| /* |
| * TI Bandgap temperature sensor driver |
| * |
| * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/ |
| * Author: J Keerthy <j-keerthy@ti.com> |
| * Author: Moiz Sonasath <m-sonasath@ti.com> |
| * Couple of fixes, DT and MFD adaptation: |
| * Eduardo Valentin <eduardo.valentin@ti.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA |
| * 02110-1301 USA |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/clk.h> |
| #include <linux/gpio.h> |
| #include <linux/platform_device.h> |
| #include <linux/err.h> |
| #include <linux/types.h> |
| #include <linux/spinlock.h> |
| #include <linux/reboot.h> |
| #include <linux/of_device.h> |
| #include <linux/of_platform.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_gpio.h> |
| #include <linux/io.h> |
| |
| #include "ti-bandgap.h" |
| |
| /*** Helper functions to access registers and their bitfields ***/ |
| |
| /** |
| * ti_bandgap_readl() - simple read helper function |
| * @bgp: pointer to ti_bandgap structure |
| * @reg: desired register (offset) to be read |
| * |
| * Helper function to read bandgap registers. It uses the io remapped area. |
| * Return: the register value. |
| */ |
| static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg) |
| { |
| return readl(bgp->base + reg); |
| } |
| |
| /** |
| * ti_bandgap_writel() - simple write helper function |
| * @bgp: pointer to ti_bandgap structure |
| * @val: desired register value to be written |
| * @reg: desired register (offset) to be written |
| * |
| * Helper function to write bandgap registers. It uses the io remapped area. |
| */ |
| static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg) |
| { |
| writel(val, bgp->base + reg); |
| } |
| |
| /** |
| * DOC: macro to update bits. |
| * |
| * RMW_BITS() - used to read, modify and update bandgap bitfields. |
| * The value passed will be shifted. |
| */ |
| #define RMW_BITS(bgp, id, reg, mask, val) \ |
| do { \ |
| struct temp_sensor_registers *t; \ |
| u32 r; \ |
| \ |
| t = bgp->conf->sensors[(id)].registers; \ |
| r = ti_bandgap_readl(bgp, t->reg); \ |
| r &= ~t->mask; \ |
| r |= (val) << __ffs(t->mask); \ |
| ti_bandgap_writel(bgp, r, t->reg); \ |
| } while (0) |
| |
| /*** Basic helper functions ***/ |
| |
| /** |
| * ti_bandgap_power() - controls the power state of a bandgap device |
| * @bgp: pointer to ti_bandgap structure |
| * @on: desired power state (1 - on, 0 - off) |
| * |
| * Used to power on/off a bandgap device instance. Only used on those |
| * that features tempsoff bit. |
| * |
| * Return: 0 on success, -ENOTSUPP if tempsoff is not supported. |
| */ |
| static int ti_bandgap_power(struct ti_bandgap *bgp, bool on) |
| { |
| int i, ret = 0; |
| |
| if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH)) { |
| ret = -ENOTSUPP; |
| goto exit; |
| } |
| |
| for (i = 0; i < bgp->conf->sensor_count; i++) |
| /* active on 0 */ |
| RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on); |
| |
| exit: |
| return ret; |
| } |
| |
| /** |
| * ti_bandgap_read_temp() - helper function to read sensor temperature |
| * @bgp: pointer to ti_bandgap structure |
| * @id: bandgap sensor id |
| * |
| * Function to concentrate the steps to read sensor temperature register. |
| * This function is desired because, depending on bandgap device version, |
| * it might be needed to freeze the bandgap state machine, before fetching |
| * the register value. |
| * |
| * Return: temperature in ADC values. |
| */ |
| static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id) |
| { |
| struct temp_sensor_registers *tsr; |
| u32 temp, reg; |
| |
| tsr = bgp->conf->sensors[id].registers; |
| reg = tsr->temp_sensor_ctrl; |
| |
| if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { |
| RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); |
| /* |
| * In case we cannot read from cur_dtemp / dtemp_0, |
| * then we read from the last valid temp read |
| */ |
| reg = tsr->ctrl_dtemp_1; |
| } |
| |
| /* read temperature */ |
| temp = ti_bandgap_readl(bgp, reg); |
| temp &= tsr->bgap_dtemp_mask; |
| |
| if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) |
| RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); |
| |
| return temp; |
| } |
| |
| /*** IRQ handlers ***/ |
| |
| /** |
| * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs |
| * @irq: IRQ number |
| * @data: private data (struct ti_bandgap *) |
| * |
| * This is the Talert handler. Use it only if bandgap device features |
| * HAS(TALERT). This handler goes over all sensors and checks their |
| * conditions and acts accordingly. In case there are events pending, |
| * it will reset the event mask to wait for the opposite event (next event). |
| * Every time there is a new event, it will be reported to thermal layer. |
| * |
| * Return: IRQ_HANDLED |
| */ |
| static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data) |
| { |
| struct ti_bandgap *bgp = data; |
| struct temp_sensor_registers *tsr; |
| u32 t_hot = 0, t_cold = 0, ctrl; |
| int i; |
| |
| spin_lock(&bgp->lock); |
| for (i = 0; i < bgp->conf->sensor_count; i++) { |
| tsr = bgp->conf->sensors[i].registers; |
| ctrl = ti_bandgap_readl(bgp, tsr->bgap_status); |
| |
| /* Read the status of t_hot */ |
| t_hot = ctrl & tsr->status_hot_mask; |
| |
| /* Read the status of t_cold */ |
| t_cold = ctrl & tsr->status_cold_mask; |
| |
| if (!t_cold && !t_hot) |
| continue; |
| |
| ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); |
| /* |
| * One TALERT interrupt: Two sources |
| * If the interrupt is due to t_hot then mask t_hot and |
| * and unmask t_cold else mask t_cold and unmask t_hot |
| */ |
| if (t_hot) { |
| ctrl &= ~tsr->mask_hot_mask; |
| ctrl |= tsr->mask_cold_mask; |
| } else if (t_cold) { |
| ctrl &= ~tsr->mask_cold_mask; |
| ctrl |= tsr->mask_hot_mask; |
| } |
| |
| ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl); |
| |
| dev_dbg(bgp->dev, |
| "%s: IRQ from %s sensor: hotevent %d coldevent %d\n", |
| __func__, bgp->conf->sensors[i].domain, |
| t_hot, t_cold); |
| |
| /* report temperature to whom may concern */ |
| if (bgp->conf->report_temperature) |
| bgp->conf->report_temperature(bgp, i); |
| } |
| spin_unlock(&bgp->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal |
| * @irq: IRQ number |
| * @data: private data (unused) |
| * |
| * This is the Tshut handler. Use it only if bandgap device features |
| * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown |
| * the system. |
| * |
| * Return: IRQ_HANDLED |
| */ |
| static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data) |
| { |
| pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n", |
| __func__); |
| |
| orderly_poweroff(true); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /*** Helper functions which manipulate conversion ADC <-> mi Celsius ***/ |
| |
| /** |
| * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale |
| * @bgp: struct ti_bandgap pointer |
| * @adc_val: value in ADC representation |
| * @t: address where to write the resulting temperature in mCelsius |
| * |
| * Simple conversion from ADC representation to mCelsius. In case the ADC value |
| * is out of the ADC conv table range, it returns -ERANGE, 0 on success. |
| * The conversion table is indexed by the ADC values. |
| * |
| * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val |
| * argument is out of the ADC conv table range. |
| */ |
| static |
| int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t) |
| { |
| const struct ti_bandgap_data *conf = bgp->conf; |
| int ret = 0; |
| |
| /* look up for temperature in the table and return the temperature */ |
| if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val) { |
| ret = -ERANGE; |
| goto exit; |
| } |
| |
| *t = bgp->conf->conv_table[adc_val - conf->adc_start_val]; |
| |
| exit: |
| return ret; |
| } |
| |
| /** |
| * ti_bandgap_mcelsius_to_adc() - converts a mCelsius value to ADC scale |
| * @bgp: struct ti_bandgap pointer |
| * @temp: value in mCelsius |
| * @adc: address where to write the resulting temperature in ADC representation |
| * |
| * Simple conversion from mCelsius to ADC values. In case the temp value |
| * is out of the ADC conv table range, it returns -ERANGE, 0 on success. |
| * The conversion table is indexed by the ADC values. |
| * |
| * Return: 0 if conversion was successful, else -ERANGE in case the @temp |
| * argument is out of the ADC conv table range. |
| */ |
| static |
| int ti_bandgap_mcelsius_to_adc(struct ti_bandgap *bgp, long temp, int *adc) |
| { |
| const struct ti_bandgap_data *conf = bgp->conf; |
| const int *conv_table = bgp->conf->conv_table; |
| int high, low, mid, ret = 0; |
| |
| low = 0; |
| high = conf->adc_end_val - conf->adc_start_val; |
| mid = (high + low) / 2; |
| |
| if (temp < conv_table[low] || temp > conv_table[high]) { |
| ret = -ERANGE; |
| goto exit; |
| } |
| |
| while (low < high) { |
| if (temp < conv_table[mid]) |
| high = mid - 1; |
| else |
| low = mid + 1; |
| mid = (low + high) / 2; |
| } |
| |
| *adc = conf->adc_start_val + low; |
| |
| exit: |
| return ret; |
| } |
| |
| /** |
| * ti_bandgap_add_hyst() - add hysteresis (in mCelsius) to an ADC value |
| * @bgp: struct ti_bandgap pointer |
| * @adc_val: temperature value in ADC representation |
| * @hyst_val: hysteresis value in mCelsius |
| * @sum: address where to write the resulting temperature (in ADC scale) |
| * |
| * Adds an hysteresis value (in mCelsius) to a ADC temperature value. |
| * |
| * Return: 0 on success, -ERANGE otherwise. |
| */ |
| static |
| int ti_bandgap_add_hyst(struct ti_bandgap *bgp, int adc_val, int hyst_val, |
| u32 *sum) |
| { |
| int temp, ret; |
| |
| /* |
| * Need to add in the mcelsius domain, so we have a temperature |
| * the conv_table range |
| */ |
| ret = ti_bandgap_adc_to_mcelsius(bgp, adc_val, &temp); |
| if (ret < 0) |
| goto exit; |
| |
| temp += hyst_val; |
| |
| ret = ti_bandgap_mcelsius_to_adc(bgp, temp, sum); |
| |
| exit: |
| return ret; |
| } |
| |
| /*** Helper functions handling device Alert/Shutdown signals ***/ |
| |
| /** |
| * ti_bandgap_unmask_interrupts() - unmasks the events of thot & tcold |
| * @bgp: struct ti_bandgap pointer |
| * @id: bandgap sensor id |
| * @t_hot: hot temperature value to trigger alert signal |
| * @t_cold: cold temperature value to trigger alert signal |
| * |
| * Checks the requested t_hot and t_cold values and configures the IRQ event |
| * masks accordingly. Call this function only if bandgap features HAS(TALERT). |
| */ |
| static void ti_bandgap_unmask_interrupts(struct ti_bandgap *bgp, int id, |
| u32 t_hot, u32 t_cold) |
| { |
| struct temp_sensor_registers *tsr; |
| u32 temp, reg_val; |
| |
| /* Read the current on die temperature */ |
| temp = ti_bandgap_read_temp(bgp, id); |
| |
| tsr = bgp->conf->sensors[id].registers; |
| reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); |
| |
| if (temp < t_hot) |
| reg_val |= tsr->mask_hot_mask; |
| else |
| reg_val &= ~tsr->mask_hot_mask; |
| |
| if (t_cold < temp) |
| reg_val |= tsr->mask_cold_mask; |
| else |
| reg_val &= ~tsr->mask_cold_mask; |
| ti_bandgap_writel(bgp, reg_val, tsr->bgap_mask_ctrl); |
| } |
| |
| /** |
| * ti_bandgap_update_alert_threshold() - sequence to update thresholds |
| * @bgp: struct ti_bandgap pointer |
| * @id: bandgap sensor id |
| * @val: value (ADC) of a new threshold |
| * @hot: desired threshold to be updated. true if threshold hot, false if |
| * threshold cold |
| * |
| * It will program the required thresholds (hot and cold) for TALERT signal. |
| * This function can be used to update t_hot or t_cold, depending on @hot value. |
| * It checks the resulting t_hot and t_cold values, based on the new passed @val |
| * and configures the thresholds so that t_hot is always greater than t_cold. |
| * Call this function only if bandgap features HAS(TALERT). |
| * |
| * Return: 0 if no error, else corresponding error |
| */ |
| static int ti_bandgap_update_alert_threshold(struct ti_bandgap *bgp, int id, |
| int val, bool hot) |
| { |
| struct temp_sensor_data *ts_data = bgp->conf->sensors[id].ts_data; |
| struct temp_sensor_registers *tsr; |
| u32 thresh_val, reg_val, t_hot, t_cold; |
| int err = 0; |
| |
| tsr = bgp->conf->sensors[id].registers; |
| |
| /* obtain the current value */ |
| thresh_val = ti_bandgap_readl(bgp, tsr->bgap_threshold); |
| t_cold = (thresh_val & tsr->threshold_tcold_mask) >> |
| __ffs(tsr->threshold_tcold_mask); |
| t_hot = (thresh_val & tsr->threshold_thot_mask) >> |
| __ffs(tsr->threshold_thot_mask); |
| if (hot) |
| t_hot = val; |
| else |
| t_cold = val; |
| |
| if (t_cold > t_hot) { |
| if (hot) |
| err = ti_bandgap_add_hyst(bgp, t_hot, |
| -ts_data->hyst_val, |
| &t_cold); |
| else |
| err = ti_bandgap_add_hyst(bgp, t_cold, |
| ts_data->hyst_val, |
| &t_hot); |
| } |
| |
| /* write the new threshold values */ |
| reg_val = thresh_val & |
| ~(tsr->threshold_thot_mask | tsr->threshold_tcold_mask); |
| reg_val |= (t_hot << __ffs(tsr->threshold_thot_mask)) | |
| (t_cold << __ffs(tsr->threshold_tcold_mask)); |
| ti_bandgap_writel(bgp, reg_val, tsr->bgap_threshold); |
| |
| if (err) { |
| dev_err(bgp->dev, "failed to reprogram thot threshold\n"); |
| err = -EIO; |
| goto exit; |
| } |
| |
| ti_bandgap_unmask_interrupts(bgp, id, t_hot, t_cold); |
| exit: |
| return err; |
| } |
| |
| /** |
| * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap |
| * @bgp: struct ti_bandgap pointer |
| * @id: bandgap sensor id |
| * |
| * Checks if the bandgap pointer is valid and if the sensor id is also |
| * applicable. |
| * |
| * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if |
| * @id cannot index @bgp sensors. |
| */ |
| static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id) |
| { |
| int ret = 0; |
| |
| if (!bgp || IS_ERR(bgp)) { |
| pr_err("%s: invalid bandgap pointer\n", __func__); |
| ret = -EINVAL; |
| goto exit; |
| } |
| |
| if ((id < 0) || (id >= bgp->conf->sensor_count)) { |
| dev_err(bgp->dev, "%s: sensor id out of range (%d)\n", |
| __func__, id); |
| ret = -ERANGE; |
| } |
| |
| exit: |
| return ret; |
| } |
| |
| /** |
| * _ti_bandgap_write_threshold() - helper to update TALERT t_cold or t_hot |
| * @bgp: struct ti_bandgap pointer |
| * @id: bandgap sensor id |
| * @val: value (mCelsius) of a new threshold |
| * @hot: desired threshold to be updated. true if threshold hot, false if |
| * threshold cold |
| * |
| * It will update the required thresholds (hot and cold) for TALERT signal. |
| * This function can be used to update t_hot or t_cold, depending on @hot value. |
| * Validates the mCelsius range and update the requested threshold. |
| * Call this function only if bandgap features HAS(TALERT). |
| * |
| * Return: 0 if no error, else corresponding error value. |
| */ |
| static int _ti_bandgap_write_threshold(struct ti_bandgap *bgp, int id, int val, |
| bool hot) |
| { |
| struct temp_sensor_data *ts_data; |
| struct temp_sensor_registers *tsr; |
| u32 adc_val; |
| int ret; |
| |
| ret = ti_bandgap_validate(bgp, id); |
| if (ret) |
| goto exit; |
| |
| if (!TI_BANDGAP_HAS(bgp, TALERT)) { |
| ret = -ENOTSUPP; |
| goto exit; |
| } |
| |
| ts_data = bgp->conf->sensors[id].ts_data; |
| tsr = bgp->conf->sensors[id].registers; |
| if (hot) { |
| if (val < ts_data->min_temp + ts_data->hyst_val) |
| ret = -EINVAL; |
| } else { |
| if (val > ts_data->max_temp + ts_data->hyst_val) |
| ret = -EINVAL; |
| } |
| |
| if (ret) |
| goto exit; |
| |
| ret = ti_bandgap_mcelsius_to_adc(bgp, val, &adc_val); |
| if (ret < 0) |
| goto exit; |
| |
| spin_lock(&bgp->lock); |
| ret = ti_bandgap_update_alert_threshold(bgp, id, adc_val, hot); |
| spin_unlock(&bgp->lock); |
| |
| exit: |
| return ret; |
| } |
| |
| /** |
| * _ti_bandgap_read_threshold() - helper to read TALERT t_cold or t_hot |
| * @bgp: struct ti_bandgap pointer |
| * @id: bandgap sensor id |
| * @val: value (mCelsius) of a threshold |
| * @hot: desired threshold to be read. true if threshold hot, false if |
| * threshold cold |
| * |
| * It will fetch the required thresholds (hot and cold) for TALERT signal. |
| * This function can be used to read t_hot or t_cold, depending on @hot value. |
| * Call this function only if bandgap features HAS(TALERT). |
| * |
| * Return: 0 if no error, -ENOTSUPP if it has no TALERT support, or the |
| * corresponding error value if some operation fails. |
| */ |
| static int _ti_bandgap_read_threshold(struct ti_bandgap *bgp, int id, |
| int *val, bool hot) |
| { |
| struct temp_sensor_registers *tsr; |
| u32 temp, mask; |
| int ret = 0; |
| |
| ret = ti_bandgap_validate(bgp, id); |
| if (ret) |
| goto exit; |
| |
| if (!TI_BANDGAP_HAS(bgp, TALERT)) { |
| ret = -ENOTSUPP; |
| goto exit; |
| } |
| |
| tsr = bgp->conf->sensors[id].registers; |
| if (hot) |
| mask = tsr->threshold_thot_mask; |
| else |
| mask = tsr->threshold_tcold_mask; |
| |
| temp = ti_bandgap_readl(bgp, tsr->bgap_threshold); |
| temp = (temp & mask) >> __ffs(mask); |
| ret |= ti_bandgap_adc_to_mcelsius(bgp, temp, &temp); |
| if (ret) { |
| dev_err(bgp->dev, "failed to read thot\n"); |
| ret = -EIO; |
| goto exit; |
| } |
| |
| *val = temp; |
| |
| exit: |
| return ret; |
| } |
| |
| /*** Exposed APIs ***/ |
| |
| /** |
| * ti_bandgap_read_thot() - reads sensor current thot |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @thot: resulting current thot value |
| * |
| * Return: 0 on success or the proper error code |
| */ |
| int ti_bandgap_read_thot(struct ti_bandgap *bgp, int id, int *thot) |
| { |
| return _ti_bandgap_read_threshold(bgp, id, thot, true); |
| } |
| |
| /** |
| * ti_bandgap_write_thot() - sets sensor current thot |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @val: desired thot value |
| * |
| * Return: 0 on success or the proper error code |
| */ |
| int ti_bandgap_write_thot(struct ti_bandgap *bgp, int id, int val) |
| { |
| return _ti_bandgap_write_threshold(bgp, id, val, true); |
| } |
| |
| /** |
| * ti_bandgap_read_tcold() - reads sensor current tcold |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @tcold: resulting current tcold value |
| * |
| * Return: 0 on success or the proper error code |
| */ |
| int ti_bandgap_read_tcold(struct ti_bandgap *bgp, int id, int *tcold) |
| { |
| return _ti_bandgap_read_threshold(bgp, id, tcold, false); |
| } |
| |
| /** |
| * ti_bandgap_write_tcold() - sets the sensor tcold |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @val: desired tcold value |
| * |
| * Return: 0 on success or the proper error code |
| */ |
| int ti_bandgap_write_tcold(struct ti_bandgap *bgp, int id, int val) |
| { |
| return _ti_bandgap_write_threshold(bgp, id, val, false); |
| } |
| |
| /** |
| * ti_bandgap_read_counter() - read the sensor counter |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @interval: resulting update interval in miliseconds |
| */ |
| static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id, |
| int *interval) |
| { |
| struct temp_sensor_registers *tsr; |
| int time; |
| |
| tsr = bgp->conf->sensors[id].registers; |
| time = ti_bandgap_readl(bgp, tsr->bgap_counter); |
| time = (time & tsr->counter_mask) >> |
| __ffs(tsr->counter_mask); |
| time = time * 1000 / bgp->clk_rate; |
| *interval = time; |
| } |
| |
| /** |
| * ti_bandgap_read_counter_delay() - read the sensor counter delay |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @interval: resulting update interval in miliseconds |
| */ |
| static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id, |
| int *interval) |
| { |
| struct temp_sensor_registers *tsr; |
| int reg_val; |
| |
| tsr = bgp->conf->sensors[id].registers; |
| |
| reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl); |
| reg_val = (reg_val & tsr->mask_counter_delay_mask) >> |
| __ffs(tsr->mask_counter_delay_mask); |
| switch (reg_val) { |
| case 0: |
| *interval = 0; |
| break; |
| case 1: |
| *interval = 1; |
| break; |
| case 2: |
| *interval = 10; |
| break; |
| case 3: |
| *interval = 100; |
| break; |
| case 4: |
| *interval = 250; |
| break; |
| case 5: |
| *interval = 500; |
| break; |
| default: |
| dev_warn(bgp->dev, "Wrong counter delay value read from register %X", |
| reg_val); |
| } |
| } |
| |
| /** |
| * ti_bandgap_read_update_interval() - read the sensor update interval |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @interval: resulting update interval in miliseconds |
| * |
| * Return: 0 on success or the proper error code |
| */ |
| int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id, |
| int *interval) |
| { |
| int ret = 0; |
| |
| ret = ti_bandgap_validate(bgp, id); |
| if (ret) |
| goto exit; |
| |
| if (!TI_BANDGAP_HAS(bgp, COUNTER) && |
| !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { |
| ret = -ENOTSUPP; |
| goto exit; |
| } |
| |
| if (TI_BANDGAP_HAS(bgp, COUNTER)) { |
| ti_bandgap_read_counter(bgp, id, interval); |
| goto exit; |
| } |
| |
| ti_bandgap_read_counter_delay(bgp, id, interval); |
| exit: |
| return ret; |
| } |
| |
| /** |
| * ti_bandgap_write_counter_delay() - set the counter_delay |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @interval: desired update interval in miliseconds |
| * |
| * Return: 0 on success or the proper error code |
| */ |
| static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id, |
| u32 interval) |
| { |
| int rval; |
| |
| switch (interval) { |
| case 0: /* Immediate conversion */ |
| rval = 0x0; |
| break; |
| case 1: /* Conversion after ever 1ms */ |
| rval = 0x1; |
| break; |
| case 10: /* Conversion after ever 10ms */ |
| rval = 0x2; |
| break; |
| case 100: /* Conversion after ever 100ms */ |
| rval = 0x3; |
| break; |
| case 250: /* Conversion after ever 250ms */ |
| rval = 0x4; |
| break; |
| case 500: /* Conversion after ever 500ms */ |
| rval = 0x5; |
| break; |
| default: |
| dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval); |
| return -EINVAL; |
| } |
| |
| spin_lock(&bgp->lock); |
| RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval); |
| spin_unlock(&bgp->lock); |
| |
| return 0; |
| } |
| |
| /** |
| * ti_bandgap_write_counter() - set the bandgap sensor counter |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @interval: desired update interval in miliseconds |
| */ |
| static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id, |
| u32 interval) |
| { |
| interval = interval * bgp->clk_rate / 1000; |
| spin_lock(&bgp->lock); |
| RMW_BITS(bgp, id, bgap_counter, counter_mask, interval); |
| spin_unlock(&bgp->lock); |
| } |
| |
| /** |
| * ti_bandgap_write_update_interval() - set the update interval |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @interval: desired update interval in miliseconds |
| * |
| * Return: 0 on success or the proper error code |
| */ |
| int ti_bandgap_write_update_interval(struct ti_bandgap *bgp, |
| int id, u32 interval) |
| { |
| int ret = ti_bandgap_validate(bgp, id); |
| if (ret) |
| goto exit; |
| |
| if (!TI_BANDGAP_HAS(bgp, COUNTER) && |
| !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) { |
| ret = -ENOTSUPP; |
| goto exit; |
| } |
| |
| if (TI_BANDGAP_HAS(bgp, COUNTER)) { |
| ti_bandgap_write_counter(bgp, id, interval); |
| goto exit; |
| } |
| |
| ret = ti_bandgap_write_counter_delay(bgp, id, interval); |
| exit: |
| return ret; |
| } |
| |
| /** |
| * ti_bandgap_read_temperature() - report current temperature |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @temperature: resulting temperature |
| * |
| * Return: 0 on success or the proper error code |
| */ |
| int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id, |
| int *temperature) |
| { |
| u32 temp; |
| int ret; |
| |
| ret = ti_bandgap_validate(bgp, id); |
| if (ret) |
| return ret; |
| |
| spin_lock(&bgp->lock); |
| temp = ti_bandgap_read_temp(bgp, id); |
| spin_unlock(&bgp->lock); |
| |
| ret |= ti_bandgap_adc_to_mcelsius(bgp, temp, &temp); |
| if (ret) |
| return -EIO; |
| |
| *temperature = temp; |
| |
| return 0; |
| } |
| |
| /** |
| * ti_bandgap_set_sensor_data() - helper function to store thermal |
| * framework related data. |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * @data: thermal framework related data to be stored |
| * |
| * Return: 0 on success or the proper error code |
| */ |
| int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data) |
| { |
| int ret = ti_bandgap_validate(bgp, id); |
| if (ret) |
| return ret; |
| |
| bgp->regval[id].data = data; |
| |
| return 0; |
| } |
| |
| /** |
| * ti_bandgap_get_sensor_data() - helper function to get thermal |
| * framework related data. |
| * @bgp: pointer to bandgap instance |
| * @id: sensor id |
| * |
| * Return: data stored by set function with sensor id on success or NULL |
| */ |
| void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id) |
| { |
| int ret = ti_bandgap_validate(bgp, id); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return bgp->regval[id].data; |
| } |
| |
| /*** Helper functions used during device initialization ***/ |
| |
| /** |
| * ti_bandgap_force_single_read() - executes 1 single ADC conversion |
| * @bgp: pointer to struct ti_bandgap |
| * @id: sensor id which it is desired to read 1 temperature |
| * |
| * Used to initialize the conversion state machine and set it to a valid |
| * state. Called during device initialization and context restore events. |
| * |
| * Return: 0 |
| */ |
| static int |
| ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id) |
| { |
| u32 temp = 0, counter = 1000; |
| |
| /* Select single conversion mode */ |
| if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) |
| RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0); |
| |
| /* Start of Conversion = 1 */ |
| RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1); |
| /* Wait until DTEMP is updated */ |
| temp = ti_bandgap_read_temp(bgp, id); |
| |
| while ((temp == 0) && --counter) |
| temp = ti_bandgap_read_temp(bgp, id); |
| /* REVISIT: Check correct condition for end of conversion */ |
| |
| /* Start of Conversion = 0 */ |
| RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0); |
| |
| return 0; |
| } |
| |
| /** |
| * ti_bandgap_set_continous_mode() - One time enabling of continuous mode |
| * @bgp: pointer to struct ti_bandgap |
| * |
| * Call this function only if HAS(MODE_CONFIG) is set. As this driver may |
| * be used for junction temperature monitoring, it is desirable that the |
| * sensors are operational all the time, so that alerts are generated |
| * properly. |
| * |
| * Return: 0 |
| */ |
| static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp) |
| { |
| int i; |
| |
| for (i = 0; i < bgp->conf->sensor_count; i++) { |
| /* Perform a single read just before enabling continuous */ |
| ti_bandgap_force_single_read(bgp, i); |
| RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor |
| * @bgp: pointer to struct ti_bandgap |
| * @id: id of the individual sensor |
| * @trend: Pointer to trend. |
| * |
| * This function needs to be called to fetch the temperature trend of a |
| * Particular sensor. The function computes the difference in temperature |
| * w.r.t time. For the bandgaps with built in history buffer the temperatures |
| * are read from the buffer and for those without the Buffer -ENOTSUPP is |
| * returned. |
| * |
| * Return: 0 if no error, else return corresponding error. If no |
| * error then the trend value is passed on to trend parameter |
| */ |
| int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend) |
| { |
| struct temp_sensor_registers *tsr; |
| u32 temp1, temp2, reg1, reg2; |
| int t1, t2, interval, ret = 0; |
| |
| ret = ti_bandgap_validate(bgp, id); |
| if (ret) |
| goto exit; |
| |
| if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) || |
| !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) { |
| ret = -ENOTSUPP; |
| goto exit; |
| } |
| |
| spin_lock(&bgp->lock); |
| |
| tsr = bgp->conf->sensors[id].registers; |
| |
| /* Freeze and read the last 2 valid readings */ |
| RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1); |
| reg1 = tsr->ctrl_dtemp_1; |
| reg2 = tsr->ctrl_dtemp_2; |
| |
| /* read temperature from history buffer */ |
| temp1 = ti_bandgap_readl(bgp, reg1); |
| temp1 &= tsr->bgap_dtemp_mask; |
| |
| temp2 = ti_bandgap_readl(bgp, reg2); |
| temp2 &= tsr->bgap_dtemp_mask; |
| |
| /* Convert from adc values to mCelsius temperature */ |
| ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1); |
| if (ret) |
| goto unfreeze; |
| |
| ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2); |
| if (ret) |
| goto unfreeze; |
| |
| /* Fetch the update interval */ |
| ret = ti_bandgap_read_update_interval(bgp, id, &interval); |
| if (ret) |
| goto unfreeze; |
| |
| /* Set the interval to 1 ms if bandgap counter delay is not set */ |
| if (interval == 0) |
| interval = 1; |
| |
| *trend = (t1 - t2) / interval; |
| |
| dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n", |
| t1, t2, *trend); |
| |
| unfreeze: |
| RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0); |
| spin_unlock(&bgp->lock); |
| exit: |
| return ret; |
| } |
| |
| /** |
| * ti_bandgap_tshut_init() - setup and initialize tshut handling |
| * @bgp: pointer to struct ti_bandgap |
| * @pdev: pointer to device struct platform_device |
| * |
| * Call this function only in case the bandgap features HAS(TSHUT). |
| * In this case, the driver needs to handle the TSHUT signal as an IRQ. |
| * The IRQ is wired as a GPIO, and for this purpose, it is required |
| * to specify which GPIO line is used. TSHUT IRQ is fired anytime |
| * one of the bandgap sensors violates the TSHUT high/hot threshold. |
| * And in that case, the system must go off. |
| * |
| * Return: 0 if no error, else error status |
| */ |
| static int ti_bandgap_tshut_init(struct ti_bandgap *bgp, |
| struct platform_device *pdev) |
| { |
| int gpio_nr = bgp->tshut_gpio; |
| int status; |
| |
| /* Request for gpio_86 line */ |
| status = gpio_request(gpio_nr, "tshut"); |
| if (status < 0) { |
| dev_err(bgp->dev, "Could not request for TSHUT GPIO:%i\n", 86); |
| return status; |
| } |
| status = gpio_direction_input(gpio_nr); |
| if (status) { |
| dev_err(bgp->dev, "Cannot set input TSHUT GPIO %d\n", gpio_nr); |
| return status; |
| } |
| |
| status = request_irq(gpio_to_irq(gpio_nr), ti_bandgap_tshut_irq_handler, |
| IRQF_TRIGGER_RISING, "tshut", NULL); |
| if (status) { |
| gpio_free(gpio_nr); |
| dev_err(bgp->dev, "request irq failed for TSHUT"); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ti_bandgap_alert_init() - setup and initialize talert handling |
| * @bgp: pointer to struct ti_bandgap |
| * @pdev: pointer to device struct platform_device |
| * |
| * Call this function only in case the bandgap features HAS(TALERT). |
| * In this case, the driver needs to handle the TALERT signals as an IRQs. |
| * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold) |
| * are violated. In these situation, the driver must reprogram the thresholds, |
| * accordingly to specified policy. |
| * |
| * Return: 0 if no error, else return corresponding error. |
| */ |
| static int ti_bandgap_talert_init(struct ti_bandgap *bgp, |
| struct platform_device *pdev) |
| { |
| int ret; |
| |
| bgp->irq = platform_get_irq(pdev, 0); |
| if (bgp->irq < 0) { |
| dev_err(&pdev->dev, "get_irq failed\n"); |
| return bgp->irq; |
| } |
| ret = request_threaded_irq(bgp->irq, NULL, |
| ti_bandgap_talert_irq_handler, |
| IRQF_TRIGGER_HIGH | IRQF_ONESHOT, |
| "talert", bgp); |
| if (ret) { |
| dev_err(&pdev->dev, "Request threaded irq failed.\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct of_device_id of_ti_bandgap_match[]; |
| /** |
| * ti_bandgap_build() - parse DT and setup a struct ti_bandgap |
| * @pdev: pointer to device struct platform_device |
| * |
| * Used to read the device tree properties accordingly to the bandgap |
| * matching version. Based on bandgap version and its capabilities it |
| * will build a struct ti_bandgap out of the required DT entries. |
| * |
| * Return: valid bandgap structure if successful, else returns ERR_PTR |
| * return value must be verified with IS_ERR. |
| */ |
| static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev) |
| { |
| struct device_node *node = pdev->dev.of_node; |
| const struct of_device_id *of_id; |
| struct ti_bandgap *bgp; |
| struct resource *res; |
| int i; |
| |
| /* just for the sake */ |
| if (!node) { |
| dev_err(&pdev->dev, "no platform information available\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL); |
| if (!bgp) { |
| dev_err(&pdev->dev, "Unable to allocate mem for driver ref\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| of_id = of_match_device(of_ti_bandgap_match, &pdev->dev); |
| if (of_id) |
| bgp->conf = of_id->data; |
| |
| /* register shadow for context save and restore */ |
| bgp->regval = devm_kzalloc(&pdev->dev, sizeof(*bgp->regval) * |
| bgp->conf->sensor_count, GFP_KERNEL); |
| if (!bgp->regval) { |
| dev_err(&pdev->dev, "Unable to allocate mem for driver ref\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| i = 0; |
| do { |
| void __iomem *chunk; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, i); |
| if (!res) |
| break; |
| chunk = devm_ioremap_resource(&pdev->dev, res); |
| if (i == 0) |
| bgp->base = chunk; |
| if (IS_ERR(chunk)) |
| return ERR_CAST(chunk); |
| |
| i++; |
| } while (res); |
| |
| if (TI_BANDGAP_HAS(bgp, TSHUT)) { |
| bgp->tshut_gpio = of_get_gpio(node, 0); |
| if (!gpio_is_valid(bgp->tshut_gpio)) { |
| dev_err(&pdev->dev, "invalid gpio for tshut (%d)\n", |
| bgp->tshut_gpio); |
| return ERR_PTR(-EINVAL); |
| } |
| } |
| |
| return bgp; |
| } |
| |
| /*** Device driver call backs ***/ |
| |
| static |
| int ti_bandgap_probe(struct platform_device *pdev) |
| { |
| struct ti_bandgap *bgp; |
| int clk_rate, ret = 0, i; |
| |
| bgp = ti_bandgap_build(pdev); |
| if (IS_ERR(bgp)) { |
| dev_err(&pdev->dev, "failed to fetch platform data\n"); |
| return PTR_ERR(bgp); |
| } |
| bgp->dev = &pdev->dev; |
| |
| if (TI_BANDGAP_HAS(bgp, TSHUT)) { |
| ret = ti_bandgap_tshut_init(bgp, pdev); |
| if (ret) { |
| dev_err(&pdev->dev, |
| "failed to initialize system tshut IRQ\n"); |
| return ret; |
| } |
| } |
| |
| bgp->fclock = clk_get(NULL, bgp->conf->fclock_name); |
| ret = IS_ERR(bgp->fclock); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to request fclock reference\n"); |
| ret = PTR_ERR(bgp->fclock); |
| goto free_irqs; |
| } |
| |
| bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name); |
| ret = IS_ERR(bgp->div_clk); |
| if (ret) { |
| dev_err(&pdev->dev, |
| "failed to request div_ts_ck clock ref\n"); |
| ret = PTR_ERR(bgp->div_clk); |
| goto free_irqs; |
| } |
| |
| for (i = 0; i < bgp->conf->sensor_count; i++) { |
| struct temp_sensor_registers *tsr; |
| u32 val; |
| |
| tsr = bgp->conf->sensors[i].registers; |
| /* |
| * check if the efuse has a non-zero value if not |
| * it is an untrimmed sample and the temperatures |
| * may not be accurate |
| */ |
| val = ti_bandgap_readl(bgp, tsr->bgap_efuse); |
| if (ret || !val) |
| dev_info(&pdev->dev, |
| "Non-trimmed BGAP, Temp not accurate\n"); |
| } |
| |
| clk_rate = clk_round_rate(bgp->div_clk, |
| bgp->conf->sensors[0].ts_data->max_freq); |
| if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq || |
| clk_rate <= 0) { |
| ret = -ENODEV; |
| dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate); |
| goto put_clks; |
| } |
| |
| ret = clk_set_rate(bgp->div_clk, clk_rate); |
| if (ret) |
| dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n"); |
| |
| bgp->clk_rate = clk_rate; |
| if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) |
| clk_prepare_enable(bgp->fclock); |
| |
| |
| spin_lock_init(&bgp->lock); |
| bgp->dev = &pdev->dev; |
| platform_set_drvdata(pdev, bgp); |
| |
| ti_bandgap_power(bgp, true); |
| |
| /* Set default counter to 1 for now */ |
| if (TI_BANDGAP_HAS(bgp, COUNTER)) |
| for (i = 0; i < bgp->conf->sensor_count; i++) |
| RMW_BITS(bgp, i, bgap_counter, counter_mask, 1); |
| |
| /* Set default thresholds for alert and shutdown */ |
| for (i = 0; i < bgp->conf->sensor_count; i++) { |
| struct temp_sensor_data *ts_data; |
| |
| ts_data = bgp->conf->sensors[i].ts_data; |
| |
| if (TI_BANDGAP_HAS(bgp, TALERT)) { |
| /* Set initial Talert thresholds */ |
| RMW_BITS(bgp, i, bgap_threshold, |
| threshold_tcold_mask, ts_data->t_cold); |
| RMW_BITS(bgp, i, bgap_threshold, |
| threshold_thot_mask, ts_data->t_hot); |
| /* Enable the alert events */ |
| RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1); |
| RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1); |
| } |
| |
| if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) { |
| /* Set initial Tshut thresholds */ |
| RMW_BITS(bgp, i, tshut_threshold, |
| tshut_hot_mask, ts_data->tshut_hot); |
| RMW_BITS(bgp, i, tshut_threshold, |
| tshut_cold_mask, ts_data->tshut_cold); |
| } |
| } |
| |
| if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) |
| ti_bandgap_set_continuous_mode(bgp); |
| |
| /* Set .250 seconds time as default counter */ |
| if (TI_BANDGAP_HAS(bgp, COUNTER)) |
| for (i = 0; i < bgp->conf->sensor_count; i++) |
| RMW_BITS(bgp, i, bgap_counter, counter_mask, |
| bgp->clk_rate / 4); |
| |
| /* Every thing is good? Then expose the sensors */ |
| for (i = 0; i < bgp->conf->sensor_count; i++) { |
| char *domain; |
| |
| if (bgp->conf->sensors[i].register_cooling) { |
| ret = bgp->conf->sensors[i].register_cooling(bgp, i); |
| if (ret) |
| goto remove_sensors; |
| } |
| |
| if (bgp->conf->expose_sensor) { |
| domain = bgp->conf->sensors[i].domain; |
| ret = bgp->conf->expose_sensor(bgp, i, domain); |
| if (ret) |
| goto remove_last_cooling; |
| } |
| } |
| |
| /* |
| * Enable the Interrupts once everything is set. Otherwise irq handler |
| * might be called as soon as it is enabled where as rest of framework |
| * is still getting initialised. |
| */ |
| if (TI_BANDGAP_HAS(bgp, TALERT)) { |
| ret = ti_bandgap_talert_init(bgp, pdev); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to initialize Talert IRQ\n"); |
| i = bgp->conf->sensor_count; |
| goto disable_clk; |
| } |
| } |
| |
| return 0; |
| |
| remove_last_cooling: |
| if (bgp->conf->sensors[i].unregister_cooling) |
| bgp->conf->sensors[i].unregister_cooling(bgp, i); |
| remove_sensors: |
| for (i--; i >= 0; i--) { |
| if (bgp->conf->sensors[i].unregister_cooling) |
| bgp->conf->sensors[i].unregister_cooling(bgp, i); |
| if (bgp->conf->remove_sensor) |
| bgp->conf->remove_sensor(bgp, i); |
| } |
| ti_bandgap_power(bgp, false); |
| disable_clk: |
| if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) |
| clk_disable_unprepare(bgp->fclock); |
| put_clks: |
| clk_put(bgp->fclock); |
| clk_put(bgp->div_clk); |
| free_irqs: |
| if (TI_BANDGAP_HAS(bgp, TSHUT)) { |
| free_irq(gpio_to_irq(bgp->tshut_gpio), NULL); |
| gpio_free(bgp->tshut_gpio); |
| } |
| |
| return ret; |
| } |
| |
| static |
| int ti_bandgap_remove(struct platform_device *pdev) |
| { |
| struct ti_bandgap *bgp = platform_get_drvdata(pdev); |
| int i; |
| |
| /* First thing is to remove sensor interfaces */ |
| for (i = 0; i < bgp->conf->sensor_count; i++) { |
| if (bgp->conf->sensors[i].unregister_cooling) |
| bgp->conf->sensors[i].unregister_cooling(bgp, i); |
| |
| if (bgp->conf->remove_sensor) |
| bgp->conf->remove_sensor(bgp, i); |
| } |
| |
| ti_bandgap_power(bgp, false); |
| |
| if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) |
| clk_disable_unprepare(bgp->fclock); |
| clk_put(bgp->fclock); |
| clk_put(bgp->div_clk); |
| |
| if (TI_BANDGAP_HAS(bgp, TALERT)) |
| free_irq(bgp->irq, bgp); |
| |
| if (TI_BANDGAP_HAS(bgp, TSHUT)) { |
| free_irq(gpio_to_irq(bgp->tshut_gpio), NULL); |
| gpio_free(bgp->tshut_gpio); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp) |
| { |
| int i; |
| |
| for (i = 0; i < bgp->conf->sensor_count; i++) { |
| struct temp_sensor_registers *tsr; |
| struct temp_sensor_regval *rval; |
| |
| rval = &bgp->regval[i]; |
| tsr = bgp->conf->sensors[i].registers; |
| |
| if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) |
| rval->bg_mode_ctrl = ti_bandgap_readl(bgp, |
| tsr->bgap_mode_ctrl); |
| if (TI_BANDGAP_HAS(bgp, COUNTER)) |
| rval->bg_counter = ti_bandgap_readl(bgp, |
| tsr->bgap_counter); |
| if (TI_BANDGAP_HAS(bgp, TALERT)) { |
| rval->bg_threshold = ti_bandgap_readl(bgp, |
| tsr->bgap_threshold); |
| rval->bg_ctrl = ti_bandgap_readl(bgp, |
| tsr->bgap_mask_ctrl); |
| } |
| |
| if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) |
| rval->tshut_threshold = ti_bandgap_readl(bgp, |
| tsr->tshut_threshold); |
| } |
| |
| return 0; |
| } |
| |
| static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp) |
| { |
| int i; |
| |
| for (i = 0; i < bgp->conf->sensor_count; i++) { |
| struct temp_sensor_registers *tsr; |
| struct temp_sensor_regval *rval; |
| u32 val = 0; |
| |
| rval = &bgp->regval[i]; |
| tsr = bgp->conf->sensors[i].registers; |
| |
| if (TI_BANDGAP_HAS(bgp, COUNTER)) |
| val = ti_bandgap_readl(bgp, tsr->bgap_counter); |
| |
| if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) |
| ti_bandgap_writel(bgp, rval->tshut_threshold, |
| tsr->tshut_threshold); |
| /* Force immediate temperature measurement and update |
| * of the DTEMP field |
| */ |
| ti_bandgap_force_single_read(bgp, i); |
| |
| if (TI_BANDGAP_HAS(bgp, COUNTER)) |
| ti_bandgap_writel(bgp, rval->bg_counter, |
| tsr->bgap_counter); |
| if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) |
| ti_bandgap_writel(bgp, rval->bg_mode_ctrl, |
| tsr->bgap_mode_ctrl); |
| if (TI_BANDGAP_HAS(bgp, TALERT)) { |
| ti_bandgap_writel(bgp, rval->bg_threshold, |
| tsr->bgap_threshold); |
| ti_bandgap_writel(bgp, rval->bg_ctrl, |
| tsr->bgap_mask_ctrl); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ti_bandgap_suspend(struct device *dev) |
| { |
| struct ti_bandgap *bgp = dev_get_drvdata(dev); |
| int err; |
| |
| err = ti_bandgap_save_ctxt(bgp); |
| ti_bandgap_power(bgp, false); |
| |
| if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) |
| clk_disable_unprepare(bgp->fclock); |
| |
| return err; |
| } |
| |
| static int ti_bandgap_resume(struct device *dev) |
| { |
| struct ti_bandgap *bgp = dev_get_drvdata(dev); |
| |
| if (TI_BANDGAP_HAS(bgp, CLK_CTRL)) |
| clk_prepare_enable(bgp->fclock); |
| |
| ti_bandgap_power(bgp, true); |
| |
| return ti_bandgap_restore_ctxt(bgp); |
| } |
| static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend, |
| ti_bandgap_resume); |
| |
| #define DEV_PM_OPS (&ti_bandgap_dev_pm_ops) |
| #else |
| #define DEV_PM_OPS NULL |
| #endif |
| |
| static const struct of_device_id of_ti_bandgap_match[] = { |
| #ifdef CONFIG_OMAP4_THERMAL |
| { |
| .compatible = "ti,omap4430-bandgap", |
| .data = (void *)&omap4430_data, |
| }, |
| { |
| .compatible = "ti,omap4460-bandgap", |
| .data = (void *)&omap4460_data, |
| }, |
| { |
| .compatible = "ti,omap4470-bandgap", |
| .data = (void *)&omap4470_data, |
| }, |
| #endif |
| #ifdef CONFIG_OMAP5_THERMAL |
| { |
| .compatible = "ti,omap5430-bandgap", |
| .data = (void *)&omap5430_data, |
| }, |
| #endif |
| #ifdef CONFIG_DRA752_THERMAL |
| { |
| .compatible = "ti,dra752-bandgap", |
| .data = (void *)&dra752_data, |
| }, |
| #endif |
| /* Sentinel */ |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, of_ti_bandgap_match); |
| |
| static struct platform_driver ti_bandgap_sensor_driver = { |
| .probe = ti_bandgap_probe, |
| .remove = ti_bandgap_remove, |
| .driver = { |
| .name = "ti-soc-thermal", |
| .pm = DEV_PM_OPS, |
| .of_match_table = of_ti_bandgap_match, |
| }, |
| }; |
| |
| module_platform_driver(ti_bandgap_sensor_driver); |
| |
| MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS("platform:ti-soc-thermal"); |
| MODULE_AUTHOR("Texas Instrument Inc."); |