| &con->msgr->my_enc_addr); |
| |
| con->out_more = 0; |
| con_flag_set(con, CON_FLAG_WRITE_PENDING); |
| } |
| |
| static int prepare_write_connect(struct ceph_connection *con) |
| { |
| unsigned int global_seq = get_global_seq(con->msgr, 0); |
| int proto; |
| int auth_proto; |
| struct ceph_auth_handshake *auth; |
| |
| switch (con->peer_name.type) { |
| case CEPH_ENTITY_TYPE_MON: |
| proto = CEPH_MONC_PROTOCOL; |
| break; |
| case CEPH_ENTITY_TYPE_OSD: |
| proto = CEPH_OSDC_PROTOCOL; |
| break; |
| case CEPH_ENTITY_TYPE_MDS: |
| proto = CEPH_MDSC_PROTOCOL; |
| break; |
| default: |
| BUG(); |
| } |
| |
| dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, |
| con->connect_seq, global_seq, proto); |
| |
| con->out_connect.features = cpu_to_le64(con->msgr->supported_features); |
| con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); |
| con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); |
| con->out_connect.global_seq = cpu_to_le32(global_seq); |
| con->out_connect.protocol_version = cpu_to_le32(proto); |
| con->out_connect.flags = 0; |
| |
| auth_proto = CEPH_AUTH_UNKNOWN; |
| auth = get_connect_authorizer(con, &auth_proto); |
| if (IS_ERR(auth)) |
| return PTR_ERR(auth); |
| |
| con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); |
| con->out_connect.authorizer_len = auth ? |
| cpu_to_le32(auth->authorizer_buf_len) : 0; |
| |
| con_out_kvec_add(con, sizeof (con->out_connect), |
| &con->out_connect); |
| if (auth && auth->authorizer_buf_len) |
| con_out_kvec_add(con, auth->authorizer_buf_len, |
| auth->authorizer_buf); |
| |
| con->out_more = 0; |
| con_flag_set(con, CON_FLAG_WRITE_PENDING); |
| |
| return 0; |
| } |
| |
| /* |
| * write as much of pending kvecs to the socket as we can. |
| * 1 -> done |
| * 0 -> socket full, but more to do |
| * <0 -> error |
| */ |
| static int write_partial_kvec(struct ceph_connection *con) |
| { |
| int ret; |
| |
| dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); |
| while (con->out_kvec_bytes > 0) { |
| ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, |
| con->out_kvec_left, con->out_kvec_bytes, |
| con->out_more); |
| if (ret <= 0) |
| goto out; |
| con->out_kvec_bytes -= ret; |
| if (con->out_kvec_bytes == 0) |
| break; /* done */ |
| |
| /* account for full iov entries consumed */ |
| while (ret >= con->out_kvec_cur->iov_len) { |
| BUG_ON(!con->out_kvec_left); |
| ret -= con->out_kvec_cur->iov_len; |
| con->out_kvec_cur++; |
| con->out_kvec_left--; |
| } |
| /* and for a partially-consumed entry */ |
| if (ret) { |
| con->out_kvec_cur->iov_len -= ret; |
| con->out_kvec_cur->iov_base += ret; |
| } |
| } |
| con->out_kvec_left = 0; |
| con->out_kvec_is_msg = false; |
| ret = 1; |
| out: |
| dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, |
| con->out_kvec_bytes, con->out_kvec_left, ret); |
| return ret; /* done! */ |
| } |
| |
| static u32 ceph_crc32c_page(u32 crc, struct page *page, |
| unsigned int page_offset, |
| unsigned int length) |
| { |
| char *kaddr; |
| |
| kaddr = kmap(page); |
| BUG_ON(kaddr == NULL); |
| crc = crc32c(crc, kaddr + page_offset, length); |
| kunmap(page); |
| |
| return crc; |
| } |
| /* |
| * Write as much message data payload as we can. If we finish, queue |
| * up the footer. |
| * 1 -> done, footer is now queued in out_kvec[]. |
| * 0 -> socket full, but more to do |
| * <0 -> error |
| */ |
| static int write_partial_message_data(struct ceph_connection *con) |
| { |
| struct ceph_msg *msg = con->out_msg; |
| struct ceph_msg_data_cursor *cursor = &msg->cursor; |
| bool do_datacrc = !con->msgr->nocrc; |
| u32 crc; |
| |
| dout("%s %p msg %p\n", __func__, con, msg); |
| |
| if (list_empty(&msg->data)) |
| return -EINVAL; |
| |
| /* |
| * Iterate through each page that contains data to be |
| * written, and send as much as possible for each. |
| * |
| * If we are calculating the data crc (the default), we will |
| * need to map the page. If we have no pages, they have |
| * been revoked, so use the zero page. |
| */ |
| crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; |
| while (cursor->resid) { |
| struct page *page; |
| size_t page_offset; |
| size_t length; |
| bool last_piece; |
| bool need_crc; |
| int ret; |
| |
| page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, |
| &last_piece); |
| ret = ceph_tcp_sendpage(con->sock, page, page_offset, |
| length, last_piece); |
| if (ret <= 0) { |
| if (do_datacrc) |
| msg->footer.data_crc = cpu_to_le32(crc); |
| |
| return ret; |
| } |
| if (do_datacrc && cursor->need_crc) |
| crc = ceph_crc32c_page(crc, page, page_offset, length); |
| need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret); |
| } |
| |
| dout("%s %p msg %p done\n", __func__, con, msg); |
| |
| /* prepare and queue up footer, too */ |
| if (do_datacrc) |
| msg->footer.data_crc = cpu_to_le32(crc); |
| else |
| msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; |
| con_out_kvec_reset(con); |
| prepare_write_message_footer(con); |
| |
| return 1; /* must return > 0 to indicate success */ |
| } |
| |
| /* |
| * write some zeros |
| */ |
| static int write_partial_skip(struct ceph_connection *con) |
| { |
| int ret; |
| |
| while (con->out_skip > 0) { |
| size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); |
| |
| ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); |
| if (ret <= 0) |
| goto out; |
| con->out_skip -= ret; |
| } |
| ret = 1; |
| out: |
| return ret; |
| } |
| |
| /* |
| * Prepare to read connection handshake, or an ack. |
| */ |
| static void prepare_read_banner(struct ceph_connection *con) |
| { |
| dout("prepare_read_banner %p\n", con); |
| con->in_base_pos = 0; |
| } |
| |
| static void prepare_read_connect(struct ceph_connection *con) |
| { |
| dout("prepare_read_connect %p\n", con); |
| con->in_base_pos = 0; |
| } |
| |
| static void prepare_read_ack(struct ceph_connection *con) |
| { |
| dout("prepare_read_ack %p\n", con); |
| con->in_base_pos = 0; |
| } |
| |
| static void prepare_read_seq(struct ceph_connection *con) |
| { |
| dout("prepare_read_seq %p\n", con); |
| con->in_base_pos = 0; |
| con->in_tag = CEPH_MSGR_TAG_SEQ; |
| } |
| |
| static void prepare_read_tag(struct ceph_connection *con) |
| { |
| dout("prepare_read_tag %p\n", con); |
| con->in_base_pos = 0; |
| con->in_tag = CEPH_MSGR_TAG_READY; |
| } |
| |
| /* |
| * Prepare to read a message. |
| */ |
| static int prepare_read_message(struct ceph_connection *con) |
| { |
| dout("prepare_read_message %p\n", con); |
| BUG_ON(con->in_msg != NULL); |
| con->in_base_pos = 0; |
| con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; |
| return 0; |
| } |
| |
| |
| static int read_partial(struct ceph_connection *con, |
| int end, int size, void *object) |
| { |
| while (con->in_base_pos < end) { |
| int left = end - con->in_base_pos; |
| int have = size - left; |
| int ret = ceph_tcp_recvmsg(con->sock, object + have, left); |
| if (ret <= 0) |
| return ret; |
| con->in_base_pos += ret; |
| } |
| return 1; |
| } |
| |
| |
| /* |
| * Read all or part of the connect-side handshake on a new connection |
| */ |
| static int read_partial_banner(struct ceph_connection *con) |
| { |
| int size; |
| int end; |
| int ret; |
| |
| dout("read_partial_banner %p at %d\n", con, con->in_base_pos); |
| |
| /* peer's banner */ |
| size = strlen(CEPH_BANNER); |
| end = size; |
| ret = read_partial(con, end, size, con->in_banner); |
| if (ret <= 0) |
| goto out; |
| |
| size = sizeof (con->actual_peer_addr); |
| end += size; |
| ret = read_partial(con, end, size, &con->actual_peer_addr); |
| if (ret <= 0) |
| goto out; |
| |
| size = sizeof (con->peer_addr_for_me); |
| end += size; |
| ret = read_partial(con, end, size, &con->peer_addr_for_me); |
| if (ret <= 0) |
| goto out; |
| |
| out: |
| return ret; |
| } |
| |
| static int read_partial_connect(struct ceph_connection *con) |
| { |
| int size; |
| int end; |
| int ret; |
| |
| dout("read_partial_connect %p at %d\n", con, con->in_base_pos); |
| |
| size = sizeof (con->in_reply); |
| end = size; |
| ret = read_partial(con, end, size, &con->in_reply); |
| if (ret <= 0) |
| goto out; |
| |
| size = le32_to_cpu(con->in_reply.authorizer_len); |
| end += size; |
| ret = read_partial(con, end, size, con->auth_reply_buf); |
| if (ret <= 0) |
| goto out; |
| |
| dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", |
| con, (int)con->in_reply.tag, |
| le32_to_cpu(con->in_reply.connect_seq), |
| le32_to_cpu(con->in_reply.global_seq)); |
| out: |
| return ret; |
| |
| } |
| |
| /* |
| * Verify the hello banner looks okay. |
| */ |
| static int verify_hello(struct ceph_connection *con) |
| { |
| if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { |
| pr_err("connect to %s got bad banner\n", |
| ceph_pr_addr(&con->peer_addr.in_addr)); |
| con->error_msg = "protocol error, bad banner"; |
| return -1; |
| } |
| return 0; |
| } |
| |
| static bool addr_is_blank(struct sockaddr_storage *ss) |
| { |
| switch (ss->ss_family) { |
| case AF_INET: |
| return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; |
| case AF_INET6: |
| return |
| ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && |
| ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && |
| ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && |
| ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; |
| } |
| return false; |
| } |
| |
| static int addr_port(struct sockaddr_storage *ss) |
| { |
| switch (ss->ss_family) { |
| case AF_INET: |
| return ntohs(((struct sockaddr_in *)ss)->sin_port); |
| case AF_INET6: |
| return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); |
| } |
| return 0; |
| } |
| |
| static void addr_set_port(struct sockaddr_storage *ss, int p) |
| { |
| switch (ss->ss_family) { |
| case AF_INET: |
| ((struct sockaddr_in *)ss)->sin_port = htons(p); |
| break; |
| case AF_INET6: |
| ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); |
| break; |
| } |
| } |
| |
| /* |
| * Unlike other *_pton function semantics, zero indicates success. |
| */ |
| static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, |
| char delim, const char **ipend) |
| { |
| struct sockaddr_in *in4 = (struct sockaddr_in *) ss; |
| struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; |
| |
| memset(ss, 0, sizeof(*ss)); |
| |
| if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { |
| ss->ss_family = AF_INET; |
| return 0; |
| } |
| |
| if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { |
| ss->ss_family = AF_INET6; |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| /* |
| * Extract hostname string and resolve using kernel DNS facility. |
| */ |
| #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER |
| static int ceph_dns_resolve_name(const char *name, size_t namelen, |
| struct sockaddr_storage *ss, char delim, const char **ipend) |
| { |
| const char *end, *delim_p; |
| char *colon_p, *ip_addr = NULL; |
| int ip_len, ret; |
| |
| /* |
| * The end of the hostname occurs immediately preceding the delimiter or |
| * the port marker (':') where the delimiter takes precedence. |
| */ |
| delim_p = memchr(name, delim, namelen); |
| colon_p = memchr(name, ':', namelen); |
| |
| if (delim_p && colon_p) |
| end = delim_p < colon_p ? delim_p : colon_p; |
| else if (!delim_p && colon_p) |
| end = colon_p; |
| else { |
| end = delim_p; |
| if (!end) /* case: hostname:/ */ |
| end = name + namelen; |
| } |
| |
| if (end <= name) |
| return -EINVAL; |
| |
| /* do dns_resolve upcall */ |
| ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); |
| if (ip_len > 0) |
| ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); |
| else |
| ret = -ESRCH; |
| |
| kfree(ip_addr); |
| |
| *ipend = end; |
| |
| pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, |
| ret, ret ? "failed" : ceph_pr_addr(ss)); |
| |
| return ret; |
| } |
| #else |
| static inline int ceph_dns_resolve_name(const char *name, size_t namelen, |
| struct sockaddr_storage *ss, char delim, const char **ipend) |
| { |
| return -EINVAL; |
| } |
| #endif |
| |
| /* |
| * Parse a server name (IP or hostname). If a valid IP address is not found |
| * then try to extract a hostname to resolve using userspace DNS upcall. |
| */ |
| static int ceph_parse_server_name(const char *name, size_t namelen, |
| struct sockaddr_storage *ss, char delim, const char **ipend) |
| { |
| int ret; |
| |
| ret = ceph_pton(name, namelen, ss, delim, ipend); |
| if (ret) |
| ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); |
| |
| return ret; |
| } |
| |
| /* |
| * Parse an ip[:port] list into an addr array. Use the default |
| * monitor port if a port isn't specified. |
| */ |
| int ceph_parse_ips(const char *c, const char *end, |
| struct ceph_entity_addr *addr, |
| int max_count, int *count) |
| { |
| int i, ret = -EINVAL; |
| const char *p = c; |
| |
| dout("parse_ips on '%.*s'\n", (int)(end-c), c); |
| for (i = 0; i < max_count; i++) { |
| const char *ipend; |
| struct sockaddr_storage *ss = &addr[i].in_addr; |
| int port; |
| char delim = ','; |
| |
| if (*p == '[') { |
| delim = ']'; |
| p++; |
| } |
| |
| ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); |
| if (ret) |
| goto bad; |
| ret = -EINVAL; |
| |
| p = ipend; |
| |
| if (delim == ']') { |
| if (*p != ']') { |
| dout("missing matching ']'\n"); |
| goto bad; |
| } |
| p++; |
| } |
| |
| /* port? */ |
| if (p < end && *p == ':') { |
| port = 0; |
| p++; |
| while (p < end && *p >= '0' && *p <= '9') { |
| port = (port * 10) + (*p - '0'); |
| p++; |
| } |
| if (port == 0) |
| port = CEPH_MON_PORT; |
| else if (port > 65535) |
| goto bad; |
| } else { |
| port = CEPH_MON_PORT; |
| } |
| |
| addr_set_port(ss, port); |
| |
| dout("parse_ips got %s\n", ceph_pr_addr(ss)); |
| |
| if (p == end) |
| break; |
| if (*p != ',') |
| goto bad; |
| p++; |
| } |
| |
| if (p != end) |
| goto bad; |
| |
| if (count) |
| *count = i + 1; |
| return 0; |
| |
| bad: |
| pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); |
| return ret; |
| } |
| EXPORT_SYMBOL(ceph_parse_ips); |
| |
| static int process_banner(struct ceph_connection *con) |
| { |
| dout("process_banner on %p\n", con); |
| |
| if (verify_hello(con) < 0) |
| return -1; |
| |
| ceph_decode_addr(&con->actual_peer_addr); |
| ceph_decode_addr(&con->peer_addr_for_me); |
| |
| /* |
| * Make sure the other end is who we wanted. note that the other |
| * end may not yet know their ip address, so if it's 0.0.0.0, give |
| * them the benefit of the doubt. |
| */ |
| if (memcmp(&con->peer_addr, &con->actual_peer_addr, |
| sizeof(con->peer_addr)) != 0 && |
| !(addr_is_blank(&con->actual_peer_addr.in_addr) && |
| con->actual_peer_addr.nonce == con->peer_addr.nonce)) { |
| pr_warn("wrong peer, want %s/%d, got %s/%d\n", |
| ceph_pr_addr(&con->peer_addr.in_addr), |
| (int)le32_to_cpu(con->peer_addr.nonce), |
| ceph_pr_addr(&con->actual_peer_addr.in_addr), |
| (int)le32_to_cpu(con->actual_peer_addr.nonce)); |
| con->error_msg = "wrong peer at address"; |
| return -1; |
| } |
| |
| /* |
| * did we learn our address? |
| */ |
| if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { |
| int port = addr_port(&con->msgr->inst.addr.in_addr); |
| |
| memcpy(&con->msgr->inst.addr.in_addr, |
| &con->peer_addr_for_me.in_addr, |
| sizeof(con->peer_addr_for_me.in_addr)); |
| addr_set_port(&con->msgr->inst.addr.in_addr, port); |
| encode_my_addr(con->msgr); |
| dout("process_banner learned my addr is %s\n", |
| ceph_pr_addr(&con->msgr->inst.addr.in_addr)); |
| } |
| |
| return 0; |
| } |
| |
| static int process_connect(struct ceph_connection *con) |
| { |
| u64 sup_feat = con->msgr->supported_features; |
| u64 req_feat = con->msgr->required_features; |
| u64 server_feat = ceph_sanitize_features( |
| le64_to_cpu(con->in_reply.features)); |
| int ret; |
| |
| dout("process_connect on %p tag %d\n", con, (int)con->in_tag); |
| |
| switch (con->in_reply.tag) { |
| case CEPH_MSGR_TAG_FEATURES: |
| pr_err("%s%lld %s feature set mismatch," |
| " my %llx < server's %llx, missing %llx\n", |
| ENTITY_NAME(con->peer_name), |
| ceph_pr_addr(&con->peer_addr.in_addr), |
| sup_feat, server_feat, server_feat & ~sup_feat); |
| con->error_msg = "missing required protocol features"; |
| reset_connection(con); |
| return -1; |
| |
| case CEPH_MSGR_TAG_BADPROTOVER: |
| pr_err("%s%lld %s protocol version mismatch," |
| " my %d != server's %d\n", |
| ENTITY_NAME(con->peer_name), |
| ceph_pr_addr(&con->peer_addr.in_addr), |
| le32_to_cpu(con->out_connect.protocol_version), |
| le32_to_cpu(con->in_reply.protocol_version)); |
| con->error_msg = "protocol version mismatch"; |
| reset_connection(con); |
| return -1; |
| |
| case CEPH_MSGR_TAG_BADAUTHORIZER: |
| con->auth_retry++; |
| dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, |
| con->auth_retry); |
| if (con->auth_retry == 2) { |
| con->error_msg = "connect authorization failure"; |
| return -1; |
| } |
| con_out_kvec_reset(con); |
| ret = prepare_write_connect(con); |
| if (ret < 0) |
| return ret; |
| prepare_read_connect(con); |
| break; |
| |
| case CEPH_MSGR_TAG_RESETSESSION: |
| /* |
| * If we connected with a large connect_seq but the peer |
| * has no record of a session with us (no connection, or |
| * connect_seq == 0), they will send RESETSESION to indicate |
| * that they must have reset their session, and may have |
| * dropped messages. |
| */ |
| dout("process_connect got RESET peer seq %u\n", |
| le32_to_cpu(con->in_reply.connect_seq)); |
| pr_err("%s%lld %s connection reset\n", |
| ENTITY_NAME(con->peer_name), |
| ceph_pr_addr(&con->peer_addr.in_addr)); |
| reset_connection(con); |
| con_out_kvec_reset(con); |
| ret = prepare_write_connect(con); |
| if (ret < 0) |
| return ret; |
| prepare_read_connect(con); |
| |
| /* Tell ceph about it. */ |
| mutex_unlock(&con->mutex); |
| pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); |
| if (con->ops->peer_reset) |
| con->ops->peer_reset(con); |
| mutex_lock(&con->mutex); |
| if (con->state != CON_STATE_NEGOTIATING) |
| return -EAGAIN; |
| break; |
| |
| case CEPH_MSGR_TAG_RETRY_SESSION: |
| /* |
| * If we sent a smaller connect_seq than the peer has, try |
| * again with a larger value. |
| */ |
| dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", |
| le32_to_cpu(con->out_connect.connect_seq), |
| le32_to_cpu(con->in_reply.connect_seq)); |
| con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); |
| con_out_kvec_reset(con); |
| ret = prepare_write_connect(con); |
| if (ret < 0) |
| return ret; |
| prepare_read_connect(con); |
| break; |
| |
| case CEPH_MSGR_TAG_RETRY_GLOBAL: |
| /* |
| * If we sent a smaller global_seq than the peer has, try |
| * again with a larger value. |
| */ |
| dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", |
| con->peer_global_seq, |
| le32_to_cpu(con->in_reply.global_seq)); |
| get_global_seq(con->msgr, |
| le32_to_cpu(con->in_reply.global_seq)); |
| con_out_kvec_reset(con); |
| ret = prepare_write_connect(con); |
| if (ret < 0) |
| return ret; |
| prepare_read_connect(con); |
| break; |
| |
| case CEPH_MSGR_TAG_SEQ: |
| case CEPH_MSGR_TAG_READY: |
| if (req_feat & ~server_feat) { |
| pr_err("%s%lld %s protocol feature mismatch," |
| " my required %llx > server's %llx, need %llx\n", |
| ENTITY_NAME(con->peer_name), |
| ceph_pr_addr(&con->peer_addr.in_addr), |
| req_feat, server_feat, req_feat & ~server_feat); |
| con->error_msg = "missing required protocol features"; |
| reset_connection(con); |
| return -1; |
| } |
| |
| WARN_ON(con->state != CON_STATE_NEGOTIATING); |
| con->state = CON_STATE_OPEN; |
| con->auth_retry = 0; /* we authenticated; clear flag */ |
| con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); |
| con->connect_seq++; |
| con->peer_features = server_feat; |
| dout("process_connect got READY gseq %d cseq %d (%d)\n", |
| con->peer_global_seq, |
| le32_to_cpu(con->in_reply.connect_seq), |
| con->connect_seq); |
| WARN_ON(con->connect_seq != |
| le32_to_cpu(con->in_reply.connect_seq)); |
| |
| if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) |
| con_flag_set(con, CON_FLAG_LOSSYTX); |
| |
| con->delay = 0; /* reset backoff memory */ |
| |
| if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { |
| prepare_write_seq(con); |
| prepare_read_seq(con); |
| } else { |
| prepare_read_tag(con); |
| } |
| break; |
| |
| case CEPH_MSGR_TAG_WAIT: |
| /* |
| * If there is a connection race (we are opening |
| * connections to each other), one of us may just have |
| * to WAIT. This shouldn't happen if we are the |
| * client. |
| */ |
| pr_err("process_connect got WAIT as client\n"); |
| con->error_msg = "protocol error, got WAIT as client"; |
| return -1; |
| |
| default: |
| pr_err("connect protocol error, will retry\n"); |
| con->error_msg = "protocol error, garbage tag during connect"; |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| /* |
| * read (part of) an ack |
| */ |
| static int read_partial_ack(struct ceph_connection *con) |
| { |
| int size = sizeof (con->in_temp_ack); |
| int end = size; |
| |
| return read_partial(con, end, size, &con->in_temp_ack); |
| } |
| |
| /* |
| * We can finally discard anything that's been acked. |
| */ |
| static void process_ack(struct ceph_connection *con) |
| { |
| struct ceph_msg *m; |
| u64 ack = le64_to_cpu(con->in_temp_ack); |
| u64 seq; |
| |
| while (!list_empty(&con->out_sent)) { |
| m = list_first_entry(&con->out_sent, struct ceph_msg, |
| list_head); |
| seq = le64_to_cpu(m->hdr.seq); |
| if (seq > ack) |
| break; |
| dout("got ack for seq %llu type %d at %p\n", seq, |
| le16_to_cpu(m->hdr.type), m); |
| m->ack_stamp = jiffies; |
| ceph_msg_remove(m); |
| } |
| prepare_read_tag(con); |
| } |
| |
| |
| static int read_partial_message_section(struct ceph_connection *con, |
| struct kvec *section, |
| unsigned int sec_len, u32 *crc) |
| { |
| int ret, left; |
| |
| BUG_ON(!section); |
| |
| while (section->iov_len < sec_len) { |
| BUG_ON(section->iov_base == NULL); |
| left = sec_len - section->iov_len; |
| ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + |
| section->iov_len, left); |
| if (ret <= 0) |
| return ret; |
| section->iov_len += ret; |
| } |
| if (section->iov_len == sec_len) |
| *crc = crc32c(0, section->iov_base, section->iov_len); |
| |
| return 1; |
| } |
| |
| static int read_partial_msg_data(struct ceph_connection *con) |
| { |
| struct ceph_msg *msg = con->in_msg; |
| struct ceph_msg_data_cursor *cursor = &msg->cursor; |
| const bool do_datacrc = !con->msgr->nocrc; |
| struct page *page; |
| size_t page_offset; |
| size_t length; |
| u32 crc = 0; |
| int ret; |
| |
| BUG_ON(!msg); |
| if (list_empty(&msg->data)) |
| return -EIO; |
| |
| if (do_datacrc) |
| crc = con->in_data_crc; |
| while (cursor->resid) { |
| page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, |
| NULL); |
| ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); |
| if (ret <= 0) { |
| if (do_datacrc) |
| con->in_data_crc = crc; |
| |
| return ret; |
| } |
| |
| if (do_datacrc) |
| crc = ceph_crc32c_page(crc, page, page_offset, ret); |
| (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret); |
| } |
| if (do_datacrc) |
| con->in_data_crc = crc; |
| |
| return 1; /* must return > 0 to indicate success */ |
| } |
| |
| /* |
| * read (part of) a message. |
| */ |
| static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); |
| |
| static int read_partial_message(struct ceph_connection *con) |
| { |
| struct ceph_msg *m = con->in_msg; |
| int size; |
| int end; |
| int ret; |
| unsigned int front_len, middle_len, data_len; |
| bool do_datacrc = !con->msgr->nocrc; |
| bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH); |
| u64 seq; |
| u32 crc; |
| |
| dout("read_partial_message con %p msg %p\n", con, m); |
| |
| /* header */ |
| size = sizeof (con->in_hdr); |
| end = size; |
| ret = read_partial(con, end, size, &con->in_hdr); |
| if (ret <= 0) |
| return ret; |
| |
| crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); |
| if (cpu_to_le32(crc) != con->in_hdr.crc) { |
| pr_err("read_partial_message bad hdr " |
| " crc %u != expected %u\n", |
| crc, con->in_hdr.crc); |
| return -EBADMSG; |
| } |
| |
| front_len = le32_to_cpu(con->in_hdr.front_len); |
| if (front_len > CEPH_MSG_MAX_FRONT_LEN) |
| return -EIO; |
| middle_len = le32_to_cpu(con->in_hdr.middle_len); |
| if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) |
| return -EIO; |
| data_len = le32_to_cpu(con->in_hdr.data_len); |
| if (data_len > CEPH_MSG_MAX_DATA_LEN) |
| return -EIO; |
| |
| /* verify seq# */ |
| seq = le64_to_cpu(con->in_hdr.seq); |
| if ((s64)seq - (s64)con->in_seq < 1) { |
| pr_info("skipping %s%lld %s seq %lld expected %lld\n", |
| ENTITY_NAME(con->peer_name), |
| ceph_pr_addr(&con->peer_addr.in_addr), |
| seq, con->in_seq + 1); |
| con->in_base_pos = -front_len - middle_len - data_len - |
| sizeof(m->footer); |
| con->in_tag = CEPH_MSGR_TAG_READY; |
| return 0; |
| } else if ((s64)seq - (s64)con->in_seq > 1) { |
| pr_err("read_partial_message bad seq %lld expected %lld\n", |
| seq, con->in_seq + 1); |
| con->error_msg = "bad message sequence # for incoming message"; |
| return -EBADMSG; |
| } |
| |
| /* allocate message? */ |
| if (!con->in_msg) { |
| int skip = 0; |
| |
| dout("got hdr type %d front %d data %d\n", con->in_hdr.type, |
| front_len, data_len); |
| ret = ceph_con_in_msg_alloc(con, &skip); |
| if (ret < 0) |
| return ret; |
| |
| BUG_ON(!con->in_msg ^ skip); |
| if (con->in_msg && data_len > con->in_msg->data_length) { |
| pr_warn("%s skipping long message (%u > %zd)\n", |
| __func__, data_len, con->in_msg->data_length); |
| ceph_msg_put(con->in_msg); |
| con->in_msg = NULL; |
| skip = 1; |
| } |
| if (skip) { |
| /* skip this message */ |
| dout("alloc_msg said skip message\n"); |
| con->in_base_pos = -front_len - middle_len - data_len - |
| sizeof(m->footer); |
| con->in_tag = CEPH_MSGR_TAG_READY; |
| con->in_seq++; |
| return 0; |
| } |
| |
| BUG_ON(!con->in_msg); |
| BUG_ON(con->in_msg->con != con); |
| m = con->in_msg; |
| m->front.iov_len = 0; /* haven't read it yet */ |
| if (m->middle) |
| m->middle->vec.iov_len = 0; |
| |
| /* prepare for data payload, if any */ |
| |
| if (data_len) |
| prepare_message_data(con->in_msg, data_len); |
| } |
| |
| /* front */ |
| ret = read_partial_message_section(con, &m->front, front_len, |
| &con->in_front_crc); |
| if (ret <= 0) |
| return ret; |
| |
| /* middle */ |
| if (m->middle) { |
| ret = read_partial_message_section(con, &m->middle->vec, |
| middle_len, |
| &con->in_middle_crc); |
| if (ret <= 0) |
| return ret; |
| } |
| |
| /* (page) data */ |
| if (data_len) { |
| ret = read_partial_msg_data(con); |
| if (ret <= 0) |
| return ret; |
| } |
| |
| /* footer */ |
| if (need_sign) |
| size = sizeof(m->footer); |
| else |
| size = sizeof(m->old_footer); |
| |
| end += size; |
| ret = read_partial(con, end, size, &m->footer); |
| if (ret <= 0) |
| return ret; |
| |
| if (!need_sign) { |
| m->footer.flags = m->old_footer.flags; |
| m->footer.sig = 0; |
| } |
| |
| dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", |
| m, front_len, m->footer.front_crc, middle_len, |
| m->footer.middle_crc, data_len, m->footer.data_crc); |
| |
| /* crc ok? */ |
| if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { |
| pr_err("read_partial_message %p front crc %u != exp. %u\n", |
| m, con->in_front_crc, m->footer.front_crc); |
| return -EBADMSG; |
| } |
| if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { |
| pr_err("read_partial_message %p middle crc %u != exp %u\n", |
| m, con->in_middle_crc, m->footer.middle_crc); |
| return -EBADMSG; |
| } |
| if (do_datacrc && |
| (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && |
| con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { |
| pr_err("read_partial_message %p data crc %u != exp. %u\n", m, |
| con->in_data_crc, le32_to_cpu(m->footer.data_crc)); |
| return -EBADMSG; |
| } |
| |
| if (need_sign && con->ops->check_message_signature && |
| con->ops->check_message_signature(con, m)) { |
| pr_err("read_partial_message %p signature check failed\n", m); |
| return -EBADMSG; |
| } |
| |
| return 1; /* done! */ |
| } |
| |
| /* |
| * Process message. This happens in the worker thread. The callback should |
| * be careful not to do anything that waits on other incoming messages or it |
| * may deadlock. |
| */ |
| static void process_message(struct ceph_connection *con) |
| { |
| struct ceph_msg *msg; |
| |
| BUG_ON(con->in_msg->con != con); |
| con->in_msg->con = NULL; |
| msg = con->in_msg; |
| con->in_msg = NULL; |
| con->ops->put(con); |
| |
| /* if first message, set peer_name */ |
| if (con->peer_name.type == 0) |
| con->peer_name = msg->hdr.src; |
| |
| con->in_seq++; |
| mutex_unlock(&con->mutex); |
| |
| dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", |
| msg, le64_to_cpu(msg->hdr.seq), |
| ENTITY_NAME(msg->hdr.src), |
| le16_to_cpu(msg->hdr.type), |
| ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), |
| le32_to_cpu(msg->hdr.front_len), |
| le32_to_cpu(msg->hdr.data_len), |
| con->in_front_crc, con->in_middle_crc, con->in_data_crc); |
| con->ops->dispatch(con, msg); |
| |
| mutex_lock(&con->mutex); |
| } |
| |
| |
| /* |
| * Write something to the socket. Called in a worker thread when the |
| * socket appears to be writeable and we have something ready to send. |
| */ |
| static int try_write(struct ceph_connection *con) |
| { |
| int ret = 1; |
| |
| dout("try_write start %p state %lu\n", con, con->state); |
| |
| more: |
| dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); |
| |
| /* open the socket first? */ |
| if (con->state == CON_STATE_PREOPEN) { |
| BUG_ON(con->sock); |
| con->state = CON_STATE_CONNECTING; |
| |
| con_out_kvec_reset(con); |
| prepare_write_banner(con); |
| prepare_read_banner(con); |
| |
| BUG_ON(con->in_msg); |
| con->in_tag = CEPH_MSGR_TAG_READY; |
| dout("try_write initiating connect on %p new state %lu\n", |
| con, con->state); |
| ret = ceph_tcp_connect(con); |
| if (ret < 0) { |
| con->error_msg = "connect error"; |
| goto out; |
| } |
| } |
| |
| more_kvec: |
| /* kvec data queued? */ |
| if (con->out_skip) { |
| ret = write_partial_skip(con); |
| if (ret <= 0) |
| goto out; |
| } |
| if (con->out_kvec_left) { |
| ret = write_partial_kvec(con); |
| if (ret <= 0) |
| goto out; |
| } |
| |
| /* msg pages? */ |
| if (con->out_msg) { |
| if (con->out_msg_done) { |
| ceph_msg_put(con->out_msg); |
| con->out_msg = NULL; /* we're done with this one */ |
| goto do_next; |
| } |
| |
| ret = write_partial_message_data(con); |
| if (ret == 1) |
| goto more_kvec; /* we need to send the footer, too! */ |
| if (ret == 0) |
| goto out; |
| if (ret < 0) { |
| dout("try_write write_partial_message_data err %d\n", |
| ret); |
| goto out; |
| } |
| } |
| |
| do_next: |
| if (con->state == CON_STATE_OPEN) { |
| /* is anything else pending? */ |
| if (!list_empty(&con->out_queue)) { |
| prepare_write_message(con); |
| goto more; |
| } |
| if (con->in_seq > con->in_seq_acked) { |
| prepare_write_ack(con); |
| goto more; |
| } |
| if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { |
| prepare_write_keepalive(con); |
| goto more; |
| } |
| } |
| |
| /* Nothing to do! */ |
| con_flag_clear(con, CON_FLAG_WRITE_PENDING); |
| dout("try_write nothing else to write.\n"); |
| ret = 0; |
| out: |
| dout("try_write done on %p ret %d\n", con, ret); |
| return ret; |
| } |
| |
| |
| |
| /* |
| * Read what we can from the socket. |
| */ |
| static int try_read(struct ceph_connection *con) |
| { |
| int ret = -1; |
| |
| more: |
| dout("try_read start on %p state %lu\n", con, con->state); |
| if (con->state != CON_STATE_CONNECTING && |
| con->state != CON_STATE_NEGOTIATING && |
| con->state != CON_STATE_OPEN) |
| return 0; |
| |
| BUG_ON(!con->sock); |
| |
| dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, |
| con->in_base_pos); |
| |
| if (con->state == CON_STATE_CONNECTING) { |
| dout("try_read connecting\n"); |
| ret = read_partial_banner(con); |
| if (ret <= 0) |
| goto out; |
| ret = process_banner(con); |
| if (ret < 0) |
| goto out; |
| |
| con->state = CON_STATE_NEGOTIATING; |
| |
| /* |
| * Received banner is good, exchange connection info. |
| * Do not reset out_kvec, as sending our banner raced |
| * with receiving peer banner after connect completed. |
| */ |
| ret = prepare_write_connect(con); |
| if (ret < 0) |
| goto out; |
| prepare_read_connect(con); |
| |
| /* Send connection info before awaiting response */ |
| goto out; |
| } |
| |
| if (con->state == CON_STATE_NEGOTIATING) { |
| dout("try_read negotiating\n"); |
| ret = read_partial_connect(con); |
| if (ret <= 0) |
| goto out; |
| ret = process_connect(con); |
| if (ret < 0) |
| goto out; |
| goto more; |
| } |
| |
| WARN_ON(con->state != CON_STATE_OPEN); |
| |
| if (con->in_base_pos < 0) { |
| /* |
| * skipping + discarding content. |
| * |
| * FIXME: there must be a better way to do this! |
| */ |
| static char buf[SKIP_BUF_SIZE]; |
| int skip = min((int) sizeof (buf), -con->in_base_pos); |
| |
| dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); |
| ret = ceph_tcp_recvmsg(con->sock, buf, skip); |
| if (ret <= 0) |
| goto out; |
| con->in_base_pos += ret; |
| if (con->in_base_pos) |
| goto more; |
| } |
| if (con->in_tag == CEPH_MSGR_TAG_READY) { |
| /* |
| * what's next? |
| */ |
| ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); |
| if (ret <= 0) |
| goto out; |
| dout("try_read got tag %d\n", (int)con->in_tag); |
| switch (con->in_tag) { |
| case CEPH_MSGR_TAG_MSG: |
| prepare_read_message(con); |
| break; |
| case CEPH_MSGR_TAG_ACK: |
| prepare_read_ack(con); |
| break; |
| case CEPH_MSGR_TAG_CLOSE: |
| con_close_socket(con); |
| con->state = CON_STATE_CLOSED; |
| goto out; |
| default: |
| goto bad_tag; |
| } |
| } |
| if (con->in_tag == CEPH_MSGR_TAG_MSG) { |
| ret = read_partial_message(con); |
| if (ret <= 0) { |
| switch (ret) { |
| case -EBADMSG: |
| con->error_msg = "bad crc"; |
| ret = -EIO; |
| break; |
| case -EIO: |
| con->error_msg = "io error"; |
| break; |
| } |
| goto out; |
| } |
| if (con->in_tag == CEPH_MSGR_TAG_READY) |
| goto more; |
| process_message(con); |
| if (con->state == CON_STATE_OPEN) |
| prepare_read_tag(con); |
| goto more; |
| } |
| if (con->in_tag == CEPH_MSGR_TAG_ACK || |
| con->in_tag == CEPH_MSGR_TAG_SEQ) { |
| /* |
| * the final handshake seq exchange is semantically |
| * equivalent to an ACK |
| */ |
| ret = read_partial_ack(con); |
| if (ret <= 0) |
| goto out; |
| process_ack(con); |
| goto more; |
| } |
| |
| out: |
| dout("try_read done on %p ret %d\n", con, ret); |
| return ret; |
| |
| bad_tag: |
| pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); |
| con->error_msg = "protocol error, garbage tag"; |
| ret = -1; |
| goto out; |
| } |
| |
| |
| /* |
| * Atomically queue work on a connection after the specified delay. |
| * Bump @con reference to avoid races with connection teardown. |
| * Returns 0 if work was queued, or an error code otherwise. |
| */ |
| static int queue_con_delay(struct ceph_connection *con, unsigned long delay) |
| { |
| if (!con->ops->get(con)) { |
| dout("%s %p ref count 0\n", __func__, con); |
| return -ENOENT; |
| } |
| |
| if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { |
| dout("%s %p - already queued\n", __func__, con); |
| con->ops->put(con); |
| return -EBUSY; |
| } |
| |
| dout("%s %p %lu\n", __func__, con, delay); |
| return 0; |
| } |
| |
| static void queue_con(struct ceph_connection *con) |
| { |
| (void) queue_con_delay(con, 0); |
| } |
| |
| static void cancel_con(struct ceph_connection *con) |
| { |
| if (cancel_delayed_work(&con->work)) { |
| dout("%s %p\n", __func__, con); |
| con->ops->put(con); |
| } |
| } |
| |
| static bool con_sock_closed(struct ceph_connection *con) |
| { |
| if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) |
| return false; |
| |
| #define CASE(x) \ |
| case CON_STATE_ ## x: \ |
| con->error_msg = "socket closed (con state " #x ")"; \ |
| break; |
| |
| switch (con->state) { |
| CASE(CLOSED); |
| CASE(PREOPEN); |
| CASE(CONNECTING); |
| CASE(NEGOTIATING); |
| CASE(OPEN); |
| CASE(STANDBY); |
| default: |
| pr_warn("%s con %p unrecognized state %lu\n", |
| __func__, con, con->state); |
| con->error_msg = "unrecognized con state"; |
| BUG(); |
| break; |
| } |
| #undef CASE |
| |
| return true; |
| } |
| |
| static bool con_backoff(struct ceph_connection *con) |
| { |
| int ret; |
| |
| if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) |
| return false; |
| |
| ret = queue_con_delay(con, round_jiffies_relative(con->delay)); |
| if (ret) { |
| dout("%s: con %p FAILED to back off %lu\n", __func__, |
| con, con->delay); |
| BUG_ON(ret == -ENOENT); |
| con_flag_set(con, CON_FLAG_BACKOFF); |
| } |
| |
| return true; |
| } |
| |
| /* Finish fault handling; con->mutex must *not* be held here */ |
| |
| static void con_fault_finish(struct ceph_connection *con) |
| { |
| /* |
| * in case we faulted due to authentication, invalidate our |
| * current tickets so that we can get new ones. |
| */ |
| if (con->auth_retry && con->ops->invalidate_authorizer) { |
| dout("calling invalidate_authorizer()\n"); |
| con->ops->invalidate_authorizer(con); |
| } |
| |
| if (con->ops->fault) |
| con->ops->fault(con); |
| } |
| |
| /* |
| * Do some work on a connection. Drop a connection ref when we're done. |
| */ |
| static void con_work(struct work_struct *work) |
| { |
| struct ceph_connection *con = container_of(work, struct ceph_connection, |
| work.work); |
| bool fault; |
| |
| mutex_lock(&con->mutex); |
| while (true) { |
| int ret; |
| |
| if ((fault = con_sock_closed(con))) { |
| dout("%s: con %p SOCK_CLOSED\n", __func__, con); |
| break; |
| } |
| if (con_backoff(con)) { |
| dout("%s: con %p BACKOFF\n", __func__, con); |
| break; |
| } |
| if (con->state == CON_STATE_STANDBY) { |
| dout("%s: con %p STANDBY\n", __func__, con); |
| break; |
| } |
| if (con->state == CON_STATE_CLOSED) { |
| dout("%s: con %p CLOSED\n", __func__, con); |
| BUG_ON(con->sock); |
| break; |
| } |
| if (con->state == CON_STATE_PREOPEN) { |
| dout("%s: con %p PREOPEN\n", __func__, con); |
| BUG_ON(con->sock); |
| } |
| |
| ret = try_read(con); |
| if (ret < 0) { |
| if (ret == -EAGAIN) |
| continue; |
| con->error_msg = "socket error on read"; |
| fault = true; |
| break; |
| } |
| |
| ret = try_write(con); |
| if (ret < 0) { |
| if (ret == -EAGAIN) |
| continue; |
| con->error_msg = "socket error on write"; |
| fault = true; |
| } |
| |
| break; /* If we make it to here, we're done */ |
| } |
| if (fault) |
| con_fault(con); |
| mutex_unlock(&con->mutex); |
| |
| if (fault) |
| con_fault_finish(con); |
| |
| con->ops->put(con); |
| } |
| |
| /* |
| * Generic error/fault handler. A retry mechanism is used with |
| * exponential backoff |
| */ |
| static void con_fault(struct ceph_connection *con) |
| { |
| pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), |
| ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); |
| dout("fault %p state %lu to peer %s\n", |
| con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); |
| |
| WARN_ON(con->state != CON_STATE_CONNECTING && |
| con->state != CON_STATE_NEGOTIATING && |
| con->state != CON_STATE_OPEN); |
| |
| con_close_socket(con); |
| |
| if (con_flag_test(con, CON_FLAG_LOSSYTX)) { |
| dout("fault on LOSSYTX channel, marking CLOSED\n"); |
| con->state = CON_STATE_CLOSED; |
| return; |
| } |
| |
| if (con->in_msg) { |
| BUG_ON(con->in_msg->con != con); |
| con->in_msg->con = NULL; |
| ceph_msg_put(con->in_msg); |
| con->in_msg = NULL; |
| con->ops->put(con); |
| } |
| |
| /* Requeue anything that hasn't been acked */ |
| list_splice_init(&con->out_sent, &con->out_queue); |
| |
| /* If there are no messages queued or keepalive pending, place |
| * the connection in a STANDBY state */ |
| if (list_empty(&con->out_queue) && |
| !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { |
| dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); |
| con_flag_clear(con, CON_FLAG_WRITE_PENDING); |
| con->state = CON_STATE_STANDBY; |
| } else { |
| /* retry after a delay. */ |
| con->state = CON_STATE_PREOPEN; |
| if (con->delay == 0) |
| con->delay = BASE_DELAY_INTERVAL; |
| else if (con->delay < MAX_DELAY_INTERVAL) |
| con->delay *= 2; |
| con_flag_set(con, CON_FLAG_BACKOFF); |
| queue_con(con); |
| } |
| } |
| |
| |
| |
| /* |
| * initialize a new messenger instance |
| */ |
| void ceph_messenger_init(struct ceph_messenger *msgr, |
| struct ceph_entity_addr *myaddr, |
| u64 supported_features, |
| u64 required_features, |
| bool nocrc, |
| bool tcp_nodelay) |
| { |
| msgr->supported_features = supported_features; |
| msgr->required_features = required_features; |
| |
| spin_lock_init(&msgr->global_seq_lock); |
| |
| if (myaddr) |
| msgr->inst.addr = *myaddr; |
| |
| /* select a random nonce */ |
| msgr->inst.addr.type = 0; |
| get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); |
| encode_my_addr(msgr); |
| msgr->nocrc = nocrc; |
| msgr->tcp_nodelay = tcp_nodelay; |
| |
| atomic_set(&msgr->stopping, 0); |
| |
| dout("%s %p\n", __func__, msgr); |
| } |
| EXPORT_SYMBOL(ceph_messenger_init); |
| |
| static void clear_standby(struct ceph_connection *con) |
| { |
| /* come back from STANDBY? */ |
| if (con->state == CON_STATE_STANDBY) { |
| dout("clear_standby %p and ++connect_seq\n", con); |
| con->state = CON_STATE_PREOPEN; |
| con->connect_seq++; |
| WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); |
| WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); |
| } |
| } |
| |
| /* |
| * Queue up an outgoing message on the given connection. |
| */ |
| void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) |
| { |
| /* set src+dst */ |
| msg->hdr.src = con->msgr->inst.name; |
| BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); |
| msg->needs_out_seq = true; |
| |
| mutex_lock(&con->mutex); |
| |
| if (con->state == CON_STATE_CLOSED) { |
| dout("con_send %p closed, dropping %p\n", con, msg); |
| ceph_msg_put(msg); |
| mutex_unlock(&con->mutex); |
| return; |
| } |
| |
| BUG_ON(msg->con != NULL); |
| msg->con = con->ops->get(con); |
| BUG_ON(msg->con == NULL); |
| |
| BUG_ON(!list_empty(&msg->list_head)); |
| list_add_tail(&msg->list_head, &con->out_queue); |
| dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, |
| ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), |
| ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), |
| le32_to_cpu(msg->hdr.front_len), |
| le32_to_cpu(msg->hdr.middle_len), |
| le32_to_cpu(msg->hdr.data_len)); |
| |
| clear_standby(con); |
| mutex_unlock(&con->mutex); |
| |
| /* if there wasn't anything waiting to send before, queue |
| * new work */ |
| if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) |
| queue_con(con); |
| } |
| EXPORT_SYMBOL(ceph_con_send); |
| |
| /* |
| * Revoke a message that was previously queued for send |
| */ |
| void ceph_msg_revoke(struct ceph_msg *msg) |
| { |
| struct ceph_connection *con = msg->con; |
| |
| if (!con) |
| return; /* Message not in our possession */ |
| |
| mutex_lock(&con->mutex); |
| if (!list_empty(&msg->list_head)) { |
| dout("%s %p msg %p - was on queue\n", __func__, con, msg); |
| list_del_init(&msg->list_head); |
| BUG_ON(msg->con == NULL); |
| msg->con->ops->put(msg->con); |
| msg->con = NULL; |
| msg->hdr.seq = 0; |
| |
| ceph_msg_put(msg); |
| } |
| if (con->out_msg == msg) { |
| dout("%s %p msg %p - was sending\n", __func__, con, msg); |
| con->out_msg = NULL; |
| if (con->out_kvec_is_msg) { |
| con->out_skip = con->out_kvec_bytes; |
| con->out_kvec_is_msg = false; |
| } |
| msg->hdr.seq = 0; |
| |
| ceph_msg_put(msg); |
| } |
| mutex_unlock(&con->mutex); |
| } |
| |
| /* |
| * Revoke a message that we may be reading data into |
| */ |
| void ceph_msg_revoke_incoming(struct ceph_msg *msg) |
| { |
| struct ceph_connection *con; |
| |
| BUG_ON(msg == NULL); |
| if (!msg->con) { |
| dout("%s msg %p null con\n", __func__, msg); |
| |
| return; /* Message not in our possession */ |
| } |
| |
| con = msg->con; |
| mutex_lock(&con->mutex); |
| if (con->in_msg == msg) { |
| unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); |
| unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); |
| unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); |
| |
| /* skip rest of message */ |
| dout("%s %p msg %p revoked\n", __func__, con, msg); |
| con->in_base_pos = con->in_base_pos - |
| sizeof(struct ceph_msg_header) - |
| front_len - |
| middle_len - |
| data_len - |
| sizeof(struct ceph_msg_footer); |
| ceph_msg_put(con->in_msg); |
| con->in_msg = NULL; |
| con->in_tag = CEPH_MSGR_TAG_READY; |
| con->in_seq++; |
| } else { |
| dout("%s %p in_msg %p msg %p no-op\n", |
| __func__, con, con->in_msg, msg); |
| } |
| mutex_unlock(&con->mutex); |
| } |
| |
| /* |
| * Queue a keepalive byte to ensure the tcp connection is alive. |
| */ |
| void ceph_con_keepalive(struct ceph_connection *con) |
| { |
| dout("con_keepalive %p\n", con); |
| mutex_lock(&con->mutex); |
| clear_standby(con); |
| mutex_unlock(&con->mutex); |
| if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && |
| con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) |
| queue_con(con); |
| } |
| EXPORT_SYMBOL(ceph_con_keepalive); |
| |
| static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) |
| { |
| struct ceph_msg_data *data; |
| |
| if (WARN_ON(!ceph_msg_data_type_valid(type))) |
| return NULL; |
| |
| data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); |
| if (data) |
| data->type = type; |
| INIT_LIST_HEAD(&data->links); |
| |
| return data; |
| } |
| |
| static void ceph_msg_data_destroy(struct ceph_msg_data *data) |
| { |
| if (!data) |
| return; |
| |
| WARN_ON(!list_empty(&data->links)); |
| if (data->type == CEPH_MSG_DATA_PAGELIST) |
| ceph_pagelist_release(data->pagelist); |
| kmem_cache_free(ceph_msg_data_cache, data); |
| } |
| |
| void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, |
| size_t length, size_t alignment) |
| { |
| struct ceph_msg_data *data; |
| |
| BUG_ON(!pages); |
| BUG_ON(!length); |
| |
| data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); |
| BUG_ON(!data); |
| data->pages = pages; |
| data->length = length; |
| data->alignment = alignment & ~PAGE_MASK; |
| |
| list_add_tail(&data->links, &msg->data); |
| msg->data_length += length; |
| } |
| EXPORT_SYMBOL(ceph_msg_data_add_pages); |
| |
| void ceph_msg_data_add_pagelist(struct ceph_msg *msg, |
| struct ceph_pagelist *pagelist) |
| { |
| struct ceph_msg_data *data; |
| |
| BUG_ON(!pagelist); |
| BUG_ON(!pagelist->length); |
| |
| data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); |
| BUG_ON(!data); |
| data->pagelist = pagelist; |
| |
| list_add_tail(&data->links, &msg->data); |
| msg->data_length += pagelist->length; |
| } |
| EXPORT_SYMBOL(ceph_msg_data_add_pagelist); |
| |
| #ifdef CONFIG_BLOCK |
| void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, |
| size_t length) |
| { |
| struct ceph_msg_data *data; |
| |
| BUG_ON(!bio); |
| |
| data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); |
| BUG_ON(!data); |
| data->bio = bio; |
| data->bio_length = length; |
| |
| list_add_tail(&data->links, &msg->data); |
| msg->data_length += length; |
| } |
| EXPORT_SYMBOL(ceph_msg_data_add_bio); |
| #endif /* CONFIG_BLOCK */ |
| |
| /* |
| * construct a new message with given type, size |
| * the new msg has a ref count of 1. |
| */ |
| struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, |
| bool can_fail) |
| { |
| struct ceph_msg *m; |
| |
| m = kmem_cache_zalloc(ceph_msg_cache, flags); |
| if (m == NULL) |
| goto out; |
| |
| m->hdr.type = cpu_to_le16(type); |
| m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); |
| m->hdr.front_len = cpu_to_le32(front_len); |
| |
| INIT_LIST_HEAD(&m->list_head); |
| kref_init(&m->kref); |
| INIT_LIST_HEAD(&m->data); |
| |
| /* front */ |
| if (front_len) { |
| m->front.iov_base = ceph_kvmalloc(front_len, flags); |
| if (m->front.iov_base == NULL) { |
| dout("ceph_msg_new can't allocate %d bytes\n", |
| front_len); |
| goto out2; |
| } |
| } else { |
| m->front.iov_base = NULL; |
| } |
| m->front_alloc_len = m->front.iov_len = front_len; |
| |
| dout("ceph_msg_new %p front %d\n", m, front_len); |
| return m; |
| |
| out2: |
| ceph_msg_put(m); |
| out: |
| if (!can_fail) { |
| pr_err("msg_new can't create type %d front %d\n", type, |
| front_len); |
| WARN_ON(1); |
| } else { |
| dout("msg_new can't create type %d front %d\n", type, |
| front_len); |
| } |
| return NULL; |
| } |
| EXPORT_SYMBOL(ceph_msg_new); |
| |
| /* |
| * Allocate "middle" portion of a message, if it is needed and wasn't |
| * allocated by alloc_msg. This allows us to read a small fixed-size |
| * per-type header in the front and then gracefully fail (i.e., |
| * propagate the error to the caller based on info in the front) when |
| * the middle is too large. |
| */ |
| static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) |
| { |
| int type = le16_to_cpu(msg->hdr.type); |
| int middle_len = le32_to_cpu(msg->hdr.middle_len); |
| |
| dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, |
| ceph_msg_type_name(type), middle_len); |
| BUG_ON(!middle_len); |
| BUG_ON(msg->middle); |
| |
| msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); |
| if (!msg->middle) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /* |
| * Allocate a message for receiving an incoming message on a |
| * connection, and save the result in con->in_msg. Uses the |
| * connection's private alloc_msg op if available. |
| * |
| * Returns 0 on success, or a negative error code. |
| * |
| * On success, if we set *skip = 1: |
| * - the next message should be skipped and ignored. |
| * - con->in_msg == NULL |
| * or if we set *skip = 0: |
| * - con->in_msg is non-null. |
| * On error (ENOMEM, EAGAIN, ...), |
| * - con->in_msg == NULL |
| */ |
| static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) |
| { |
| struct ceph_msg_header *hdr = &con->in_hdr; |
| int middle_len = le32_to_cpu(hdr->middle_len); |
| struct ceph_msg *msg; |
| int ret = 0; |
| |
| BUG_ON(con->in_msg != NULL); |
| BUG_ON(!con->ops->alloc_msg); |
| |
| mutex_unlock(&con->mutex); |
| msg = con->ops->alloc_msg(con, hdr, skip); |
| mutex_lock(&con->mutex); |
| if (con->state != CON_STATE_OPEN) { |
| if (msg) |
| ceph_msg_put(msg); |
| return -EAGAIN; |
| } |
| if (msg) { |
| BUG_ON(*skip); |
| con->in_msg = msg; |
| con->in_msg->con = con->ops->get(con); |
| BUG_ON(con->in_msg->con == NULL); |
| } else { |
| /* |
| * Null message pointer means either we should skip |
| * this message or we couldn't allocate memory. The |
| * former is not an error. |
| */ |
| if (*skip) |
| return 0; |
| con->error_msg = "error allocating memory for incoming message"; |
| |
| return -ENOMEM; |
| } |
| memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); |
| |
| if (middle_len && !con->in_msg->middle) { |
| ret = ceph_alloc_middle(con, con->in_msg); |
| if (ret < 0) { |
| ceph_msg_put(con->in_msg); |
| con->in_msg = NULL; |
| } |
| } |
| |
| return ret; |
| } |
| |
| |
| /* |
| * Free a generically kmalloc'd message. |
| */ |
| static void ceph_msg_free(struct ceph_msg *m) |
| { |
| dout("%s %p\n", __func__, m); |
| kvfree(m->front.iov_base); |
| kmem_cache_free(ceph_msg_cache, m); |
| } |
| |
| static void ceph_msg_release(struct kref *kref) |
| { |
| struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); |
| LIST_HEAD(data); |
| struct list_head *links; |
| struct list_head *next; |
| |
| dout("%s %p\n", __func__, m); |
| WARN_ON(!list_empty(&m->list_head)); |
| |
| /* drop middle, data, if any */ |
| if (m->middle) { |
| ceph_buffer_put(m->middle); |
| m->middle = NULL; |
| } |
| |
| list_splice_init(&m->data, &data); |
| list_for_each_safe(links, next, &data) { |
| struct ceph_msg_data *data; |
| |
| data = list_entry(links, struct ceph_msg_data, links); |
| list_del_init(links); |
| ceph_msg_data_destroy(data); |
| } |
| m->data_length = 0; |
| |
| if (m->pool) |
| ceph_msgpool_put(m->pool, m); |
| else |
| ceph_msg_free(m); |
| } |
| |
| struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) |
| { |
| dout("%s %p (was %d)\n", __func__, msg, |
| atomic_read(&msg->kref.refcount)); |
| kref_get(&msg->kref); |
| return msg; |
| } |
| EXPORT_SYMBOL(ceph_msg_get); |
| |
| void ceph_msg_put(struct ceph_msg *msg) |
| { |
| dout("%s %p (was %d)\n", __func__, msg, |
| atomic_read(&msg->kref.refcount)); |
| kref_put(&msg->kref, ceph_msg_release); |
| } |
| EXPORT_SYMBOL(ceph_msg_put); |
| |
| void ceph_msg_dump(struct ceph_msg *msg) |
| { |
| pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, |
| msg->front_alloc_len, msg->data_length); |
| print_hex_dump(KERN_DEBUG, "header: ", |
| DUMP_PREFIX_OFFSET, 16, 1, |
| &msg->hdr, sizeof(msg->hdr), true); |
| print_hex_dump(KERN_DEBUG, " front: ", |
| DUMP_PREFIX_OFFSET, 16, 1, |
| msg->front.iov_base, msg->front.iov_len, true); |
| if (msg->middle) |
| print_hex_dump(KERN_DEBUG, "middle: ", |
| DUMP_PREFIX_OFFSET, 16, 1, |
| msg->middle->vec.iov_base, |
| msg->middle->vec.iov_len, true); |
| print_hex_dump(KERN_DEBUG, "footer: ", |
| DUMP_PREFIX_OFFSET, 16, 1, |
| &msg->footer, sizeof(msg->footer), true); |
| } |
| EXPORT_SYMBOL(ceph_msg_dump); |