blob: bab3a514ec128254d8cff0ccdeaf02f427625d06 [file] [log] [blame]
/*
* drivers/cpufreq/cpufreq_governor.c
*
* CPUFREQ governors common code
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
* (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/export.h>
#include <linux/kernel_stat.h>
#include <linux/slab.h>
#include "cpufreq_governor.h"
static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
{
if (have_governor_per_policy())
return dbs_data->cdata->attr_group_gov_pol;
else
return dbs_data->cdata->attr_group_gov_sys;
}
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
{
struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
struct cpufreq_policy *policy = cdbs->shared->policy;
unsigned int sampling_rate;
unsigned int max_load = 0;
unsigned int ignore_nice;
unsigned int j;
if (dbs_data->cdata->governor == GOV_ONDEMAND) {
struct od_cpu_dbs_info_s *od_dbs_info =
dbs_data->cdata->get_cpu_dbs_info_s(cpu);
/*
* Sometimes, the ondemand governor uses an additional
* multiplier to give long delays. So apply this multiplier to
* the 'sampling_rate', so as to keep the wake-up-from-idle
* detection logic a bit conservative.
*/
sampling_rate = od_tuners->sampling_rate;
sampling_rate *= od_dbs_info->rate_mult;
ignore_nice = od_tuners->ignore_nice_load;
} else {
sampling_rate = cs_tuners->sampling_rate;
ignore_nice = cs_tuners->ignore_nice_load;
}
/* Get Absolute Load */
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info *j_cdbs;
u64 cur_wall_time, cur_idle_time;
unsigned int idle_time, wall_time;
unsigned int load;
int io_busy = 0;
j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
/*
* For the purpose of ondemand, waiting for disk IO is
* an indication that you're performance critical, and
* not that the system is actually idle. So do not add
* the iowait time to the cpu idle time.
*/
if (dbs_data->cdata->governor == GOV_ONDEMAND)
io_busy = od_tuners->io_is_busy;
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
wall_time = (unsigned int)
(cur_wall_time - j_cdbs->prev_cpu_wall);
j_cdbs->prev_cpu_wall = cur_wall_time;
if (cur_idle_time < j_cdbs->prev_cpu_idle)
cur_idle_time = j_cdbs->prev_cpu_idle;
idle_time = (unsigned int)
(cur_idle_time - j_cdbs->prev_cpu_idle);
j_cdbs->prev_cpu_idle = cur_idle_time;
if (ignore_nice) {
u64 cur_nice;
unsigned long cur_nice_jiffies;
cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
cdbs->prev_cpu_nice;
/*
* Assumption: nice time between sampling periods will
* be less than 2^32 jiffies for 32 bit sys
*/
cur_nice_jiffies = (unsigned long)
cputime64_to_jiffies64(cur_nice);
cdbs->prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
idle_time += jiffies_to_usecs(cur_nice_jiffies);
}
if (unlikely(!wall_time || wall_time < idle_time))
continue;
/*
* If the CPU had gone completely idle, and a task just woke up
* on this CPU now, it would be unfair to calculate 'load' the
* usual way for this elapsed time-window, because it will show
* near-zero load, irrespective of how CPU intensive that task
* actually is. This is undesirable for latency-sensitive bursty
* workloads.
*
* To avoid this, we reuse the 'load' from the previous
* time-window and give this task a chance to start with a
* reasonably high CPU frequency. (However, we shouldn't over-do
* this copy, lest we get stuck at a high load (high frequency)
* for too long, even when the current system load has actually
* dropped down. So we perform the copy only once, upon the
* first wake-up from idle.)
*
* Detecting this situation is easy: the governor's deferrable
* timer would not have fired during CPU-idle periods. Hence
* an unusually large 'wall_time' (as compared to the sampling
* rate) indicates this scenario.
*
* prev_load can be zero in two cases and we must recalculate it
* for both cases:
* - during long idle intervals
* - explicitly set to zero
*/
if (unlikely(wall_time > (2 * sampling_rate) &&
j_cdbs->prev_load)) {
load = j_cdbs->prev_load;
/*
* Perform a destructive copy, to ensure that we copy
* the previous load only once, upon the first wake-up
* from idle.
*/
j_cdbs->prev_load = 0;
} else {
load = 100 * (wall_time - idle_time) / wall_time;
j_cdbs->prev_load = load;
}
if (load > max_load)
max_load = load;
}
dbs_data->cdata->gov_check_cpu(cpu, max_load);
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);
void gov_add_timers(struct cpufreq_policy *policy, unsigned int delay)
{
struct dbs_data *dbs_data = policy->governor_data;
struct cpu_dbs_info *cdbs;
int cpu;
for_each_cpu(cpu, policy->cpus) {
cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
cdbs->timer.expires = jiffies + delay;
add_timer_on(&cdbs->timer, cpu);
}
}
EXPORT_SYMBOL_GPL(gov_add_timers);
static inline void gov_cancel_timers(struct cpufreq_policy *policy)
{
struct dbs_data *dbs_data = policy->governor_data;
struct cpu_dbs_info *cdbs;
int i;
for_each_cpu(i, policy->cpus) {
cdbs = dbs_data->cdata->get_cpu_cdbs(i);
del_timer_sync(&cdbs->timer);
}
}
void gov_cancel_work(struct cpu_common_dbs_info *shared)
{
/* Tell dbs_timer_handler() to skip queuing up work items. */
atomic_inc(&shared->skip_work);
/*
* If dbs_timer_handler() is already running, it may not notice the
* incremented skip_work, so wait for it to complete to prevent its work
* item from being queued up after the cancel_work_sync() below.
*/
gov_cancel_timers(shared->policy);
/*
* In case dbs_timer_handler() managed to run and spawn a work item
* before the timers have been canceled, wait for that work item to
* complete and then cancel all of the timers set up by it. If
* dbs_timer_handler() runs again at that point, it will see the
* positive value of skip_work and won't spawn any more work items.
*/
cancel_work_sync(&shared->work);
gov_cancel_timers(shared->policy);
atomic_set(&shared->skip_work, 0);
}
EXPORT_SYMBOL_GPL(gov_cancel_work);
/* Will return if we need to evaluate cpu load again or not */
static bool need_load_eval(struct cpu_common_dbs_info *shared,
unsigned int sampling_rate)
{
if (policy_is_shared(shared->policy)) {
ktime_t time_now = ktime_get();
s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
/* Do nothing if we recently have sampled */
if (delta_us < (s64)(sampling_rate / 2))
return false;
else
shared->time_stamp = time_now;
}
return true;
}
static void dbs_work_handler(struct work_struct *work)
{
struct cpu_common_dbs_info *shared = container_of(work, struct
cpu_common_dbs_info, work);
struct cpufreq_policy *policy;
struct dbs_data *dbs_data;
unsigned int sampling_rate, delay;
bool eval_load;
policy = shared->policy;
dbs_data = policy->governor_data;
/* Kill all timers */
gov_cancel_timers(policy);
if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
sampling_rate = cs_tuners->sampling_rate;
} else {
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
sampling_rate = od_tuners->sampling_rate;
}
eval_load = need_load_eval(shared, sampling_rate);
/*
* Make sure cpufreq_governor_limits() isn't evaluating load in
* parallel.
*/
mutex_lock(&shared->timer_mutex);
delay = dbs_data->cdata->gov_dbs_timer(policy, eval_load);
mutex_unlock(&shared->timer_mutex);
atomic_dec(&shared->skip_work);
gov_add_timers(policy, delay);
}
static void dbs_timer_handler(unsigned long data)
{
struct cpu_dbs_info *cdbs = (struct cpu_dbs_info *)data;
struct cpu_common_dbs_info *shared = cdbs->shared;
/*
* Timer handler may not be allowed to queue the work at the moment,
* because:
* - Another timer handler has done that
* - We are stopping the governor
* - Or we are updating the sampling rate of the ondemand governor
*/
if (atomic_inc_return(&shared->skip_work) > 1)
atomic_dec(&shared->skip_work);
else
queue_work(system_wq, &shared->work);
}
static void set_sampling_rate(struct dbs_data *dbs_data,
unsigned int sampling_rate)
{
if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
cs_tuners->sampling_rate = sampling_rate;
} else {
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
od_tuners->sampling_rate = sampling_rate;
}
}
static int alloc_common_dbs_info(struct cpufreq_policy *policy,
struct common_dbs_data *cdata)
{
struct cpu_common_dbs_info *shared;
int j;
/* Allocate memory for the common information for policy->cpus */
shared = kzalloc(sizeof(*shared), GFP_KERNEL);
if (!shared)
return -ENOMEM;
/* Set shared for all CPUs, online+offline */
for_each_cpu(j, policy->related_cpus)
cdata->get_cpu_cdbs(j)->shared = shared;
mutex_init(&shared->timer_mutex);
atomic_set(&shared->skip_work, 0);
INIT_WORK(&shared->work, dbs_work_handler);
return 0;
}
static void free_common_dbs_info(struct cpufreq_policy *policy,
struct common_dbs_data *cdata)
{
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
struct cpu_common_dbs_info *shared = cdbs->shared;
int j;
mutex_destroy(&shared->timer_mutex);
for_each_cpu(j, policy->cpus)
cdata->get_cpu_cdbs(j)->shared = NULL;
kfree(shared);
}
static int cpufreq_governor_init(struct cpufreq_policy *policy,
struct dbs_data *dbs_data,
struct common_dbs_data *cdata)
{
unsigned int latency;
int ret;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
if (dbs_data) {
if (WARN_ON(have_governor_per_policy()))
return -EINVAL;
ret = alloc_common_dbs_info(policy, cdata);
if (ret)
return ret;
dbs_data->usage_count++;
policy->governor_data = dbs_data;
return 0;
}
dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
if (!dbs_data)
return -ENOMEM;
ret = alloc_common_dbs_info(policy, cdata);
if (ret)
goto free_dbs_data;
dbs_data->cdata = cdata;
dbs_data->usage_count = 1;
ret = cdata->init(dbs_data, !policy->governor->initialized);
if (ret)
goto free_common_dbs_info;
/* policy latency is in ns. Convert it to us first */
latency = policy->cpuinfo.transition_latency / 1000;
if (latency == 0)
latency = 1;
/* Bring kernel and HW constraints together */
dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
MIN_LATENCY_MULTIPLIER * latency);
set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
latency * LATENCY_MULTIPLIER));
if (!have_governor_per_policy())
cdata->gdbs_data = dbs_data;
ret = sysfs_create_group(get_governor_parent_kobj(policy),
get_sysfs_attr(dbs_data));
if (ret)
goto reset_gdbs_data;
policy->governor_data = dbs_data;
return 0;
reset_gdbs_data:
if (!have_governor_per_policy())
cdata->gdbs_data = NULL;
cdata->exit(dbs_data, !policy->governor->initialized);
free_common_dbs_info:
free_common_dbs_info(policy, cdata);
free_dbs_data:
kfree(dbs_data);
return ret;
}
static int cpufreq_governor_exit(struct cpufreq_policy *policy,
struct dbs_data *dbs_data)
{
struct common_dbs_data *cdata = dbs_data->cdata;
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
/* State should be equivalent to INIT */
if (!cdbs->shared || cdbs->shared->policy)
return -EBUSY;
policy->governor_data = NULL;
if (!--dbs_data->usage_count) {
sysfs_remove_group(get_governor_parent_kobj(policy),
get_sysfs_attr(dbs_data));
if (!have_governor_per_policy())
cdata->gdbs_data = NULL;
cdata->exit(dbs_data, policy->governor->initialized == 1);
kfree(dbs_data);
}
free_common_dbs_info(policy, cdata);
return 0;
}
static int cpufreq_governor_start(struct cpufreq_policy *policy,
struct dbs_data *dbs_data)
{
struct common_dbs_data *cdata = dbs_data->cdata;
unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
struct cpu_common_dbs_info *shared = cdbs->shared;
int io_busy = 0;
if (!policy->cur)
return -EINVAL;
/* State should be equivalent to INIT */
if (!shared || shared->policy)
return -EBUSY;
if (cdata->governor == GOV_CONSERVATIVE) {
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
sampling_rate = cs_tuners->sampling_rate;
ignore_nice = cs_tuners->ignore_nice_load;
} else {
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
sampling_rate = od_tuners->sampling_rate;
ignore_nice = od_tuners->ignore_nice_load;
io_busy = od_tuners->io_is_busy;
}
shared->policy = policy;
shared->time_stamp = ktime_get();
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
unsigned int prev_load;
j_cdbs->prev_cpu_idle =
get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
j_cdbs->prev_cpu_idle);
j_cdbs->prev_load = 100 * prev_load /
(unsigned int)j_cdbs->prev_cpu_wall;
if (ignore_nice)
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
__setup_timer(&j_cdbs->timer, dbs_timer_handler,
(unsigned long)j_cdbs,
TIMER_DEFERRABLE | TIMER_IRQSAFE);
}
if (cdata->governor == GOV_CONSERVATIVE) {
struct cs_cpu_dbs_info_s *cs_dbs_info =
cdata->get_cpu_dbs_info_s(cpu);
cs_dbs_info->down_skip = 0;
cs_dbs_info->requested_freq = policy->cur;
} else {
struct od_ops *od_ops = cdata->gov_ops;
struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
od_dbs_info->rate_mult = 1;
od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
od_ops->powersave_bias_init_cpu(cpu);
}
gov_add_timers(policy, delay_for_sampling_rate(sampling_rate));
return 0;
}
static int cpufreq_governor_stop(struct cpufreq_policy *policy,
struct dbs_data *dbs_data)
{
struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
struct cpu_common_dbs_info *shared = cdbs->shared;
/* State should be equivalent to START */
if (!shared || !shared->policy)
return -EBUSY;
gov_cancel_work(shared);
shared->policy = NULL;
return 0;
}
static int cpufreq_governor_limits(struct cpufreq_policy *policy,
struct dbs_data *dbs_data)
{
struct common_dbs_data *cdata = dbs_data->cdata;
unsigned int cpu = policy->cpu;
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
/* State should be equivalent to START */
if (!cdbs->shared || !cdbs->shared->policy)
return -EBUSY;
mutex_lock(&cdbs->shared->timer_mutex);
if (policy->max < cdbs->shared->policy->cur)
__cpufreq_driver_target(cdbs->shared->policy, policy->max,
CPUFREQ_RELATION_H);
else if (policy->min > cdbs->shared->policy->cur)
__cpufreq_driver_target(cdbs->shared->policy, policy->min,
CPUFREQ_RELATION_L);
dbs_check_cpu(dbs_data, cpu);
mutex_unlock(&cdbs->shared->timer_mutex);
return 0;
}
int cpufreq_governor_dbs(struct cpufreq_policy *policy,
struct common_dbs_data *cdata, unsigned int event)
{
struct dbs_data *dbs_data;
int ret;
/* Lock governor to block concurrent initialization of governor */
mutex_lock(&cdata->mutex);
if (have_governor_per_policy())
dbs_data = policy->governor_data;
else
dbs_data = cdata->gdbs_data;
if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
ret = -EINVAL;
goto unlock;
}
switch (event) {
case CPUFREQ_GOV_POLICY_INIT:
ret = cpufreq_governor_init(policy, dbs_data, cdata);
break;
case CPUFREQ_GOV_POLICY_EXIT:
ret = cpufreq_governor_exit(policy, dbs_data);
break;
case CPUFREQ_GOV_START:
ret = cpufreq_governor_start(policy, dbs_data);
break;
case CPUFREQ_GOV_STOP:
ret = cpufreq_governor_stop(policy, dbs_data);
break;
case CPUFREQ_GOV_LIMITS:
ret = cpufreq_governor_limits(policy, dbs_data);
break;
default:
ret = -EINVAL;
}
unlock:
mutex_unlock(&cdata->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);