blob: 82dc8d20e28acfdd2c2c4c2e9dca8ea0cca88d53 [file] [log] [blame]
/*
* Copyright 2008 Jerome Glisse.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Jerome Glisse <glisse@freedesktop.org>
*/
#include <linux/pagemap.h>
#include <drm/drmP.h>
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type,
u32 ip_instance, u32 ring,
struct amdgpu_ring **out_ring)
{
/* Right now all IPs have only one instance - multiple rings. */
if (ip_instance != 0) {
DRM_ERROR("invalid ip instance: %d\n", ip_instance);
return -EINVAL;
}
switch (ip_type) {
default:
DRM_ERROR("unknown ip type: %d\n", ip_type);
return -EINVAL;
case AMDGPU_HW_IP_GFX:
if (ring < adev->gfx.num_gfx_rings) {
*out_ring = &adev->gfx.gfx_ring[ring];
} else {
DRM_ERROR("only %d gfx rings are supported now\n",
adev->gfx.num_gfx_rings);
return -EINVAL;
}
break;
case AMDGPU_HW_IP_COMPUTE:
if (ring < adev->gfx.num_compute_rings) {
*out_ring = &adev->gfx.compute_ring[ring];
} else {
DRM_ERROR("only %d compute rings are supported now\n",
adev->gfx.num_compute_rings);
return -EINVAL;
}
break;
case AMDGPU_HW_IP_DMA:
if (ring < adev->sdma.num_instances) {
*out_ring = &adev->sdma.instance[ring].ring;
} else {
DRM_ERROR("only %d SDMA rings are supported\n",
adev->sdma.num_instances);
return -EINVAL;
}
break;
case AMDGPU_HW_IP_UVD:
*out_ring = &adev->uvd.ring;
break;
case AMDGPU_HW_IP_VCE:
if (ring < 2){
*out_ring = &adev->vce.ring[ring];
} else {
DRM_ERROR("only two VCE rings are supported\n");
return -EINVAL;
}
break;
}
return 0;
}
static int amdgpu_cs_user_fence_chunk(struct amdgpu_cs_parser *p,
struct drm_amdgpu_cs_chunk_fence *data,
uint32_t *offset)
{
struct drm_gem_object *gobj;
unsigned long size;
gobj = drm_gem_object_lookup(p->filp, data->handle);
if (gobj == NULL)
return -EINVAL;
p->uf_entry.robj = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
p->uf_entry.priority = 0;
p->uf_entry.tv.bo = &p->uf_entry.robj->tbo;
p->uf_entry.tv.shared = true;
p->uf_entry.user_pages = NULL;
size = amdgpu_bo_size(p->uf_entry.robj);
if (size != PAGE_SIZE || (data->offset + 8) > size)
return -EINVAL;
*offset = data->offset;
drm_gem_object_unreference_unlocked(gobj);
if (amdgpu_ttm_tt_get_usermm(p->uf_entry.robj->tbo.ttm)) {
amdgpu_bo_unref(&p->uf_entry.robj);
return -EINVAL;
}
return 0;
}
int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
union drm_amdgpu_cs *cs = data;
uint64_t *chunk_array_user;
uint64_t *chunk_array;
unsigned size, num_ibs = 0;
uint32_t uf_offset = 0;
int i;
int ret;
if (cs->in.num_chunks == 0)
return 0;
chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
if (!chunk_array)
return -ENOMEM;
p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
if (!p->ctx) {
ret = -EINVAL;
goto free_chunk;
}
/* get chunks */
chunk_array_user = (uint64_t __user *)(unsigned long)(cs->in.chunks);
if (copy_from_user(chunk_array, chunk_array_user,
sizeof(uint64_t)*cs->in.num_chunks)) {
ret = -EFAULT;
goto put_ctx;
}
p->nchunks = cs->in.num_chunks;
p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
GFP_KERNEL);
if (!p->chunks) {
ret = -ENOMEM;
goto put_ctx;
}
for (i = 0; i < p->nchunks; i++) {
struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
struct drm_amdgpu_cs_chunk user_chunk;
uint32_t __user *cdata;
chunk_ptr = (void __user *)(unsigned long)chunk_array[i];
if (copy_from_user(&user_chunk, chunk_ptr,
sizeof(struct drm_amdgpu_cs_chunk))) {
ret = -EFAULT;
i--;
goto free_partial_kdata;
}
p->chunks[i].chunk_id = user_chunk.chunk_id;
p->chunks[i].length_dw = user_chunk.length_dw;
size = p->chunks[i].length_dw;
cdata = (void __user *)(unsigned long)user_chunk.chunk_data;
p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t));
if (p->chunks[i].kdata == NULL) {
ret = -ENOMEM;
i--;
goto free_partial_kdata;
}
size *= sizeof(uint32_t);
if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
ret = -EFAULT;
goto free_partial_kdata;
}
switch (p->chunks[i].chunk_id) {
case AMDGPU_CHUNK_ID_IB:
++num_ibs;
break;
case AMDGPU_CHUNK_ID_FENCE:
size = sizeof(struct drm_amdgpu_cs_chunk_fence);
if (p->chunks[i].length_dw * sizeof(uint32_t) < size) {
ret = -EINVAL;
goto free_partial_kdata;
}
ret = amdgpu_cs_user_fence_chunk(p, p->chunks[i].kdata,
&uf_offset);
if (ret)
goto free_partial_kdata;
break;
case AMDGPU_CHUNK_ID_DEPENDENCIES:
break;
default:
ret = -EINVAL;
goto free_partial_kdata;
}
}
ret = amdgpu_job_alloc(p->adev, num_ibs, &p->job, vm);
if (ret)
goto free_all_kdata;
if (p->uf_entry.robj)
p->job->uf_addr = uf_offset;
kfree(chunk_array);
return 0;
free_all_kdata:
i = p->nchunks - 1;
free_partial_kdata:
for (; i >= 0; i--)
drm_free_large(p->chunks[i].kdata);
kfree(p->chunks);
put_ctx:
amdgpu_ctx_put(p->ctx);
free_chunk:
kfree(chunk_array);
return ret;
}
/* Convert microseconds to bytes. */
static u64 us_to_bytes(struct amdgpu_device *adev, s64 us)
{
if (us <= 0 || !adev->mm_stats.log2_max_MBps)
return 0;
/* Since accum_us is incremented by a million per second, just
* multiply it by the number of MB/s to get the number of bytes.
*/
return us << adev->mm_stats.log2_max_MBps;
}
static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes)
{
if (!adev->mm_stats.log2_max_MBps)
return 0;
return bytes >> adev->mm_stats.log2_max_MBps;
}
/* Returns how many bytes TTM can move right now. If no bytes can be moved,
* it returns 0. If it returns non-zero, it's OK to move at least one buffer,
* which means it can go over the threshold once. If that happens, the driver
* will be in debt and no other buffer migrations can be done until that debt
* is repaid.
*
* This approach allows moving a buffer of any size (it's important to allow
* that).
*
* The currency is simply time in microseconds and it increases as the clock
* ticks. The accumulated microseconds (us) are converted to bytes and
* returned.
*/
static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev)
{
s64 time_us, increment_us;
u64 max_bytes;
u64 free_vram, total_vram, used_vram;
/* Allow a maximum of 200 accumulated ms. This is basically per-IB
* throttling.
*
* It means that in order to get full max MBps, at least 5 IBs per
* second must be submitted and not more than 200ms apart from each
* other.
*/
const s64 us_upper_bound = 200000;
if (!adev->mm_stats.log2_max_MBps)
return 0;
total_vram = adev->mc.real_vram_size - adev->vram_pin_size;
used_vram = atomic64_read(&adev->vram_usage);
free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram;
spin_lock(&adev->mm_stats.lock);
/* Increase the amount of accumulated us. */
time_us = ktime_to_us(ktime_get());
increment_us = time_us - adev->mm_stats.last_update_us;
adev->mm_stats.last_update_us = time_us;
adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us,
us_upper_bound);
/* This prevents the short period of low performance when the VRAM
* usage is low and the driver is in debt or doesn't have enough
* accumulated us to fill VRAM quickly.
*
* The situation can occur in these cases:
* - a lot of VRAM is freed by userspace
* - the presence of a big buffer causes a lot of evictions
* (solution: split buffers into smaller ones)
*
* If 128 MB or 1/8th of VRAM is free, start filling it now by setting
* accum_us to a positive number.
*/
if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) {
s64 min_us;
/* Be more aggresive on dGPUs. Try to fill a portion of free
* VRAM now.
*/
if (!(adev->flags & AMD_IS_APU))
min_us = bytes_to_us(adev, free_vram / 4);
else
min_us = 0; /* Reset accum_us on APUs. */
adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us);
}
/* This returns 0 if the driver is in debt to disallow (optional)
* buffer moves.
*/
max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us);
spin_unlock(&adev->mm_stats.lock);
return max_bytes;
}
/* Report how many bytes have really been moved for the last command
* submission. This can result in a debt that can stop buffer migrations
* temporarily.
*/
static void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev,
u64 num_bytes)
{
spin_lock(&adev->mm_stats.lock);
adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes);
spin_unlock(&adev->mm_stats.lock);
}
static int amdgpu_cs_bo_validate(struct amdgpu_cs_parser *p,
struct amdgpu_bo *bo)
{
u64 initial_bytes_moved;
uint32_t domain;
int r;
if (bo->pin_count)
return 0;
/* Don't move this buffer if we have depleted our allowance
* to move it. Don't move anything if the threshold is zero.
*/
if (p->bytes_moved < p->bytes_moved_threshold)
domain = bo->prefered_domains;
else
domain = bo->allowed_domains;
retry:
amdgpu_ttm_placement_from_domain(bo, domain);
initial_bytes_moved = atomic64_read(&bo->adev->num_bytes_moved);
r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
p->bytes_moved += atomic64_read(&bo->adev->num_bytes_moved) -
initial_bytes_moved;
if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) {
domain = bo->allowed_domains;
goto retry;
}
return r;
}
/* Last resort, try to evict something from the current working set */
static bool amdgpu_cs_try_evict(struct amdgpu_cs_parser *p,
struct amdgpu_bo_list_entry *lobj)
{
uint32_t domain = lobj->robj->allowed_domains;
int r;
if (!p->evictable)
return false;
for (;&p->evictable->tv.head != &p->validated;
p->evictable = list_prev_entry(p->evictable, tv.head)) {
struct amdgpu_bo_list_entry *candidate = p->evictable;
struct amdgpu_bo *bo = candidate->robj;
u64 initial_bytes_moved;
uint32_t other;
/* If we reached our current BO we can forget it */
if (candidate == lobj)
break;
other = amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
/* Check if this BO is in one of the domains we need space for */
if (!(other & domain))
continue;
/* Check if we can move this BO somewhere else */
other = bo->allowed_domains & ~domain;
if (!other)
continue;
/* Good we can try to move this BO somewhere else */
amdgpu_ttm_placement_from_domain(bo, other);
initial_bytes_moved = atomic64_read(&bo->adev->num_bytes_moved);
r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
p->bytes_moved += atomic64_read(&bo->adev->num_bytes_moved) -
initial_bytes_moved;
if (unlikely(r))
break;
p->evictable = list_prev_entry(p->evictable, tv.head);
list_move(&candidate->tv.head, &p->validated);
return true;
}
return false;
}
static int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p,
struct list_head *validated)
{
struct amdgpu_bo_list_entry *lobj;
int r;
list_for_each_entry(lobj, validated, tv.head) {
struct amdgpu_bo *bo = lobj->robj;
bool binding_userptr = false;
struct mm_struct *usermm;
usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm);
if (usermm && usermm != current->mm)
return -EPERM;
/* Check if we have user pages and nobody bound the BO already */
if (lobj->user_pages && bo->tbo.ttm->state != tt_bound) {
size_t size = sizeof(struct page *);
size *= bo->tbo.ttm->num_pages;
memcpy(bo->tbo.ttm->pages, lobj->user_pages, size);
binding_userptr = true;
}
if (p->evictable == lobj)
p->evictable = NULL;
do {
r = amdgpu_cs_bo_validate(p, bo);
} while (r == -ENOMEM && amdgpu_cs_try_evict(p, lobj));
if (r)
return r;
if (bo->shadow) {
r = amdgpu_cs_bo_validate(p, bo);
if (r)
return r;
}
if (binding_userptr) {
drm_free_large(lobj->user_pages);
lobj->user_pages = NULL;
}
}
return 0;
}
static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p,
union drm_amdgpu_cs *cs)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_bo_list_entry *e;
struct list_head duplicates;
bool need_mmap_lock = false;
unsigned i, tries = 10;
int r;
INIT_LIST_HEAD(&p->validated);
p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle);
if (p->bo_list) {
need_mmap_lock = p->bo_list->first_userptr !=
p->bo_list->num_entries;
amdgpu_bo_list_get_list(p->bo_list, &p->validated);
}
INIT_LIST_HEAD(&duplicates);
amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd);
if (p->uf_entry.robj)
list_add(&p->uf_entry.tv.head, &p->validated);
if (need_mmap_lock)
down_read(&current->mm->mmap_sem);
while (1) {
struct list_head need_pages;
unsigned i;
r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true,
&duplicates);
if (unlikely(r != 0)) {
if (r != -ERESTARTSYS)
DRM_ERROR("ttm_eu_reserve_buffers failed.\n");
goto error_free_pages;
}
/* Without a BO list we don't have userptr BOs */
if (!p->bo_list)
break;
INIT_LIST_HEAD(&need_pages);
for (i = p->bo_list->first_userptr;
i < p->bo_list->num_entries; ++i) {
e = &p->bo_list->array[i];
if (amdgpu_ttm_tt_userptr_invalidated(e->robj->tbo.ttm,
&e->user_invalidated) && e->user_pages) {
/* We acquired a page array, but somebody
* invalidated it. Free it an try again
*/
release_pages(e->user_pages,
e->robj->tbo.ttm->num_pages,
false);
drm_free_large(e->user_pages);
e->user_pages = NULL;
}
if (e->robj->tbo.ttm->state != tt_bound &&
!e->user_pages) {
list_del(&e->tv.head);
list_add(&e->tv.head, &need_pages);
amdgpu_bo_unreserve(e->robj);
}
}
if (list_empty(&need_pages))
break;
/* Unreserve everything again. */
ttm_eu_backoff_reservation(&p->ticket, &p->validated);
/* We tried too many times, just abort */
if (!--tries) {
r = -EDEADLK;
DRM_ERROR("deadlock in %s\n", __func__);
goto error_free_pages;
}
/* Fill the page arrays for all useptrs. */
list_for_each_entry(e, &need_pages, tv.head) {
struct ttm_tt *ttm = e->robj->tbo.ttm;
e->user_pages = drm_calloc_large(ttm->num_pages,
sizeof(struct page*));
if (!e->user_pages) {
r = -ENOMEM;
DRM_ERROR("calloc failure in %s\n", __func__);
goto error_free_pages;
}
r = amdgpu_ttm_tt_get_user_pages(ttm, e->user_pages);
if (r) {
DRM_ERROR("amdgpu_ttm_tt_get_user_pages failed.\n");
drm_free_large(e->user_pages);
e->user_pages = NULL;
goto error_free_pages;
}
}
/* And try again. */
list_splice(&need_pages, &p->validated);
}
amdgpu_vm_get_pt_bos(p->adev, &fpriv->vm, &duplicates);
p->bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(p->adev);
p->bytes_moved = 0;
p->evictable = list_last_entry(&p->validated,
struct amdgpu_bo_list_entry,
tv.head);
r = amdgpu_cs_list_validate(p, &duplicates);
if (r) {
DRM_ERROR("amdgpu_cs_list_validate(duplicates) failed.\n");
goto error_validate;
}
r = amdgpu_cs_list_validate(p, &p->validated);
if (r) {
DRM_ERROR("amdgpu_cs_list_validate(validated) failed.\n");
goto error_validate;
}
amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved);
fpriv->vm.last_eviction_counter =
atomic64_read(&p->adev->num_evictions);
if (p->bo_list) {
struct amdgpu_bo *gds = p->bo_list->gds_obj;
struct amdgpu_bo *gws = p->bo_list->gws_obj;
struct amdgpu_bo *oa = p->bo_list->oa_obj;
struct amdgpu_vm *vm = &fpriv->vm;
unsigned i;
for (i = 0; i < p->bo_list->num_entries; i++) {
struct amdgpu_bo *bo = p->bo_list->array[i].robj;
p->bo_list->array[i].bo_va = amdgpu_vm_bo_find(vm, bo);
}
if (gds) {
p->job->gds_base = amdgpu_bo_gpu_offset(gds);
p->job->gds_size = amdgpu_bo_size(gds);
}
if (gws) {
p->job->gws_base = amdgpu_bo_gpu_offset(gws);
p->job->gws_size = amdgpu_bo_size(gws);
}
if (oa) {
p->job->oa_base = amdgpu_bo_gpu_offset(oa);
p->job->oa_size = amdgpu_bo_size(oa);
}
}
if (!r && p->uf_entry.robj) {
struct amdgpu_bo *uf = p->uf_entry.robj;
r = amdgpu_ttm_bind(&uf->tbo, &uf->tbo.mem);
p->job->uf_addr += amdgpu_bo_gpu_offset(uf);
}
error_validate:
if (r) {
amdgpu_vm_move_pt_bos_in_lru(p->adev, &fpriv->vm);
ttm_eu_backoff_reservation(&p->ticket, &p->validated);
}
error_free_pages:
if (need_mmap_lock)
up_read(&current->mm->mmap_sem);
if (p->bo_list) {
for (i = p->bo_list->first_userptr;
i < p->bo_list->num_entries; ++i) {
e = &p->bo_list->array[i];
if (!e->user_pages)
continue;
release_pages(e->user_pages,
e->robj->tbo.ttm->num_pages,
false);
drm_free_large(e->user_pages);
}
}
return r;
}
static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
{
struct amdgpu_bo_list_entry *e;
int r;
list_for_each_entry(e, &p->validated, tv.head) {
struct reservation_object *resv = e->robj->tbo.resv;
r = amdgpu_sync_resv(p->adev, &p->job->sync, resv, p->filp);
if (r)
return r;
}
return 0;
}
/**
* cs_parser_fini() - clean parser states
* @parser: parser structure holding parsing context.
* @error: error number
*
* If error is set than unvalidate buffer, otherwise just free memory
* used by parsing context.
**/
static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff)
{
struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
unsigned i;
if (!error) {
amdgpu_vm_move_pt_bos_in_lru(parser->adev, &fpriv->vm);
ttm_eu_fence_buffer_objects(&parser->ticket,
&parser->validated,
parser->fence);
} else if (backoff) {
ttm_eu_backoff_reservation(&parser->ticket,
&parser->validated);
}
fence_put(parser->fence);
if (parser->ctx)
amdgpu_ctx_put(parser->ctx);
if (parser->bo_list)
amdgpu_bo_list_put(parser->bo_list);
for (i = 0; i < parser->nchunks; i++)
drm_free_large(parser->chunks[i].kdata);
kfree(parser->chunks);
if (parser->job)
amdgpu_job_free(parser->job);
amdgpu_bo_unref(&parser->uf_entry.robj);
}
static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p,
struct amdgpu_vm *vm)
{
struct amdgpu_device *adev = p->adev;
struct amdgpu_bo_va *bo_va;
struct amdgpu_bo *bo;
int i, r;
r = amdgpu_vm_update_page_directory(adev, vm);
if (r)
return r;
r = amdgpu_sync_fence(adev, &p->job->sync, vm->page_directory_fence);
if (r)
return r;
r = amdgpu_vm_clear_freed(adev, vm);
if (r)
return r;
if (p->bo_list) {
for (i = 0; i < p->bo_list->num_entries; i++) {
struct fence *f;
/* ignore duplicates */
bo = p->bo_list->array[i].robj;
if (!bo)
continue;
bo_va = p->bo_list->array[i].bo_va;
if (bo_va == NULL)
continue;
r = amdgpu_vm_bo_update(adev, bo_va, false);
if (r)
return r;
f = bo_va->last_pt_update;
r = amdgpu_sync_fence(adev, &p->job->sync, f);
if (r)
return r;
}
}
r = amdgpu_vm_clear_invalids(adev, vm, &p->job->sync);
if (amdgpu_vm_debug && p->bo_list) {
/* Invalidate all BOs to test for userspace bugs */
for (i = 0; i < p->bo_list->num_entries; i++) {
/* ignore duplicates */
bo = p->bo_list->array[i].robj;
if (!bo)
continue;
amdgpu_vm_bo_invalidate(adev, bo);
}
}
return r;
}
static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev,
struct amdgpu_cs_parser *p)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
struct amdgpu_ring *ring = p->job->ring;
int i, r;
/* Only for UVD/VCE VM emulation */
if (ring->funcs->parse_cs) {
p->job->vm = NULL;
for (i = 0; i < p->job->num_ibs; i++) {
r = amdgpu_ring_parse_cs(ring, p, i);
if (r)
return r;
}
} else {
p->job->vm_pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
r = amdgpu_bo_vm_update_pte(p, vm);
if (r)
return r;
}
return amdgpu_cs_sync_rings(p);
}
static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r)
{
if (r == -EDEADLK) {
r = amdgpu_gpu_reset(adev);
if (!r)
r = -EAGAIN;
}
return r;
}
static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
struct amdgpu_cs_parser *parser)
{
struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
struct amdgpu_vm *vm = &fpriv->vm;
int i, j;
int r;
for (i = 0, j = 0; i < parser->nchunks && j < parser->job->num_ibs; i++) {
struct amdgpu_cs_chunk *chunk;
struct amdgpu_ib *ib;
struct drm_amdgpu_cs_chunk_ib *chunk_ib;
struct amdgpu_ring *ring;
chunk = &parser->chunks[i];
ib = &parser->job->ibs[j];
chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
continue;
r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type,
chunk_ib->ip_instance, chunk_ib->ring,
&ring);
if (r)
return r;
if (ib->flags & AMDGPU_IB_FLAG_PREAMBLE) {
parser->job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT;
if (!parser->ctx->preamble_presented) {
parser->job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST;
parser->ctx->preamble_presented = true;
}
}
if (parser->job->ring && parser->job->ring != ring)
return -EINVAL;
parser->job->ring = ring;
if (ring->funcs->parse_cs) {
struct amdgpu_bo_va_mapping *m;
struct amdgpu_bo *aobj = NULL;
uint64_t offset;
uint8_t *kptr;
m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start,
&aobj);
if (!aobj) {
DRM_ERROR("IB va_start is invalid\n");
return -EINVAL;
}
if ((chunk_ib->va_start + chunk_ib->ib_bytes) >
(m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) {
DRM_ERROR("IB va_start+ib_bytes is invalid\n");
return -EINVAL;
}
/* the IB should be reserved at this point */
r = amdgpu_bo_kmap(aobj, (void **)&kptr);
if (r) {
return r;
}
offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE;
kptr += chunk_ib->va_start - offset;
r = amdgpu_ib_get(adev, NULL, chunk_ib->ib_bytes, ib);
if (r) {
DRM_ERROR("Failed to get ib !\n");
return r;
}
memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
amdgpu_bo_kunmap(aobj);
} else {
r = amdgpu_ib_get(adev, vm, 0, ib);
if (r) {
DRM_ERROR("Failed to get ib !\n");
return r;
}
ib->gpu_addr = chunk_ib->va_start;
}
ib->length_dw = chunk_ib->ib_bytes / 4;
ib->flags = chunk_ib->flags;
j++;
}
/* UVD & VCE fw doesn't support user fences */
if (parser->job->uf_addr && (
parser->job->ring->type == AMDGPU_RING_TYPE_UVD ||
parser->job->ring->type == AMDGPU_RING_TYPE_VCE))
return -EINVAL;
return 0;
}
static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
struct amdgpu_cs_parser *p)
{
struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
int i, j, r;
for (i = 0; i < p->nchunks; ++i) {
struct drm_amdgpu_cs_chunk_dep *deps;
struct amdgpu_cs_chunk *chunk;
unsigned num_deps;
chunk = &p->chunks[i];
if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES)
continue;
deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
num_deps = chunk->length_dw * 4 /
sizeof(struct drm_amdgpu_cs_chunk_dep);
for (j = 0; j < num_deps; ++j) {
struct amdgpu_ring *ring;
struct amdgpu_ctx *ctx;
struct fence *fence;
r = amdgpu_cs_get_ring(adev, deps[j].ip_type,
deps[j].ip_instance,
deps[j].ring, &ring);
if (r)
return r;
ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id);
if (ctx == NULL)
return -EINVAL;
fence = amdgpu_ctx_get_fence(ctx, ring,
deps[j].handle);
if (IS_ERR(fence)) {
r = PTR_ERR(fence);
amdgpu_ctx_put(ctx);
return r;
} else if (fence) {
r = amdgpu_sync_fence(adev, &p->job->sync,
fence);
fence_put(fence);
amdgpu_ctx_put(ctx);
if (r)
return r;
}
}
}
return 0;
}
static int amdgpu_cs_submit(struct amdgpu_cs_parser *p,
union drm_amdgpu_cs *cs)
{
struct amdgpu_ring *ring = p->job->ring;
struct amd_sched_entity *entity = &p->ctx->rings[ring->idx].entity;
struct amdgpu_job *job;
int r;
job = p->job;
p->job = NULL;
r = amd_sched_job_init(&job->base, &ring->sched, entity, p->filp);
if (r) {
amdgpu_job_free(job);
return r;
}
job->owner = p->filp;
job->fence_ctx = entity->fence_context;
p->fence = fence_get(&job->base.s_fence->finished);
cs->out.handle = amdgpu_ctx_add_fence(p->ctx, ring, p->fence);
job->uf_sequence = cs->out.handle;
amdgpu_job_free_resources(job);
trace_amdgpu_cs_ioctl(job);
amd_sched_entity_push_job(&job->base);
return 0;
}
int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
{
struct amdgpu_device *adev = dev->dev_private;
union drm_amdgpu_cs *cs = data;
struct amdgpu_cs_parser parser = {};
bool reserved_buffers = false;
int i, r;
if (!adev->accel_working)
return -EBUSY;
parser.adev = adev;
parser.filp = filp;
r = amdgpu_cs_parser_init(&parser, data);
if (r) {
DRM_ERROR("Failed to initialize parser !\n");
amdgpu_cs_parser_fini(&parser, r, false);
r = amdgpu_cs_handle_lockup(adev, r);
return r;
}
r = amdgpu_cs_parser_bos(&parser, data);
if (r == -ENOMEM)
DRM_ERROR("Not enough memory for command submission!\n");
else if (r && r != -ERESTARTSYS)
DRM_ERROR("Failed to process the buffer list %d!\n", r);
else if (!r) {
reserved_buffers = true;
r = amdgpu_cs_ib_fill(adev, &parser);
}
if (!r) {
r = amdgpu_cs_dependencies(adev, &parser);
if (r)
DRM_ERROR("Failed in the dependencies handling %d!\n", r);
}
if (r)
goto out;
for (i = 0; i < parser.job->num_ibs; i++)
trace_amdgpu_cs(&parser, i);
r = amdgpu_cs_ib_vm_chunk(adev, &parser);
if (r)
goto out;
r = amdgpu_cs_submit(&parser, cs);
out:
amdgpu_cs_parser_fini(&parser, r, reserved_buffers);
r = amdgpu_cs_handle_lockup(adev, r);
return r;
}
/**
* amdgpu_cs_wait_ioctl - wait for a command submission to finish
*
* @dev: drm device
* @data: data from userspace
* @filp: file private
*
* Wait for the command submission identified by handle to finish.
*/
int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
struct drm_file *filp)
{
union drm_amdgpu_wait_cs *wait = data;
struct amdgpu_device *adev = dev->dev_private;
unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
struct amdgpu_ring *ring = NULL;
struct amdgpu_ctx *ctx;
struct fence *fence;
long r;
r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance,
wait->in.ring, &ring);
if (r)
return r;
ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
if (ctx == NULL)
return -EINVAL;
fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle);
if (IS_ERR(fence))
r = PTR_ERR(fence);
else if (fence) {
r = fence_wait_timeout(fence, true, timeout);
fence_put(fence);
} else
r = 1;
amdgpu_ctx_put(ctx);
if (r < 0)
return r;
memset(wait, 0, sizeof(*wait));
wait->out.status = (r == 0);
return 0;
}
/**
* amdgpu_cs_find_bo_va - find bo_va for VM address
*
* @parser: command submission parser context
* @addr: VM address
* @bo: resulting BO of the mapping found
*
* Search the buffer objects in the command submission context for a certain
* virtual memory address. Returns allocation structure when found, NULL
* otherwise.
*/
struct amdgpu_bo_va_mapping *
amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
uint64_t addr, struct amdgpu_bo **bo)
{
struct amdgpu_bo_va_mapping *mapping;
unsigned i;
if (!parser->bo_list)
return NULL;
addr /= AMDGPU_GPU_PAGE_SIZE;
for (i = 0; i < parser->bo_list->num_entries; i++) {
struct amdgpu_bo_list_entry *lobj;
lobj = &parser->bo_list->array[i];
if (!lobj->bo_va)
continue;
list_for_each_entry(mapping, &lobj->bo_va->valids, list) {
if (mapping->it.start > addr ||
addr > mapping->it.last)
continue;
*bo = lobj->bo_va->bo;
return mapping;
}
list_for_each_entry(mapping, &lobj->bo_va->invalids, list) {
if (mapping->it.start > addr ||
addr > mapping->it.last)
continue;
*bo = lobj->bo_va->bo;
return mapping;
}
}
return NULL;
}
/**
* amdgpu_cs_sysvm_access_required - make BOs accessible by the system VM
*
* @parser: command submission parser context
*
* Helper for UVD/VCE VM emulation, make sure BOs are accessible by the system VM.
*/
int amdgpu_cs_sysvm_access_required(struct amdgpu_cs_parser *parser)
{
unsigned i;
int r;
if (!parser->bo_list)
return 0;
for (i = 0; i < parser->bo_list->num_entries; i++) {
struct amdgpu_bo *bo = parser->bo_list->array[i].robj;
r = amdgpu_ttm_bind(&bo->tbo, &bo->tbo.mem);
if (unlikely(r))
return r;
}
return 0;
}