blob: 4b3c70eeef1f2cb02e5096337e7e2fbb539bfb56 [file] [log] [blame]
/*
Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 queue specific routines.
*/
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct sk_buff *skb;
struct skb_frame_desc *skbdesc;
unsigned int frame_size;
unsigned int head_size = 0;
unsigned int tail_size = 0;
/*
* The frame size includes descriptor size, because the
* hardware directly receive the frame into the skbuffer.
*/
frame_size = entry->queue->data_size + entry->queue->desc_size;
/*
* The payload should be aligned to a 4-byte boundary,
* this means we need at least 3 bytes for moving the frame
* into the correct offset.
*/
head_size = 4;
/*
* For IV/EIV/ICV assembly we must make sure there is
* at least 8 bytes bytes available in headroom for IV/EIV
* and 8 bytes for ICV data as tailroon.
*/
if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
head_size += 8;
tail_size += 8;
}
/*
* Allocate skbuffer.
*/
skb = dev_alloc_skb(frame_size + head_size + tail_size);
if (!skb)
return NULL;
/*
* Make sure we not have a frame with the requested bytes
* available in the head and tail.
*/
skb_reserve(skb, head_size);
skb_put(skb, frame_size);
/*
* Populate skbdesc.
*/
skbdesc = get_skb_frame_desc(skb);
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->entry = entry;
if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
skb->data,
skb->len,
DMA_FROM_DEVICE);
skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
}
return skb;
}
void rt2x00queue_map_txskb(struct queue_entry *entry)
{
struct device *dev = entry->queue->rt2x00dev->dev;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
skbdesc->skb_dma =
dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
}
EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
void rt2x00queue_unmap_skb(struct queue_entry *entry)
{
struct device *dev = entry->queue->rt2x00dev->dev;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
DMA_FROM_DEVICE);
skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
DMA_TO_DEVICE);
skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
}
}
EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
void rt2x00queue_free_skb(struct queue_entry *entry)
{
if (!entry->skb)
return;
rt2x00queue_unmap_skb(entry);
dev_kfree_skb_any(entry->skb);
entry->skb = NULL;
}
void rt2x00queue_align_frame(struct sk_buff *skb)
{
unsigned int frame_length = skb->len;
unsigned int align = ALIGN_SIZE(skb, 0);
if (!align)
return;
skb_push(skb, align);
memmove(skb->data, skb->data + align, frame_length);
skb_trim(skb, frame_length);
}
void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
{
unsigned int frame_length = skb->len;
unsigned int align = ALIGN_SIZE(skb, header_length);
if (!align)
return;
skb_push(skb, align);
memmove(skb->data, skb->data + align, frame_length);
skb_trim(skb, frame_length);
}
void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
{
unsigned int payload_length = skb->len - header_length;
unsigned int header_align = ALIGN_SIZE(skb, 0);
unsigned int payload_align = ALIGN_SIZE(skb, header_length);
unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
/*
* Adjust the header alignment if the payload needs to be moved more
* than the header.
*/
if (payload_align > header_align)
header_align += 4;
/* There is nothing to do if no alignment is needed */
if (!header_align)
return;
/* Reserve the amount of space needed in front of the frame */
skb_push(skb, header_align);
/*
* Move the header.
*/
memmove(skb->data, skb->data + header_align, header_length);
/* Move the payload, if present and if required */
if (payload_length && payload_align)
memmove(skb->data + header_length + l2pad,
skb->data + header_length + l2pad + payload_align,
payload_length);
/* Trim the skb to the correct size */
skb_trim(skb, header_length + l2pad + payload_length);
}
void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
{
/*
* L2 padding is only present if the skb contains more than just the
* IEEE 802.11 header.
*/
unsigned int l2pad = (skb->len > header_length) ?
L2PAD_SIZE(header_length) : 0;
if (!l2pad)
return;
memmove(skb->data + l2pad, skb->data, header_length);
skb_pull(skb, l2pad);
}
static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
unsigned long irqflags;
if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
return;
__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
if (!test_bit(DRIVER_REQUIRE_SW_SEQNO, &entry->queue->rt2x00dev->flags))
return;
/*
* The hardware is not able to insert a sequence number. Assign a
* software generated one here.
*
* This is wrong because beacons are not getting sequence
* numbers assigned properly.
*
* A secondary problem exists for drivers that cannot toggle
* sequence counting per-frame, since those will override the
* sequence counter given by mac80211.
*/
spin_lock_irqsave(&intf->seqlock, irqflags);
if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
intf->seqno += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
spin_unlock_irqrestore(&intf->seqlock, irqflags);
}
static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
struct txentry_desc *txdesc,
const struct rt2x00_rate *hwrate)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
unsigned int data_length;
unsigned int duration;
unsigned int residual;
/*
* Determine with what IFS priority this frame should be send.
* Set ifs to IFS_SIFS when the this is not the first fragment,
* or this fragment came after RTS/CTS.
*/
if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
txdesc->u.plcp.ifs = IFS_BACKOFF;
else
txdesc->u.plcp.ifs = IFS_SIFS;
/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
data_length = entry->skb->len + 4;
data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
/*
* PLCP setup
* Length calculation depends on OFDM/CCK rate.
*/
txdesc->u.plcp.signal = hwrate->plcp;
txdesc->u.plcp.service = 0x04;
if (hwrate->flags & DEV_RATE_OFDM) {
txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
txdesc->u.plcp.length_low = data_length & 0x3f;
} else {
/*
* Convert length to microseconds.
*/
residual = GET_DURATION_RES(data_length, hwrate->bitrate);
duration = GET_DURATION(data_length, hwrate->bitrate);
if (residual != 0) {
duration++;
/*
* Check if we need to set the Length Extension
*/
if (hwrate->bitrate == 110 && residual <= 30)
txdesc->u.plcp.service |= 0x80;
}
txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
txdesc->u.plcp.length_low = duration & 0xff;
/*
* When preamble is enabled we should set the
* preamble bit for the signal.
*/
if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
txdesc->u.plcp.signal |= 0x08;
}
}
static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
struct ieee80211_rate *rate;
const struct rt2x00_rate *hwrate = NULL;
memset(txdesc, 0, sizeof(*txdesc));
/*
* Header and frame information.
*/
txdesc->length = entry->skb->len;
txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
/*
* Check whether this frame is to be acked.
*/
if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
/*
* Check if this is a RTS/CTS frame
*/
if (ieee80211_is_rts(hdr->frame_control) ||
ieee80211_is_cts(hdr->frame_control)) {
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
if (ieee80211_is_rts(hdr->frame_control))
__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
else
__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
if (tx_info->control.rts_cts_rate_idx >= 0)
rate =
ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
}
/*
* Determine retry information.
*/
txdesc->retry_limit = tx_info->control.rates[0].count - 1;
if (txdesc->retry_limit >= rt2x00dev->long_retry)
__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
/*
* Check if more fragments are pending
*/
if (ieee80211_has_morefrags(hdr->frame_control)) {
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
}
/*
* Check if more frames (!= fragments) are pending
*/
if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
/*
* Beacons and probe responses require the tsf timestamp
* to be inserted into the frame.
*/
if (ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control))
__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
!test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
/*
* Determine rate modulation.
*/
if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
else if (txrate->flags & IEEE80211_TX_RC_MCS)
txdesc->rate_mode = RATE_MODE_HT_MIX;
else {
rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
hwrate = rt2x00_get_rate(rate->hw_value);
if (hwrate->flags & DEV_RATE_OFDM)
txdesc->rate_mode = RATE_MODE_OFDM;
else
txdesc->rate_mode = RATE_MODE_CCK;
}
/*
* Apply TX descriptor handling by components
*/
rt2x00crypto_create_tx_descriptor(entry, txdesc);
rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
if (test_bit(DRIVER_REQUIRE_HT_TX_DESC, &rt2x00dev->flags))
rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
else
rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
}
static int rt2x00queue_write_tx_data(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
/*
* This should not happen, we already checked the entry
* was ours. When the hardware disagrees there has been
* a queue corruption!
*/
if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
rt2x00dev->ops->lib->get_entry_state(entry))) {
ERROR(rt2x00dev,
"Corrupt queue %d, accessing entry which is not ours.\n"
"Please file bug report to %s.\n",
entry->queue->qid, DRV_PROJECT);
return -EINVAL;
}
/*
* Add the requested extra tx headroom in front of the skb.
*/
skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
/*
* Call the driver's write_tx_data function, if it exists.
*/
if (rt2x00dev->ops->lib->write_tx_data)
rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
/*
* Map the skb to DMA.
*/
if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
rt2x00queue_map_txskb(entry);
return 0;
}
static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
struct txentry_desc *txdesc)
{
struct data_queue *queue = entry->queue;
queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
/*
* All processing on the frame has been completed, this means
* it is now ready to be dumped to userspace through debugfs.
*/
rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
}
static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
struct txentry_desc *txdesc)
{
/*
* Check if we need to kick the queue, there are however a few rules
* 1) Don't kick unless this is the last in frame in a burst.
* When the burst flag is set, this frame is always followed
* by another frame which in some way are related to eachother.
* This is true for fragments, RTS or CTS-to-self frames.
* 2) Rule 1 can be broken when the available entries
* in the queue are less then a certain threshold.
*/
if (rt2x00queue_threshold(queue) ||
!test_bit(ENTRY_TXD_BURST, &txdesc->flags))
queue->rt2x00dev->ops->lib->kick_queue(queue);
}
int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
bool local)
{
struct ieee80211_tx_info *tx_info;
struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
struct txentry_desc txdesc;
struct skb_frame_desc *skbdesc;
u8 rate_idx, rate_flags;
if (unlikely(rt2x00queue_full(queue)))
return -ENOBUFS;
if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
&entry->flags))) {
ERROR(queue->rt2x00dev,
"Arrived at non-free entry in the non-full queue %d.\n"
"Please file bug report to %s.\n",
queue->qid, DRV_PROJECT);
return -EINVAL;
}
/*
* Copy all TX descriptor information into txdesc,
* after that we are free to use the skb->cb array
* for our information.
*/
entry->skb = skb;
rt2x00queue_create_tx_descriptor(entry, &txdesc);
/*
* All information is retrieved from the skb->cb array,
* now we should claim ownership of the driver part of that
* array, preserving the bitrate index and flags.
*/
tx_info = IEEE80211_SKB_CB(skb);
rate_idx = tx_info->control.rates[0].idx;
rate_flags = tx_info->control.rates[0].flags;
skbdesc = get_skb_frame_desc(skb);
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->entry = entry;
skbdesc->tx_rate_idx = rate_idx;
skbdesc->tx_rate_flags = rate_flags;
if (local)
skbdesc->flags |= SKBDESC_NOT_MAC80211;
/*
* When hardware encryption is supported, and this frame
* is to be encrypted, we should strip the IV/EIV data from
* the frame so we can provide it to the driver separately.
*/
if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
!test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
rt2x00crypto_tx_copy_iv(skb, &txdesc);
else
rt2x00crypto_tx_remove_iv(skb, &txdesc);
}
/*
* When DMA allocation is required we should guarentee to the
* driver that the DMA is aligned to a 4-byte boundary.
* However some drivers require L2 padding to pad the payload
* rather then the header. This could be a requirement for
* PCI and USB devices, while header alignment only is valid
* for PCI devices.
*/
if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
rt2x00queue_align_frame(entry->skb);
/*
* It could be possible that the queue was corrupted and this
* call failed. Since we always return NETDEV_TX_OK to mac80211,
* this frame will simply be dropped.
*/
if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
entry->skb = NULL;
return -EIO;
}
set_bit(ENTRY_DATA_PENDING, &entry->flags);
rt2x00queue_index_inc(queue, Q_INDEX);
rt2x00queue_write_tx_descriptor(entry, &txdesc);
rt2x00queue_kick_tx_queue(queue, &txdesc);
return 0;
}
int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
struct ieee80211_vif *vif)
{
struct rt2x00_intf *intf = vif_to_intf(vif);
if (unlikely(!intf->beacon))
return -ENOBUFS;
mutex_lock(&intf->beacon_skb_mutex);
/*
* Clean up the beacon skb.
*/
rt2x00queue_free_skb(intf->beacon);
/*
* Clear beacon (single bssid devices don't need to clear the beacon
* since the beacon queue will get stopped anyway).
*/
if (rt2x00dev->ops->lib->clear_beacon)
rt2x00dev->ops->lib->clear_beacon(intf->beacon);
mutex_unlock(&intf->beacon_skb_mutex);
return 0;
}
int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
struct ieee80211_vif *vif)
{
struct rt2x00_intf *intf = vif_to_intf(vif);
struct skb_frame_desc *skbdesc;
struct txentry_desc txdesc;
if (unlikely(!intf->beacon))
return -ENOBUFS;
/*
* Clean up the beacon skb.
*/
rt2x00queue_free_skb(intf->beacon);
intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
if (!intf->beacon->skb)
return -ENOMEM;
/*
* Copy all TX descriptor information into txdesc,
* after that we are free to use the skb->cb array
* for our information.
*/
rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
/*
* Fill in skb descriptor
*/
skbdesc = get_skb_frame_desc(intf->beacon->skb);
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->entry = intf->beacon;
/*
* Send beacon to hardware.
*/
rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
return 0;
}
int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
struct ieee80211_vif *vif)
{
struct rt2x00_intf *intf = vif_to_intf(vif);
int ret;
mutex_lock(&intf->beacon_skb_mutex);
ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
mutex_unlock(&intf->beacon_skb_mutex);
return ret;
}
void rt2x00queue_for_each_entry(struct data_queue *queue,
enum queue_index start,
enum queue_index end,
void (*fn)(struct queue_entry *entry))
{
unsigned long irqflags;
unsigned int index_start;
unsigned int index_end;
unsigned int i;
if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
ERROR(queue->rt2x00dev,
"Entry requested from invalid index range (%d - %d)\n",
start, end);
return;
}
/*
* Only protect the range we are going to loop over,
* if during our loop a extra entry is set to pending
* it should not be kicked during this run, since it
* is part of another TX operation.
*/
spin_lock_irqsave(&queue->index_lock, irqflags);
index_start = queue->index[start];
index_end = queue->index[end];
spin_unlock_irqrestore(&queue->index_lock, irqflags);
/*
* Start from the TX done pointer, this guarentees that we will
* send out all frames in the correct order.
*/
if (index_start < index_end) {
for (i = index_start; i < index_end; i++)
fn(&queue->entries[i]);
} else {
for (i = index_start; i < queue->limit; i++)
fn(&queue->entries[i]);
for (i = 0; i < index_end; i++)
fn(&queue->entries[i]);
}
}
EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
enum queue_index index)
{
struct queue_entry *entry;
unsigned long irqflags;
if (unlikely(index >= Q_INDEX_MAX)) {
ERROR(queue->rt2x00dev,
"Entry requested from invalid index type (%d)\n", index);
return NULL;
}
spin_lock_irqsave(&queue->index_lock, irqflags);
entry = &queue->entries[queue->index[index]];
spin_unlock_irqrestore(&queue->index_lock, irqflags);
return entry;
}
EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
{
unsigned long irqflags;
if (unlikely(index >= Q_INDEX_MAX)) {
ERROR(queue->rt2x00dev,
"Index change on invalid index type (%d)\n", index);
return;
}
spin_lock_irqsave(&queue->index_lock, irqflags);
queue->index[index]++;
if (queue->index[index] >= queue->limit)
queue->index[index] = 0;
queue->last_action[index] = jiffies;
if (index == Q_INDEX) {
queue->length++;
} else if (index == Q_INDEX_DONE) {
queue->length--;
queue->count++;
}
spin_unlock_irqrestore(&queue->index_lock, irqflags);
}
void rt2x00queue_pause_queue(struct data_queue *queue)
{
if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
!test_bit(QUEUE_STARTED, &queue->flags) ||
test_and_set_bit(QUEUE_PAUSED, &queue->flags))
return;
switch (queue->qid) {
case QID_AC_VO:
case QID_AC_VI:
case QID_AC_BE:
case QID_AC_BK:
/*
* For TX queues, we have to disable the queue
* inside mac80211.
*/
ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
break;
default:
break;
}
}
EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
void rt2x00queue_unpause_queue(struct data_queue *queue)
{
if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
!test_bit(QUEUE_STARTED, &queue->flags) ||
!test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
return;
switch (queue->qid) {
case QID_AC_VO:
case QID_AC_VI:
case QID_AC_BE:
case QID_AC_BK:
/*
* For TX queues, we have to enable the queue
* inside mac80211.
*/
ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
break;
case QID_RX:
/*
* For RX we need to kick the queue now in order to
* receive frames.
*/
queue->rt2x00dev->ops->lib->kick_queue(queue);
default:
break;
}
}
EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
void rt2x00queue_start_queue(struct data_queue *queue)
{
mutex_lock(&queue->status_lock);
if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
mutex_unlock(&queue->status_lock);
return;
}
set_bit(QUEUE_PAUSED, &queue->flags);
queue->rt2x00dev->ops->lib->start_queue(queue);
rt2x00queue_unpause_queue(queue);
mutex_unlock(&queue->status_lock);
}
EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
void rt2x00queue_stop_queue(struct data_queue *queue)
{
mutex_lock(&queue->status_lock);
if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
mutex_unlock(&queue->status_lock);
return;
}
rt2x00queue_pause_queue(queue);
queue->rt2x00dev->ops->lib->stop_queue(queue);
mutex_unlock(&queue->status_lock);
}
EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
{
unsigned int i;
bool started;
bool tx_queue =
(queue->qid == QID_AC_VO) ||
(queue->qid == QID_AC_VI) ||
(queue->qid == QID_AC_BE) ||
(queue->qid == QID_AC_BK);
mutex_lock(&queue->status_lock);
/*
* If the queue has been started, we must stop it temporarily
* to prevent any new frames to be queued on the device. If
* we are not dropping the pending frames, the queue must
* only be stopped in the software and not the hardware,
* otherwise the queue will never become empty on its own.
*/
started = test_bit(QUEUE_STARTED, &queue->flags);
if (started) {
/*
* Pause the queue
*/
rt2x00queue_pause_queue(queue);
/*
* If we are not supposed to drop any pending
* frames, this means we must force a start (=kick)
* to the queue to make sure the hardware will
* start transmitting.
*/
if (!drop && tx_queue)
queue->rt2x00dev->ops->lib->kick_queue(queue);
}
/*
* Check if driver supports flushing, we can only guarentee
* full support for flushing if the driver is able
* to cancel all pending frames (drop = true).
*/
if (drop && queue->rt2x00dev->ops->lib->flush_queue)
queue->rt2x00dev->ops->lib->flush_queue(queue);
/*
* When we don't want to drop any frames, or when
* the driver doesn't fully flush the queue correcly,
* we must wait for the queue to become empty.
*/
for (i = 0; !rt2x00queue_empty(queue) && i < 100; i++)
msleep(10);
/*
* The queue flush has failed...
*/
if (unlikely(!rt2x00queue_empty(queue)))
WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
/*
* Restore the queue to the previous status
*/
if (started)
rt2x00queue_unpause_queue(queue);
mutex_unlock(&queue->status_lock);
}
EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
/*
* rt2x00queue_start_queue will call ieee80211_wake_queue
* for each queue after is has been properly initialized.
*/
tx_queue_for_each(rt2x00dev, queue)
rt2x00queue_start_queue(queue);
rt2x00queue_start_queue(rt2x00dev->rx);
}
EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
/*
* rt2x00queue_stop_queue will call ieee80211_stop_queue
* as well, but we are completely shutting doing everything
* now, so it is much safer to stop all TX queues at once,
* and use rt2x00queue_stop_queue for cleaning up.
*/
ieee80211_stop_queues(rt2x00dev->hw);
tx_queue_for_each(rt2x00dev, queue)
rt2x00queue_stop_queue(queue);
rt2x00queue_stop_queue(rt2x00dev->rx);
}
EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
{
struct data_queue *queue;
tx_queue_for_each(rt2x00dev, queue)
rt2x00queue_flush_queue(queue, drop);
rt2x00queue_flush_queue(rt2x00dev->rx, drop);
}
EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
static void rt2x00queue_reset(struct data_queue *queue)
{
unsigned long irqflags;
unsigned int i;
spin_lock_irqsave(&queue->index_lock, irqflags);
queue->count = 0;
queue->length = 0;
for (i = 0; i < Q_INDEX_MAX; i++) {
queue->index[i] = 0;
queue->last_action[i] = jiffies;
}
spin_unlock_irqrestore(&queue->index_lock, irqflags);
}
void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
unsigned int i;
queue_for_each(rt2x00dev, queue) {
rt2x00queue_reset(queue);
for (i = 0; i < queue->limit; i++)
rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
}
}
static int rt2x00queue_alloc_entries(struct data_queue *queue,
const struct data_queue_desc *qdesc)
{
struct queue_entry *entries;
unsigned int entry_size;
unsigned int i;
rt2x00queue_reset(queue);
queue->limit = qdesc->entry_num;
queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
queue->data_size = qdesc->data_size;
queue->desc_size = qdesc->desc_size;
/*
* Allocate all queue entries.
*/
entry_size = sizeof(*entries) + qdesc->priv_size;
entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
if (!entries)
return -ENOMEM;
#define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
(((char *)(__base)) + ((__limit) * (__esize)) + \
((__index) * (__psize)))
for (i = 0; i < queue->limit; i++) {
entries[i].flags = 0;
entries[i].queue = queue;
entries[i].skb = NULL;
entries[i].entry_idx = i;
entries[i].priv_data =
QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
sizeof(*entries), qdesc->priv_size);
}
#undef QUEUE_ENTRY_PRIV_OFFSET
queue->entries = entries;
return 0;
}
static void rt2x00queue_free_skbs(struct data_queue *queue)
{
unsigned int i;
if (!queue->entries)
return;
for (i = 0; i < queue->limit; i++) {
rt2x00queue_free_skb(&queue->entries[i]);
}
}
static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
{
unsigned int i;
struct sk_buff *skb;
for (i = 0; i < queue->limit; i++) {
skb = rt2x00queue_alloc_rxskb(&queue->entries[i]);
if (!skb)
return -ENOMEM;
queue->entries[i].skb = skb;
}
return 0;
}
int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
int status;
status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
if (status)
goto exit;
tx_queue_for_each(rt2x00dev, queue) {
status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
if (status)
goto exit;
}
status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
if (status)
goto exit;
if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
status = rt2x00queue_alloc_entries(rt2x00dev->atim,
rt2x00dev->ops->atim);
if (status)
goto exit;
}
status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
if (status)
goto exit;
return 0;
exit:
ERROR(rt2x00dev, "Queue entries allocation failed.\n");
rt2x00queue_uninitialize(rt2x00dev);
return status;
}
void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
rt2x00queue_free_skbs(rt2x00dev->rx);
queue_for_each(rt2x00dev, queue) {
kfree(queue->entries);
queue->entries = NULL;
}
}
static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
struct data_queue *queue, enum data_queue_qid qid)
{
mutex_init(&queue->status_lock);
spin_lock_init(&queue->index_lock);
queue->rt2x00dev = rt2x00dev;
queue->qid = qid;
queue->txop = 0;
queue->aifs = 2;
queue->cw_min = 5;
queue->cw_max = 10;
}
int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
{
struct data_queue *queue;
enum data_queue_qid qid;
unsigned int req_atim =
!!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
/*
* We need the following queues:
* RX: 1
* TX: ops->tx_queues
* Beacon: 1
* Atim: 1 (if required)
*/
rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
if (!queue) {
ERROR(rt2x00dev, "Queue allocation failed.\n");
return -ENOMEM;
}
/*
* Initialize pointers
*/
rt2x00dev->rx = queue;
rt2x00dev->tx = &queue[1];
rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
/*
* Initialize queue parameters.
* RX: qid = QID_RX
* TX: qid = QID_AC_VO + index
* TX: cw_min: 2^5 = 32.
* TX: cw_max: 2^10 = 1024.
* BCN: qid = QID_BEACON
* ATIM: qid = QID_ATIM
*/
rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
qid = QID_AC_VO;
tx_queue_for_each(rt2x00dev, queue)
rt2x00queue_init(rt2x00dev, queue, qid++);
rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
if (req_atim)
rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
return 0;
}
void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
{
kfree(rt2x00dev->rx);
rt2x00dev->rx = NULL;
rt2x00dev->tx = NULL;
rt2x00dev->bcn = NULL;
}