blob: fc2a45bb965127c955b68e684fbce108e08d6e90 [file] [log] [blame]
/*
* Promise TX2/TX4/TX2000/133 IDE driver
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Split from:
* linux/drivers/ide/pdc202xx.c Version 0.35 Mar. 30, 2002
* Copyright (C) 1998-2002 Andre Hedrick <andre@linux-ide.org>
* Copyright (C) 2005-2006 MontaVista Software, Inc.
* Portions Copyright (C) 1999 Promise Technology, Inc.
* Author: Frank Tiernan (frankt@promise.com)
* Released under terms of General Public License
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/ioport.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ide.h>
#include <asm/io.h>
#include <asm/irq.h>
#ifdef CONFIG_PPC_PMAC
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#endif
#define PDC202_DEBUG_CABLE 0
#undef DEBUG
#ifdef DEBUG
#define DBG(fmt, args...) printk("%s: " fmt, __FUNCTION__, ## args)
#else
#define DBG(fmt, args...)
#endif
static const char *pdc_quirk_drives[] = {
"QUANTUM FIREBALLlct08 08",
"QUANTUM FIREBALLP KA6.4",
"QUANTUM FIREBALLP KA9.1",
"QUANTUM FIREBALLP LM20.4",
"QUANTUM FIREBALLP KX13.6",
"QUANTUM FIREBALLP KX20.5",
"QUANTUM FIREBALLP KX27.3",
"QUANTUM FIREBALLP LM20.5",
NULL
};
static u8 max_dma_rate(struct pci_dev *pdev)
{
u8 mode;
switch(pdev->device) {
case PCI_DEVICE_ID_PROMISE_20277:
case PCI_DEVICE_ID_PROMISE_20276:
case PCI_DEVICE_ID_PROMISE_20275:
case PCI_DEVICE_ID_PROMISE_20271:
case PCI_DEVICE_ID_PROMISE_20269:
mode = 4;
break;
case PCI_DEVICE_ID_PROMISE_20270:
case PCI_DEVICE_ID_PROMISE_20268:
mode = 3;
break;
default:
return 0;
}
return mode;
}
static u8 pdcnew_ratemask(ide_drive_t *drive)
{
u8 mode = max_dma_rate(HWIF(drive)->pci_dev);
if (!eighty_ninty_three(drive))
mode = min_t(u8, mode, 1);
return mode;
}
static int check_in_drive_lists(ide_drive_t *drive, const char **list)
{
struct hd_driveid *id = drive->id;
if (pdc_quirk_drives == list) {
while (*list) {
if (strstr(id->model, *list++)) {
return 2;
}
}
} else {
while (*list) {
if (!strcmp(*list++,id->model)) {
return 1;
}
}
}
return 0;
}
/**
* get_indexed_reg - Get indexed register
* @hwif: for the port address
* @index: index of the indexed register
*/
static u8 get_indexed_reg(ide_hwif_t *hwif, u8 index)
{
u8 value;
hwif->OUTB(index, hwif->dma_vendor1);
value = hwif->INB(hwif->dma_vendor3);
DBG("index[%02X] value[%02X]\n", index, value);
return value;
}
/**
* set_indexed_reg - Set indexed register
* @hwif: for the port address
* @index: index of the indexed register
*/
static void set_indexed_reg(ide_hwif_t *hwif, u8 index, u8 value)
{
hwif->OUTB(index, hwif->dma_vendor1);
hwif->OUTB(value, hwif->dma_vendor3);
DBG("index[%02X] value[%02X]\n", index, value);
}
/*
* ATA Timing Tables based on 133 MHz PLL output clock.
*
* If the PLL outputs 100 MHz clock, the ASIC hardware will set
* the timing registers automatically when "set features" command is
* issued to the device. However, if the PLL output clock is 133 MHz,
* the following tables must be used.
*/
static struct pio_timing {
u8 reg0c, reg0d, reg13;
} pio_timings [] = {
{ 0xfb, 0x2b, 0xac }, /* PIO mode 0, IORDY off, Prefetch off */
{ 0x46, 0x29, 0xa4 }, /* PIO mode 1, IORDY off, Prefetch off */
{ 0x23, 0x26, 0x64 }, /* PIO mode 2, IORDY off, Prefetch off */
{ 0x27, 0x0d, 0x35 }, /* PIO mode 3, IORDY on, Prefetch off */
{ 0x23, 0x09, 0x25 }, /* PIO mode 4, IORDY on, Prefetch off */
};
static struct mwdma_timing {
u8 reg0e, reg0f;
} mwdma_timings [] = {
{ 0xdf, 0x5f }, /* MWDMA mode 0 */
{ 0x6b, 0x27 }, /* MWDMA mode 1 */
{ 0x69, 0x25 }, /* MWDMA mode 2 */
};
static struct udma_timing {
u8 reg10, reg11, reg12;
} udma_timings [] = {
{ 0x4a, 0x0f, 0xd5 }, /* UDMA mode 0 */
{ 0x3a, 0x0a, 0xd0 }, /* UDMA mode 1 */
{ 0x2a, 0x07, 0xcd }, /* UDMA mode 2 */
{ 0x1a, 0x05, 0xcd }, /* UDMA mode 3 */
{ 0x1a, 0x03, 0xcd }, /* UDMA mode 4 */
{ 0x1a, 0x02, 0xcb }, /* UDMA mode 5 */
{ 0x1a, 0x01, 0xcb }, /* UDMA mode 6 */
};
static int pdcnew_tune_chipset(ide_drive_t *drive, u8 speed)
{
ide_hwif_t *hwif = HWIF(drive);
u8 adj = (drive->dn & 1) ? 0x08 : 0x00;
int err;
speed = ide_rate_filter(pdcnew_ratemask(drive), speed);
/*
* Issue SETFEATURES_XFER to the drive first. PDC202xx hardware will
* automatically set the timing registers based on 100 MHz PLL output.
*/
err = ide_config_drive_speed(drive, speed);
/*
* As we set up the PLL to output 133 MHz for UltraDMA/133 capable
* chips, we must override the default register settings...
*/
if (max_dma_rate(hwif->pci_dev) == 4) {
u8 mode = speed & 0x07;
switch (speed) {
case XFER_UDMA_6:
case XFER_UDMA_5:
case XFER_UDMA_4:
case XFER_UDMA_3:
case XFER_UDMA_2:
case XFER_UDMA_1:
case XFER_UDMA_0:
set_indexed_reg(hwif, 0x10 + adj,
udma_timings[mode].reg10);
set_indexed_reg(hwif, 0x11 + adj,
udma_timings[mode].reg11);
set_indexed_reg(hwif, 0x12 + adj,
udma_timings[mode].reg12);
break;
case XFER_MW_DMA_2:
case XFER_MW_DMA_1:
case XFER_MW_DMA_0:
set_indexed_reg(hwif, 0x0e + adj,
mwdma_timings[mode].reg0e);
set_indexed_reg(hwif, 0x0f + adj,
mwdma_timings[mode].reg0f);
break;
case XFER_PIO_4:
case XFER_PIO_3:
case XFER_PIO_2:
case XFER_PIO_1:
case XFER_PIO_0:
set_indexed_reg(hwif, 0x0c + adj,
pio_timings[mode].reg0c);
set_indexed_reg(hwif, 0x0d + adj,
pio_timings[mode].reg0d);
set_indexed_reg(hwif, 0x13 + adj,
pio_timings[mode].reg13);
break;
default:
printk(KERN_ERR "pdc202xx_new: "
"Unknown speed %d ignored\n", speed);
}
} else if (speed == XFER_UDMA_2) {
/* Set tHOLD bit to 0 if using UDMA mode 2 */
u8 tmp = get_indexed_reg(hwif, 0x10 + adj);
set_indexed_reg(hwif, 0x10 + adj, tmp & 0x7f);
}
return err;
}
static void pdcnew_tune_drive(ide_drive_t *drive, u8 pio)
{
pio = ide_get_best_pio_mode(drive, pio, 4, NULL);
(void)pdcnew_tune_chipset(drive, XFER_PIO_0 + pio);
}
static u8 pdcnew_cable_detect(ide_hwif_t *hwif)
{
return get_indexed_reg(hwif, 0x0b) & 0x04;
}
static int config_chipset_for_dma(ide_drive_t *drive)
{
struct hd_driveid *id = drive->id;
ide_hwif_t *hwif = HWIF(drive);
u8 ultra_66 = (id->dma_ultra & 0x0078) ? 1 : 0;
u8 cable = pdcnew_cable_detect(hwif);
u8 speed;
if (ultra_66 && cable) {
printk(KERN_WARNING "Warning: %s channel "
"requires an 80-pin cable for operation.\n",
hwif->channel ? "Secondary" : "Primary");
printk(KERN_WARNING "%s reduced to Ultra33 mode.\n", drive->name);
}
if (drive->media != ide_disk)
return 0;
if (id->capability & 4) {
/*
* Set IORDY_EN & PREFETCH_EN (this seems to have
* NO real effect since this register is reloaded
* by hardware when the transfer mode is selected)
*/
u8 tmp, adj = (drive->dn & 1) ? 0x08 : 0x00;
tmp = get_indexed_reg(hwif, 0x13 + adj);
set_indexed_reg(hwif, 0x13 + adj, tmp | 0x03);
}
speed = ide_dma_speed(drive, pdcnew_ratemask(drive));
if (!speed)
return 0;
(void) hwif->speedproc(drive, speed);
return ide_dma_enable(drive);
}
static int pdcnew_config_drive_xfer_rate(ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
struct hd_driveid *id = drive->id;
drive->init_speed = 0;
if ((id->capability & 1) && drive->autodma) {
if (ide_use_dma(drive) && config_chipset_for_dma(drive))
return hwif->ide_dma_on(drive);
goto fast_ata_pio;
} else if ((id->capability & 8) || (id->field_valid & 2)) {
fast_ata_pio:
hwif->tuneproc(drive, 255);
return hwif->ide_dma_off_quietly(drive);
}
/* IORDY not supported */
return 0;
}
static int pdcnew_quirkproc(ide_drive_t *drive)
{
return check_in_drive_lists(drive, pdc_quirk_drives);
}
static void pdcnew_reset(ide_drive_t *drive)
{
/*
* Deleted this because it is redundant from the caller.
*/
printk(KERN_WARNING "pdc202xx_new: %s channel reset.\n",
HWIF(drive)->channel ? "Secondary" : "Primary");
}
/**
* read_counter - Read the byte count registers
* @dma_base: for the port address
*/
static long __devinit read_counter(u32 dma_base)
{
u32 pri_dma_base = dma_base, sec_dma_base = dma_base + 0x08;
u8 cnt0, cnt1, cnt2, cnt3;
long count = 0, last;
int retry = 3;
do {
last = count;
/* Read the current count */
outb(0x20, pri_dma_base + 0x01);
cnt0 = inb(pri_dma_base + 0x03);
outb(0x21, pri_dma_base + 0x01);
cnt1 = inb(pri_dma_base + 0x03);
outb(0x20, sec_dma_base + 0x01);
cnt2 = inb(sec_dma_base + 0x03);
outb(0x21, sec_dma_base + 0x01);
cnt3 = inb(sec_dma_base + 0x03);
count = (cnt3 << 23) | (cnt2 << 15) | (cnt1 << 8) | cnt0;
/*
* The 30-bit decrementing counter is read in 4 pieces.
* Incorrect value may be read when the most significant bytes
* are changing...
*/
} while (retry-- && (((last ^ count) & 0x3fff8000) || last < count));
DBG("cnt0[%02X] cnt1[%02X] cnt2[%02X] cnt3[%02X]\n",
cnt0, cnt1, cnt2, cnt3);
return count;
}
/**
* detect_pll_input_clock - Detect the PLL input clock in Hz.
* @dma_base: for the port address
* E.g. 16949000 on 33 MHz PCI bus, i.e. half of the PCI clock.
*/
static long __devinit detect_pll_input_clock(unsigned long dma_base)
{
long start_count, end_count;
long pll_input;
u8 scr1;
start_count = read_counter(dma_base);
/* Start the test mode */
outb(0x01, dma_base + 0x01);
scr1 = inb(dma_base + 0x03);
DBG("scr1[%02X]\n", scr1);
outb(scr1 | 0x40, dma_base + 0x03);
/* Let the counter run for 10 ms. */
mdelay(10);
end_count = read_counter(dma_base);
/* Stop the test mode */
outb(0x01, dma_base + 0x01);
scr1 = inb(dma_base + 0x03);
DBG("scr1[%02X]\n", scr1);
outb(scr1 & ~0x40, dma_base + 0x03);
/*
* Calculate the input clock in Hz
* (the clock counter is 30 bit wide and counts down)
*/
pll_input = ((start_count - end_count) & 0x3ffffff) * 100;
DBG("start[%ld] end[%ld]\n", start_count, end_count);
return pll_input;
}
#ifdef CONFIG_PPC_PMAC
static void __devinit apple_kiwi_init(struct pci_dev *pdev)
{
struct device_node *np = pci_device_to_OF_node(pdev);
unsigned int class_rev = 0;
u8 conf;
if (np == NULL || !device_is_compatible(np, "kiwi-root"))
return;
pci_read_config_dword(pdev, PCI_CLASS_REVISION, &class_rev);
class_rev &= 0xff;
if (class_rev >= 0x03) {
/* Setup chip magic config stuff (from darwin) */
pci_read_config_byte (pdev, 0x40, &conf);
pci_write_config_byte(pdev, 0x40, (conf | 0x01));
}
}
#endif /* CONFIG_PPC_PMAC */
static unsigned int __devinit init_chipset_pdcnew(struct pci_dev *dev, const char *name)
{
unsigned long dma_base = pci_resource_start(dev, 4);
unsigned long sec_dma_base = dma_base + 0x08;
long pll_input, pll_output, ratio;
int f, r;
u8 pll_ctl0, pll_ctl1;
if (dev->resource[PCI_ROM_RESOURCE].start) {
pci_write_config_dword(dev, PCI_ROM_ADDRESS,
dev->resource[PCI_ROM_RESOURCE].start | PCI_ROM_ADDRESS_ENABLE);
printk(KERN_INFO "%s: ROM enabled at 0x%08lx\n", name,
(unsigned long)dev->resource[PCI_ROM_RESOURCE].start);
}
#ifdef CONFIG_PPC_PMAC
apple_kiwi_init(dev);
#endif
/* Calculate the required PLL output frequency */
switch(max_dma_rate(dev)) {
case 4: /* it's 133 MHz for Ultra133 chips */
pll_output = 133333333;
break;
case 3: /* and 100 MHz for Ultra100 chips */
default:
pll_output = 100000000;
break;
}
/*
* Detect PLL input clock.
* On some systems, where PCI bus is running at non-standard clock rate
* (e.g. 25 or 40 MHz), we have to adjust the cycle time.
* PDC20268 and newer chips employ PLL circuit to help correct timing
* registers setting.
*/
pll_input = detect_pll_input_clock(dma_base);
printk("%s: PLL input clock is %ld kHz\n", name, pll_input / 1000);
/* Sanity check */
if (unlikely(pll_input < 5000000L || pll_input > 70000000L)) {
printk(KERN_ERR "%s: Bad PLL input clock %ld Hz, giving up!\n",
name, pll_input);
goto out;
}
#ifdef DEBUG
DBG("pll_output is %ld Hz\n", pll_output);
/* Show the current clock value of PLL control register
* (maybe already configured by the BIOS)
*/
outb(0x02, sec_dma_base + 0x01);
pll_ctl0 = inb(sec_dma_base + 0x03);
outb(0x03, sec_dma_base + 0x01);
pll_ctl1 = inb(sec_dma_base + 0x03);
DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
#endif
/*
* Calculate the ratio of F, R and NO
* POUT = (F + 2) / (( R + 2) * NO)
*/
ratio = pll_output / (pll_input / 1000);
if (ratio < 8600L) { /* 8.6x */
/* Using NO = 0x01, R = 0x0d */
r = 0x0d;
} else if (ratio < 12900L) { /* 12.9x */
/* Using NO = 0x01, R = 0x08 */
r = 0x08;
} else if (ratio < 16100L) { /* 16.1x */
/* Using NO = 0x01, R = 0x06 */
r = 0x06;
} else if (ratio < 64000L) { /* 64x */
r = 0x00;
} else {
/* Invalid ratio */
printk(KERN_ERR "%s: Bad ratio %ld, giving up!\n", name, ratio);
goto out;
}
f = (ratio * (r + 2)) / 1000 - 2;
DBG("F[%d] R[%d] ratio*1000[%ld]\n", f, r, ratio);
if (unlikely(f < 0 || f > 127)) {
/* Invalid F */
printk(KERN_ERR "%s: F[%d] invalid!\n", name, f);
goto out;
}
pll_ctl0 = (u8) f;
pll_ctl1 = (u8) r;
DBG("Writing pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
outb(0x02, sec_dma_base + 0x01);
outb(pll_ctl0, sec_dma_base + 0x03);
outb(0x03, sec_dma_base + 0x01);
outb(pll_ctl1, sec_dma_base + 0x03);
/* Wait the PLL circuit to be stable */
mdelay(30);
#ifdef DEBUG
/*
* Show the current clock value of PLL control register
*/
outb(0x02, sec_dma_base + 0x01);
pll_ctl0 = inb(sec_dma_base + 0x03);
outb(0x03, sec_dma_base + 0x01);
pll_ctl1 = inb(sec_dma_base + 0x03);
DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
#endif
out:
return dev->irq;
}
static void __devinit init_hwif_pdc202new(ide_hwif_t *hwif)
{
hwif->autodma = 0;
hwif->tuneproc = &pdcnew_tune_drive;
hwif->quirkproc = &pdcnew_quirkproc;
hwif->speedproc = &pdcnew_tune_chipset;
hwif->resetproc = &pdcnew_reset;
hwif->drives[0].autotune = hwif->drives[1].autotune = 1;
hwif->ultra_mask = 0x7f;
hwif->mwdma_mask = 0x07;
hwif->err_stops_fifo = 1;
hwif->ide_dma_check = &pdcnew_config_drive_xfer_rate;
if (!hwif->udma_four)
hwif->udma_four = pdcnew_cable_detect(hwif) ? 0 : 1;
if (!noautodma)
hwif->autodma = 1;
hwif->drives[0].autodma = hwif->drives[1].autodma = hwif->autodma;
#if PDC202_DEBUG_CABLE
printk(KERN_DEBUG "%s: %s-pin cable\n",
hwif->name, hwif->udma_four ? "80" : "40");
#endif /* PDC202_DEBUG_CABLE */
}
static int __devinit init_setup_pdcnew(struct pci_dev *dev, ide_pci_device_t *d)
{
return ide_setup_pci_device(dev, d);
}
static int __devinit init_setup_pdc20270(struct pci_dev *dev,
ide_pci_device_t *d)
{
struct pci_dev *findev = NULL;
int ret;
if ((dev->bus->self &&
dev->bus->self->vendor == PCI_VENDOR_ID_DEC) &&
(dev->bus->self->device == PCI_DEVICE_ID_DEC_21150)) {
if (PCI_SLOT(dev->devfn) & 2)
return -ENODEV;
d->extra = 0;
while ((findev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, findev)) != NULL) {
if ((findev->vendor == dev->vendor) &&
(findev->device == dev->device) &&
(PCI_SLOT(findev->devfn) & 2)) {
if (findev->irq != dev->irq) {
findev->irq = dev->irq;
}
ret = ide_setup_pci_devices(dev, findev, d);
pci_dev_put(findev);
return ret;
}
}
}
return ide_setup_pci_device(dev, d);
}
static int __devinit init_setup_pdc20276(struct pci_dev *dev,
ide_pci_device_t *d)
{
if ((dev->bus->self) &&
(dev->bus->self->vendor == PCI_VENDOR_ID_INTEL) &&
((dev->bus->self->device == PCI_DEVICE_ID_INTEL_I960) ||
(dev->bus->self->device == PCI_DEVICE_ID_INTEL_I960RM))) {
printk(KERN_INFO "ide: Skipping Promise PDC20276 "
"attached to I2O RAID controller.\n");
return -ENODEV;
}
return ide_setup_pci_device(dev, d);
}
static ide_pci_device_t pdcnew_chipsets[] __devinitdata = {
{ /* 0 */
.name = "PDC20268",
.init_setup = init_setup_pdcnew,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.channels = 2,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
},{ /* 1 */
.name = "PDC20269",
.init_setup = init_setup_pdcnew,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.channels = 2,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
},{ /* 2 */
.name = "PDC20270",
.init_setup = init_setup_pdc20270,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.channels = 2,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
},{ /* 3 */
.name = "PDC20271",
.init_setup = init_setup_pdcnew,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.channels = 2,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
},{ /* 4 */
.name = "PDC20275",
.init_setup = init_setup_pdcnew,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.channels = 2,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
},{ /* 5 */
.name = "PDC20276",
.init_setup = init_setup_pdc20276,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.channels = 2,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
},{ /* 6 */
.name = "PDC20277",
.init_setup = init_setup_pdcnew,
.init_chipset = init_chipset_pdcnew,
.init_hwif = init_hwif_pdc202new,
.channels = 2,
.autodma = AUTODMA,
.bootable = OFF_BOARD,
}
};
/**
* pdc202new_init_one - called when a pdc202xx is found
* @dev: the pdc202new device
* @id: the matching pci id
*
* Called when the PCI registration layer (or the IDE initialization)
* finds a device matching our IDE device tables.
*/
static int __devinit pdc202new_init_one(struct pci_dev *dev, const struct pci_device_id *id)
{
ide_pci_device_t *d = &pdcnew_chipsets[id->driver_data];
return d->init_setup(dev, d);
}
static struct pci_device_id pdc202new_pci_tbl[] = {
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20268, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20269, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20270, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20271, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20275, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20276, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5},
{ PCI_VENDOR_ID_PROMISE, PCI_DEVICE_ID_PROMISE_20277, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6},
{ 0, },
};
MODULE_DEVICE_TABLE(pci, pdc202new_pci_tbl);
static struct pci_driver driver = {
.name = "Promise_IDE",
.id_table = pdc202new_pci_tbl,
.probe = pdc202new_init_one,
};
static int __init pdc202new_ide_init(void)
{
return ide_pci_register_driver(&driver);
}
module_init(pdc202new_ide_init);
MODULE_AUTHOR("Andre Hedrick, Frank Tiernan");
MODULE_DESCRIPTION("PCI driver module for Promise PDC20268 and higher");
MODULE_LICENSE("GPL");