blob: e3786e58104dc6217ff0e058b23a9fe5038c3dbc [file] [log] [blame]
/*
* Copyright (c) 2016-2020, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "LCDB: %s: " fmt, __func__
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/ktime.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/machine.h>
#include <linux/qpnp/qpnp-revid.h>
#define QPNP_LCDB_REGULATOR_DRIVER_NAME "qcom,qpnp-lcdb-regulator"
/* LCDB */
#define LCDB_STS1_REG 0x08
#define INT_RT_STATUS_REG 0x10
#define VREG_OK_RT_STS_BIT BIT(0)
#define SC_ERROR_RT_STS_BIT BIT(1)
#define LCDB_STS3_REG 0x0A
#define LDO_VREG_OK_BIT BIT(7)
#define LCDB_STS4_REG 0x0B
#define NCP_VREG_OK_BIT BIT(7)
#define LCDB_AUTO_TOUCH_WAKE_CTL_REG 0x40
#define EN_AUTO_TOUCH_WAKE_BIT BIT(7)
#define ATTW_TOFF_TIME_MASK GENMASK(3, 2)
#define ATTW_TON_TIME_MASK GENMASK(1, 0)
#define ATTW_TOFF_TIME_SHIFT 2
#define ATTW_MIN_MS 4
#define ATTW_MAX_MS 32
#define LCDB_BST_OUTPUT_VOLTAGE_REG 0x41
#define PM660_BST_OUTPUT_VOLTAGE_MASK GENMASK(4, 0)
#define BST_OUTPUT_VOLTAGE_MASK GENMASK(5, 0)
#define LCDB_MODULE_RDY_REG 0x45
#define MODULE_RDY_BIT BIT(7)
#define LCDB_ENABLE_CTL1_REG 0x46
#define MODULE_EN_BIT BIT(7)
#define HWEN_RDY_BIT BIT(6)
/* BST */
#define LCDB_BST_PD_CTL_REG 0x47
#define BOOST_DIS_PULLDOWN_BIT BIT(1)
#define BOOST_PD_STRENGTH_BIT BIT(0)
#define LCDB_BST_ILIM_CTL_REG 0x4B
#define EN_BST_ILIM_BIT BIT(7)
#define SET_BST_ILIM_MASK GENMASK(2, 0)
#define MIN_BST_ILIM_MA 200
#define MAX_BST_ILIM_MA 1600
#define LCDB_PS_CTL_REG 0x50
#define EN_PS_BIT BIT(7)
#define PM660_PS_THRESH_MASK GENMASK(1, 0)
#define PS_THRESH_MASK GENMASK(2, 0)
#define MIN_BST_PS_MA 50
#define MAX_BST_PS_MA 80
#define LCDB_RDSON_MGMNT_REG 0x53
#define NFET_SW_SIZE_MASK GENMASK(3, 2)
#define NFET_SW_SIZE_SHIFT 2
#define PFET_SW_SIZE_MASK GENMASK(1, 0)
#define LCDB_BST_VREG_OK_CTL_REG 0x55
#define BST_VREG_OK_DEB_MASK GENMASK(1, 0)
#define LCDB_BST_SS_CTL_REG 0x5B
#define BST_SS_TIME_MASK GENMASK(1, 0)
#define BST_PRECHG_SHORT_ALARM_SHIFT 2
#define BST_PRECHARGE_DONE_DEB_BIT BIT(4)
#define BST_SS_TIME_OVERRIDE_SHIFT 5
#define BST_SS_TIME_OVERRIDE_0MS 0
#define BST_SS_TIME_OVERRIDE_0P5_MS 1
#define BST_SS_TIME_OVERRIDE_1MS 2
#define BST_SS_TIME_OVERRIDE_2MS 3
#define EN_BST_PRECHG_SHORT_ALARM 0
#define DIS_BST_PRECHG_SHORT_ALARM 1
#define LCDB_SOFT_START_CTL_REG 0x5F
#define LCDB_MISC_CTL_REG 0x60
#define AUTO_GM_EN_BIT BIT(4)
#define EN_TOUCH_WAKE_BIT BIT(3)
#define DIS_SCP_BIT BIT(0)
#define LCDB_PFM_CTL_REG 0x62
#define EN_PFM_BIT BIT(7)
#define BYP_BST_SOFT_START_COMP_BIT BIT(0)
#define PFM_HYSTERESIS_SHIFT 4
#define PFM_CURRENT_SHIFT 2
#define LCDB_PWRUP_PWRDN_CTL_REG 0x66
#define PWRUP_DELAY_MASK GENAMSK(3, 2)
#define PWRDN_DELAY_MASK GENMASK(1, 0)
#define PWRDN_DELAY_MIN_MS 0
#define PWRDN_DELAY_MAX_MS 8
/* LDO */
#define LCDB_LDO_OUTPUT_VOLTAGE_REG 0x71
#define SET_OUTPUT_VOLTAGE_MASK GENMASK(4, 0)
#define LCDB_LDO_VREG_OK_CTL_REG 0x75
#define VREG_OK_DEB_MASK GENMASK(1, 0)
#define LCDB_LDO_PD_CTL_REG 0x77
#define LDO_DIS_PULLDOWN_BIT BIT(1)
#define LDO_PD_STRENGTH_BIT BIT(0)
#define LCDB_LDO_FORCE_PD_CTL_REG 0x79
#define LDO_FORCE_PD_EN_BIT BIT(0)
#define LDO_FORCE_PD_MODE BIT(7)
#define LCDB_LDO_ILIM_CTL1_REG 0x7B
#define EN_LDO_ILIM_BIT BIT(7)
#define SET_LDO_ILIM_MASK GENMASK(2, 0)
#define MIN_LDO_ILIM_MA 110
#define MAX_LDO_ILIM_MA 460
#define LDO_ILIM_STEP_MA 50
#define LCDB_LDO_ILIM_CTL2_REG 0x7C
#define LCDB_LDO_SOFT_START_CTL_REG 0x7F
#define SOFT_START_MASK GENMASK(1, 0)
/* NCP */
#define LCDB_NCP_OUTPUT_VOLTAGE_REG 0x81
#define LCDB_NCP_VREG_OK_CTL_REG 0x85
#define LCDB_NCP_PD_CTL_REG 0x87
#define NCP_DIS_PULLDOWN_BIT BIT(1)
#define NCP_PD_STRENGTH_BIT BIT(0)
#define LCDB_NCP_ILIM_CTL1_REG 0x8B
#define EN_NCP_ILIM_BIT BIT(7)
#define SET_NCP_ILIM_MASK GENMASK(1, 0)
#define MIN_NCP_ILIM_MA 260
#define MAX_NCP_ILIM_MA 810
#define LCDB_NCP_ILIM_CTL2_REG 0x8C
#define LCDB_NCP_SOFT_START_CTL_REG 0x8F
/* common for BST/NCP/LDO */
#define MIN_DBC_US 2
#define MAX_DBC_US 32
#define MIN_SOFT_START_US 0
#define MAX_SOFT_START_US 2000
#define PM660_BST_HEADROOM_DEFAULT_MV 200
#define BST_HEADROOM_DEFAULT_MV 150
#define PMIC5_LCDB_OFF_ON_DELAY_US 20000
struct ldo_regulator {
struct regulator_desc rdesc;
struct regulator_dev *rdev;
struct device_node *node;
/* LDO DT params */
int pd;
int pd_strength;
int ilim_ma;
int soft_start_us;
int vreg_ok_dbc_us;
int voltage_mv;
int prev_voltage_mv;
};
struct ncp_regulator {
struct regulator_desc rdesc;
struct regulator_dev *rdev;
struct device_node *node;
/* NCP DT params */
int pd;
int pd_strength;
int ilim_ma;
int soft_start_us;
int vreg_ok_dbc_us;
int voltage_mv;
int prev_voltage_mv;
};
struct bst_params {
struct device_node *node;
/* BST DT params */
int pd;
int pd_strength;
int ilim_ma;
int ps;
int ps_threshold;
int soft_start_us;
int vreg_ok_dbc_us;
int voltage_mv;
u16 headroom_mv;
};
struct qpnp_lcdb {
struct device *dev;
struct platform_device *pdev;
struct regmap *regmap;
struct class lcdb_class;
struct pmic_revid_data *pmic_rev_id;
u32 base;
u32 wa_flags;
int sc_irq;
int pwrdn_delay_ms;
/* TTW params */
bool ttw_enable;
bool ttw_mode_sw;
/* status parameters */
bool lcdb_enabled;
bool settings_saved;
bool lcdb_sc_disable;
bool secure_mode;
bool voltage_step_ramp;
int sc_count;
ktime_t sc_module_enable_time;
struct mutex lcdb_mutex;
struct mutex read_write_mutex;
struct bst_params bst;
struct ldo_regulator ldo;
struct ncp_regulator ncp;
};
struct settings {
u16 address;
u8 value;
bool sec_access;
bool valid;
};
enum lcdb_module {
LDO,
NCP,
BST,
LDO_NCP,
};
enum pfm_hysteresis {
PFM_HYST_15MV,
PFM_HYST_25MV,
PFM_HYST_35MV,
PFM_HYST_45MV,
};
enum pfm_peak_current {
PFM_PEAK_CURRENT_300MA,
PFM_PEAK_CURRENT_400MA,
PFM_PEAK_CURRENT_500MA,
PFM_PEAK_CURRENT_600MA,
};
enum rdson_fet_size {
RDSON_QUARTER,
RDSON_HALF,
RDSON_THREE_FOURTH,
RDSON_FULLSIZE,
};
enum lcdb_settings_index {
LCDB_BST_PD_CTL = 0,
LCDB_RDSON_MGMNT,
LCDB_MISC_CTL,
LCDB_SOFT_START_CTL,
LCDB_PFM_CTL,
LCDB_PWRUP_PWRDN_CTL,
LCDB_LDO_PD_CTL,
LCDB_LDO_SOFT_START_CTL,
LCDB_NCP_PD_CTL,
LCDB_NCP_SOFT_START_CTL,
LCDB_BST_SS_CTL,
LCDB_LDO_VREG_OK_CTL,
LCDB_SETTING_MAX,
};
enum lcdb_wa_flags {
NCP_SCP_DISABLE_WA = BIT(0),
FORCE_PD_ENABLE_WA = BIT(1),
};
static u32 soft_start_us[] = {
0,
500,
1000,
2000,
};
static u32 dbc_us[] = {
2,
4,
16,
32,
};
static u32 ncp_ilim_ma[] = {
260,
460,
640,
810,
};
static const u32 pwrup_pwrdn_ms[] = {
0,
1,
4,
8,
};
#define SETTING(_id, _sec_access, _valid) \
[_id] = { \
.address = _id##_REG, \
.sec_access = _sec_access, \
.valid = _valid \
} \
static int qpnp_lcdb_set_voltage_step(struct qpnp_lcdb *lcdb,
int voltage_start_mv, u8 type);
static int qpnp_lcdb_set_voltage(struct qpnp_lcdb *lcdb,
int voltage_mv, u8 type);
static bool is_between(int value, int min, int max)
{
if (value < min || value > max)
return false;
return true;
}
static int qpnp_lcdb_read(struct qpnp_lcdb *lcdb,
u16 addr, u8 *value, u8 count)
{
int rc = 0;
mutex_lock(&lcdb->read_write_mutex);
rc = regmap_bulk_read(lcdb->regmap, addr, value, count);
if (rc < 0)
pr_err("Failed to read from addr=0x%02x rc=%d\n", addr, rc);
mutex_unlock(&lcdb->read_write_mutex);
return rc;
}
static int qpnp_lcdb_write(struct qpnp_lcdb *lcdb,
u16 addr, u8 *value, u8 count)
{
int rc;
mutex_lock(&lcdb->read_write_mutex);
rc = regmap_bulk_write(lcdb->regmap, addr, value, count);
if (rc < 0)
pr_err("Failed to write to addr=0x%02x rc=%d\n", addr, rc);
mutex_unlock(&lcdb->read_write_mutex);
return rc;
}
#define SEC_ADDRESS_REG 0xD0
#define SECURE_UNLOCK_VALUE 0xA5
static int qpnp_lcdb_secure_write(struct qpnp_lcdb *lcdb,
u16 addr, u8 value)
{
int rc;
u8 val = SECURE_UNLOCK_VALUE;
u8 pmic_subtype = lcdb->pmic_rev_id->pmic_subtype;
mutex_lock(&lcdb->read_write_mutex);
if (pmic_subtype == PM660L_SUBTYPE) {
rc = regmap_write(lcdb->regmap, lcdb->base + SEC_ADDRESS_REG,
val);
if (rc < 0) {
pr_err("Failed to unlock register rc=%d\n", rc);
goto fail_write;
}
}
rc = regmap_write(lcdb->regmap, addr, value);
if (rc < 0)
pr_err("Failed to write to addr=0x%02x rc=%d\n", addr, rc);
fail_write:
mutex_unlock(&lcdb->read_write_mutex);
return rc;
}
static int qpnp_lcdb_masked_write(struct qpnp_lcdb *lcdb,
u16 addr, u8 mask, u8 value)
{
int rc = 0;
mutex_lock(&lcdb->read_write_mutex);
rc = regmap_update_bits(lcdb->regmap, addr, mask, value);
if (rc < 0)
pr_err("Failed to write addr=0x%02x value=0x%02x rc=%d\n",
addr, value, rc);
mutex_unlock(&lcdb->read_write_mutex);
return rc;
}
static bool is_lcdb_enabled(struct qpnp_lcdb *lcdb)
{
int rc;
u8 val = 0;
rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG, &val, 1);
if (rc < 0)
pr_err("Failed to read ENABLE_CTL1 rc=%d\n", rc);
return rc ? false : !!(val & MODULE_EN_BIT);
}
static int dump_status_registers(struct qpnp_lcdb *lcdb)
{
int rc = 0;
u8 sts[6] = {0};
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_STS1_REG, &sts[0], 6);
if (rc < 0) {
pr_err("Failed to write to STS registers rc=%d\n", rc);
} else {
rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_STS1_REG, sts, 6);
if (rc < 0)
pr_err("Failed to read lcdb status rc=%d\n", rc);
else
pr_err("STS1=0x%02x STS2=0x%02x STS3=0x%02x STS4=0x%02x STS5=0x%02x, STS6=0x%02x\n",
sts[0], sts[1], sts[2], sts[3], sts[4], sts[5]);
}
return rc;
}
static struct settings lcdb_settings_pm660l[] = {
SETTING(LCDB_BST_PD_CTL, false, true),
SETTING(LCDB_RDSON_MGMNT, false, true),
SETTING(LCDB_MISC_CTL, false, true),
SETTING(LCDB_SOFT_START_CTL, false, true),
SETTING(LCDB_PFM_CTL, false, true),
SETTING(LCDB_PWRUP_PWRDN_CTL, true, true),
SETTING(LCDB_LDO_PD_CTL, false, true),
SETTING(LCDB_LDO_SOFT_START_CTL, false, true),
SETTING(LCDB_NCP_PD_CTL, false, true),
SETTING(LCDB_NCP_SOFT_START_CTL, false, true),
SETTING(LCDB_BST_SS_CTL, false, false),
SETTING(LCDB_LDO_VREG_OK_CTL, false, false),
};
/* For PMICs like pmi632/pm855L */
static struct settings lcdb_settings[] = {
SETTING(LCDB_BST_PD_CTL, false, true),
SETTING(LCDB_RDSON_MGMNT, false, false),
SETTING(LCDB_MISC_CTL, false, false),
SETTING(LCDB_SOFT_START_CTL, false, false),
SETTING(LCDB_PFM_CTL, false, false),
SETTING(LCDB_PWRUP_PWRDN_CTL, false, true),
SETTING(LCDB_LDO_PD_CTL, false, true),
SETTING(LCDB_LDO_SOFT_START_CTL, false, true),
SETTING(LCDB_NCP_PD_CTL, false, true),
SETTING(LCDB_NCP_SOFT_START_CTL, false, true),
SETTING(LCDB_BST_SS_CTL, false, true),
SETTING(LCDB_LDO_VREG_OK_CTL, false, true),
};
static int qpnp_lcdb_save_settings(struct qpnp_lcdb *lcdb)
{
int i, size, rc = 0;
struct settings *setting;
u16 pmic_subtype = lcdb->pmic_rev_id->pmic_subtype;
if (pmic_subtype == PM660L_SUBTYPE) {
setting = lcdb_settings_pm660l;
size = ARRAY_SIZE(lcdb_settings_pm660l);
} else {
setting = lcdb_settings;
size = ARRAY_SIZE(lcdb_settings);
}
for (i = 0; i < size; i++) {
if (setting[i].valid) {
rc = qpnp_lcdb_read(lcdb, lcdb->base +
setting[i].address,
&setting[i].value, 1);
if (rc < 0) {
pr_err("Failed to read lcdb register address=%x\n",
setting[i].address);
return rc;
}
}
}
return 0;
}
static int qpnp_lcdb_restore_settings(struct qpnp_lcdb *lcdb)
{
int i, size, rc = 0;
struct settings *setting;
u16 pmic_subtype = lcdb->pmic_rev_id->pmic_subtype;
if (pmic_subtype == PM660L_SUBTYPE) {
setting = lcdb_settings_pm660l;
size = ARRAY_SIZE(lcdb_settings_pm660l);
} else {
setting = lcdb_settings;
size = ARRAY_SIZE(lcdb_settings);
}
for (i = 0; i < size; i++) {
if (setting[i].valid) {
if (setting[i].sec_access)
rc = qpnp_lcdb_secure_write(lcdb, lcdb->base +
setting[i].address,
setting[i].value);
else
rc = qpnp_lcdb_write(lcdb, lcdb->base +
setting[i].address,
&setting[i].value, 1);
if (rc < 0) {
pr_err("Failed to write register address=%x\n",
setting[i].address);
return rc;
}
}
}
return 0;
}
static int qpnp_lcdb_ttw_enter(struct qpnp_lcdb *lcdb)
{
int rc;
u8 val;
if (!lcdb->settings_saved) {
rc = qpnp_lcdb_save_settings(lcdb);
if (rc < 0) {
pr_err("Failed to save LCDB settings rc=%d\n", rc);
return rc;
}
lcdb->settings_saved = true;
}
val = HWEN_RDY_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to hw_enable lcdb rc= %d\n", rc);
return rc;
}
val = (BST_SS_TIME_OVERRIDE_1MS << BST_SS_TIME_OVERRIDE_SHIFT) |
(DIS_BST_PRECHG_SHORT_ALARM << BST_PRECHG_SHORT_ALARM_SHIFT);
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_BST_SS_CTL_REG, &val, 1);
if (rc < 0)
return rc;
val = 0;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_LDO_SOFT_START_CTL_REG,
&val, 1);
if (rc < 0)
return rc;
val = 0;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_NCP_SOFT_START_CTL_REG,
&val, 1);
if (rc < 0)
return rc;
val = BOOST_DIS_PULLDOWN_BIT | BOOST_PD_STRENGTH_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_BST_PD_CTL_REG,
&val, 1);
if (rc < 0)
return rc;
val = LDO_DIS_PULLDOWN_BIT | LDO_PD_STRENGTH_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_LDO_PD_CTL_REG,
&val, 1);
if (rc < 0)
return rc;
val = NCP_DIS_PULLDOWN_BIT | NCP_PD_STRENGTH_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_NCP_PD_CTL_REG,
&val, 1);
if (rc < 0)
return rc;
val = 0;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_PWRUP_PWRDN_CTL_REG,
&val, 1);
if (rc < 0)
return rc;
val = 0;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_BST_VREG_OK_CTL_REG,
&val, 1);
return rc;
}
static int qpnp_lcdb_ttw_enter_pm660l(struct qpnp_lcdb *lcdb)
{
int rc;
u8 val;
if (!lcdb->settings_saved) {
rc = qpnp_lcdb_save_settings(lcdb);
if (rc < 0) {
pr_err("Failed to save LCDB settings rc=%d\n", rc);
return rc;
}
lcdb->settings_saved = true;
}
val = BOOST_DIS_PULLDOWN_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_BST_PD_CTL_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to set BST PD rc=%d\n", rc);
return rc;
}
val = (RDSON_HALF << NFET_SW_SIZE_SHIFT) | RDSON_HALF;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_RDSON_MGMNT_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to set RDSON MGMT rc=%d\n", rc);
return rc;
}
val = AUTO_GM_EN_BIT | EN_TOUCH_WAKE_BIT | DIS_SCP_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_MISC_CTL_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to set MISC CTL rc=%d\n", rc);
return rc;
}
val = 0;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_SOFT_START_CTL_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to set LCDB_SOFT_START rc=%d\n", rc);
return rc;
}
val = EN_PFM_BIT | (PFM_HYST_25MV << PFM_HYSTERESIS_SHIFT) |
(PFM_PEAK_CURRENT_400MA << PFM_CURRENT_SHIFT) |
BYP_BST_SOFT_START_COMP_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_PFM_CTL_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to set PFM_CTL rc=%d\n", rc);
return rc;
}
val = 0;
rc = qpnp_lcdb_secure_write(lcdb, lcdb->base + LCDB_PWRUP_PWRDN_CTL_REG,
val);
if (rc < 0) {
pr_err("Failed to set PWRUP_PWRDN_CTL rc=%d\n", rc);
return rc;
}
val = LDO_DIS_PULLDOWN_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_LDO_PD_CTL_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to set LDO_PD_CTL rc=%d\n", rc);
return rc;
}
val = 0;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_LDO_SOFT_START_CTL_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to set LDO_SOFT_START rc=%d\n", rc);
return rc;
}
val = NCP_DIS_PULLDOWN_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_NCP_PD_CTL_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to set NCP_PD_CTL rc=%d\n", rc);
return rc;
}
val = 0;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_NCP_SOFT_START_CTL_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to set NCP_SOFT_START rc=%d\n", rc);
return rc;
}
if (lcdb->ttw_mode_sw) {
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_AUTO_TOUCH_WAKE_CTL_REG,
EN_AUTO_TOUCH_WAKE_BIT,
EN_AUTO_TOUCH_WAKE_BIT);
if (rc < 0)
pr_err("Failed to enable auto(sw) TTW\n rc = %d\n", rc);
} else {
val = HWEN_RDY_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG,
&val, 1);
if (rc < 0)
pr_err("Failed to hw_enable lcdb rc= %d\n", rc);
}
return rc;
}
static int qpnp_lcdb_ttw_exit(struct qpnp_lcdb *lcdb)
{
int rc;
if (lcdb->settings_saved) {
rc = qpnp_lcdb_restore_settings(lcdb);
if (rc < 0) {
pr_err("Failed to restore lcdb settings rc=%d\n", rc);
return rc;
}
lcdb->settings_saved = false;
}
return 0;
}
static int qpnp_lcdb_enable_wa(struct qpnp_lcdb *lcdb)
{
int rc;
u8 val = 0;
/* required only for PM660L */
if (lcdb->pmic_rev_id->pmic_subtype != PM660L_SUBTYPE)
return 0;
val = MODULE_EN_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to enable lcdb rc= %d\n", rc);
return rc;
}
val = 0;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to disable lcdb rc= %d\n", rc);
return rc;
}
if (lcdb->wa_flags & NCP_SCP_DISABLE_WA) {
/*
* delay to make sure that the MID pin – ie the
* output of the LCDB boost – returns to 0V
* after the module is disabled
*/
usleep_range(10000, 10100);
rc = qpnp_lcdb_masked_write(lcdb,
lcdb->base + LCDB_MISC_CTL_REG,
DIS_SCP_BIT, DIS_SCP_BIT);
if (rc < 0) {
pr_err("Failed to disable SC rc=%d\n", rc);
return rc;
}
/* delay for SC-disable to take effect */
usleep_range(1000, 1100);
rc = qpnp_lcdb_masked_write(lcdb,
lcdb->base + LCDB_MISC_CTL_REG,
DIS_SCP_BIT, 0);
if (rc < 0) {
pr_err("Failed to enable SC rc=%d\n", rc);
return rc;
}
/* delay for SC-enable to take effect */
usleep_range(1000, 1100);
}
return 0;
}
#define VOLTAGE_START_MV 4500
#define VOLTAGE_STEP_MV 500
static int qpnp_lcdb_enable(struct qpnp_lcdb *lcdb)
{
int rc = 0, timeout, delay;
int voltage_mv = VOLTAGE_START_MV;
u8 val = 0;
if (lcdb->lcdb_enabled || lcdb->lcdb_sc_disable) {
pr_debug("lcdb_enabled=%d lcdb_sc_disable=%d\n",
lcdb->lcdb_enabled, lcdb->lcdb_sc_disable);
return 0;
}
if (lcdb->ttw_enable) {
rc = qpnp_lcdb_ttw_exit(lcdb);
if (rc < 0) {
pr_err("Failed to exit TTW mode rc=%d\n", rc);
return rc;
}
}
rc = qpnp_lcdb_enable_wa(lcdb);
if (rc < 0) {
pr_err("Failed to execute enable_wa rc=%d\n", rc);
return rc;
}
if (lcdb->voltage_step_ramp) {
if (lcdb->ldo.voltage_mv < VOLTAGE_START_MV)
voltage_mv = lcdb->ldo.voltage_mv;
rc = qpnp_lcdb_set_voltage(lcdb, voltage_mv, LDO);
if (rc < 0)
return rc;
if (lcdb->ncp.voltage_mv < VOLTAGE_START_MV)
voltage_mv = lcdb->ncp.voltage_mv;
rc = qpnp_lcdb_set_voltage(lcdb, voltage_mv, NCP);
if (rc < 0)
return rc;
}
val = MODULE_EN_BIT;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to disable lcdb rc= %d\n", rc);
goto fail_enable;
}
/* poll for vreg_ok */
timeout = 10;
delay = lcdb->bst.soft_start_us + lcdb->ldo.soft_start_us +
lcdb->ncp.soft_start_us;
delay += lcdb->bst.vreg_ok_dbc_us + lcdb->ldo.vreg_ok_dbc_us +
lcdb->ncp.vreg_ok_dbc_us;
while (timeout--) {
rc = qpnp_lcdb_read(lcdb, lcdb->base + INT_RT_STATUS_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to poll for vreg-ok status rc=%d\n", rc);
break;
}
if (val & VREG_OK_RT_STS_BIT)
break;
usleep_range(delay, delay + 100);
}
if (rc || !timeout) {
if (!timeout) {
pr_err("lcdb-vreg-ok status failed to change\n");
rc = -ETIMEDOUT;
}
goto fail_enable;
}
lcdb->lcdb_enabled = true;
if (lcdb->voltage_step_ramp) {
usleep_range(10000, 11000);
rc = qpnp_lcdb_set_voltage_step(lcdb,
voltage_mv + VOLTAGE_STEP_MV,
LDO_NCP);
if (rc < 0) {
pr_err("Failed to set LCDB voltage rc=%d\n", rc);
return rc;
}
}
pr_debug("lcdb enabled successfully!\n");
return 0;
fail_enable:
dump_status_registers(lcdb);
pr_err("Failed to enable lcdb rc=%d\n", rc);
return rc;
}
static int qpnp_lcdb_disable(struct qpnp_lcdb *lcdb)
{
int rc = 0;
u8 val;
u16 pmic_subtype = lcdb->pmic_rev_id->pmic_subtype;
if (!lcdb->lcdb_enabled)
return 0;
if (lcdb->ttw_enable) {
if (pmic_subtype == PM660L_SUBTYPE)
rc = qpnp_lcdb_ttw_enter_pm660l(lcdb);
else
rc = qpnp_lcdb_ttw_enter(lcdb);
if (rc < 0) {
pr_err("Failed to enable TTW mode rc=%d\n", rc);
return rc;
}
lcdb->lcdb_enabled = false;
return 0;
}
if (lcdb->wa_flags & FORCE_PD_ENABLE_WA) {
/*
* force pull-down to enable quick discharge after
* turning off
*/
val = LDO_FORCE_PD_EN_BIT | LDO_FORCE_PD_MODE;
rc = qpnp_lcdb_write(lcdb, lcdb->base +
LCDB_LDO_FORCE_PD_CTL_REG, &val, 1);
if (rc < 0)
return rc;
}
val = 0;
rc = qpnp_lcdb_write(lcdb, lcdb->base + LCDB_ENABLE_CTL1_REG,
&val, 1);
if (rc < 0)
pr_err("Failed to disable lcdb rc= %d\n", rc);
else
lcdb->lcdb_enabled = false;
if (lcdb->wa_flags & FORCE_PD_ENABLE_WA) {
/* wait for 10 msec after module disable for LDO to discharge */
usleep_range(10000, 11000);
val = 0;
rc = qpnp_lcdb_write(lcdb, lcdb->base +
LCDB_LDO_FORCE_PD_CTL_REG, &val, 1);
if (rc < 0)
return rc;
}
return rc;
}
#define LCDB_SC_RESET_CNT_DLY_US 1000000
#define LCDB_SC_CNT_MAX 10
static int qpnp_lcdb_handle_sc_event(struct qpnp_lcdb *lcdb)
{
int rc = 0;
s64 elapsed_time_us;
mutex_lock(&lcdb->lcdb_mutex);
rc = qpnp_lcdb_disable(lcdb);
if (rc < 0) {
pr_err("Failed to disable lcdb rc=%d\n", rc);
goto unlock_mutex;
}
/* Check if the SC re-occurred immediately */
elapsed_time_us = ktime_us_delta(ktime_get(),
lcdb->sc_module_enable_time);
if (elapsed_time_us > LCDB_SC_RESET_CNT_DLY_US) {
lcdb->sc_count = 0;
} else if (lcdb->sc_count > LCDB_SC_CNT_MAX) {
pr_err("SC trigged %d times, disabling LCDB forever!\n",
lcdb->sc_count);
lcdb->lcdb_sc_disable = true;
goto unlock_mutex;
}
lcdb->sc_count++;
lcdb->sc_module_enable_time = ktime_get();
/* delay for SC to clear */
usleep_range(10000, 10100);
rc = qpnp_lcdb_enable(lcdb);
if (rc < 0)
pr_err("Failed to enable lcdb rc=%d\n", rc);
unlock_mutex:
mutex_unlock(&lcdb->lcdb_mutex);
return rc;
}
static irqreturn_t qpnp_lcdb_sc_irq_handler(int irq, void *data)
{
struct qpnp_lcdb *lcdb = data;
int rc;
u8 val, val2[2] = {0};
mutex_lock(&lcdb->lcdb_mutex);
rc = qpnp_lcdb_read(lcdb, lcdb->base + INT_RT_STATUS_REG, &val, 1);
mutex_unlock(&lcdb->lcdb_mutex);
if (rc < 0)
goto irq_handled;
if (val & SC_ERROR_RT_STS_BIT) {
rc = qpnp_lcdb_read(lcdb,
lcdb->base + LCDB_MISC_CTL_REG, &val, 1);
if (rc < 0)
goto irq_handled;
if (val & EN_TOUCH_WAKE_BIT) {
/* blanking time */
usleep_range(300, 310);
/*
* The status registers need to written with any value
* before reading
*/
rc = qpnp_lcdb_write(lcdb,
lcdb->base + LCDB_STS3_REG, val2, 2);
if (rc < 0)
goto irq_handled;
rc = qpnp_lcdb_read(lcdb,
lcdb->base + LCDB_STS3_REG, val2, 2);
if (rc < 0)
goto irq_handled;
if (!(val2[0] & LDO_VREG_OK_BIT) ||
!(val2[1] & NCP_VREG_OK_BIT)) {
rc = qpnp_lcdb_handle_sc_event(lcdb);
if (rc < 0) {
pr_err("Failed to handle SC rc=%d\n",
rc);
goto irq_handled;
}
}
} else {
/* blanking time */
usleep_range(2000, 2100);
/* Read the SC status again to confirm true SC */
mutex_lock(&lcdb->lcdb_mutex);
/*
* Wait for the completion of LCDB module enable,
* which could be initiated in a previous SC event,
* to avoid multiple module disable/enable calls.
*/
rc = qpnp_lcdb_read(lcdb,
lcdb->base + INT_RT_STATUS_REG, &val, 1);
mutex_unlock(&lcdb->lcdb_mutex);
if (rc < 0)
goto irq_handled;
if (val & SC_ERROR_RT_STS_BIT) {
rc = qpnp_lcdb_handle_sc_event(lcdb);
if (rc < 0) {
pr_err("Failed to handle SC rc=%d\n",
rc);
goto irq_handled;
}
}
}
}
irq_handled:
return IRQ_HANDLED;
}
#define MIN_BST_VOLTAGE_MV 4700
#define PM660_MAX_BST_VOLTAGE_MV 6250
#define MAX_BST_VOLTAGE_MV 6275
#define MIN_VOLTAGE_MV 4000
#define MAX_VOLTAGE_MV 6000
#define VOLTAGE_MIN_STEP_100_MV 4000
#define VOLTAGE_MIN_STEP_50_MV 4950
#define VOLTAGE_STEP_100_MV 100
#define VOLTAGE_STEP_50_MV 50
#define VOLTAGE_STEP_25_MV 25
#define VOLTAGE_STEP_50MV_OFFSET 0xA
static int qpnp_lcdb_set_bst_voltage(struct qpnp_lcdb *lcdb,
int voltage_mv, u8 type)
{
int rc = 0;
u8 val, voltage_step, mask = 0;
int bst_voltage_mv;
u16 pmic_subtype = lcdb->pmic_rev_id->pmic_subtype;
struct ldo_regulator *ldo = &lcdb->ldo;
struct ncp_regulator *ncp = &lcdb->ncp;
struct bst_params *bst = &lcdb->bst;
/* Vout_Boost = headroom_mv + max( Vout_LDO, abs (Vout_NCP)) */
bst_voltage_mv = max(voltage_mv, max(ldo->voltage_mv, ncp->voltage_mv));
bst_voltage_mv += bst->headroom_mv;
if (bst_voltage_mv < MIN_BST_VOLTAGE_MV)
bst_voltage_mv = MIN_BST_VOLTAGE_MV;
if (pmic_subtype == PM660L_SUBTYPE) {
if (bst_voltage_mv > PM660_MAX_BST_VOLTAGE_MV)
bst_voltage_mv = PM660_MAX_BST_VOLTAGE_MV;
} else {
if (bst_voltage_mv > MAX_BST_VOLTAGE_MV)
bst_voltage_mv = MAX_BST_VOLTAGE_MV;
}
if (bst_voltage_mv != bst->voltage_mv) {
if (pmic_subtype == PM660L_SUBTYPE) {
mask = PM660_BST_OUTPUT_VOLTAGE_MASK;
voltage_step = VOLTAGE_STEP_50_MV;
} else {
mask = BST_OUTPUT_VOLTAGE_MASK;
voltage_step = VOLTAGE_STEP_25_MV;
}
val = DIV_ROUND_UP(bst_voltage_mv - MIN_BST_VOLTAGE_MV,
voltage_step);
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_BST_OUTPUT_VOLTAGE_REG,
mask, val);
if (rc < 0) {
pr_err("Failed to set boost voltage %d mv rc=%d\n",
bst_voltage_mv, rc);
} else {
pr_debug("Boost voltage set = %d mv (0x%02x = 0x%02x)\n",
bst_voltage_mv, LCDB_BST_OUTPUT_VOLTAGE_REG, val);
bst->voltage_mv = bst_voltage_mv;
}
}
return rc;
}
static int qpnp_lcdb_get_bst_voltage(struct qpnp_lcdb *lcdb,
int *voltage_mv)
{
int rc;
u8 val, voltage_step, mask = 0;
u16 pmic_subtype = lcdb->pmic_rev_id->pmic_subtype;
rc = qpnp_lcdb_read(lcdb, lcdb->base + LCDB_BST_OUTPUT_VOLTAGE_REG,
&val, 1);
if (rc < 0) {
pr_err("Failed to reat BST voltage rc=%d\n", rc);
return rc;
}
if (pmic_subtype == PM660L_SUBTYPE) {
mask = PM660_BST_OUTPUT_VOLTAGE_MASK;
voltage_step = VOLTAGE_STEP_50_MV;
} else {
mask = BST_OUTPUT_VOLTAGE_MASK;
voltage_step = VOLTAGE_STEP_25_MV;
}
val &= mask;
*voltage_mv = (val * voltage_step) + MIN_BST_VOLTAGE_MV;
return 0;
}
static int qpnp_lcdb_set_voltage(struct qpnp_lcdb *lcdb,
int voltage_mv, u8 type)
{
int rc = 0;
u16 offset = LCDB_LDO_OUTPUT_VOLTAGE_REG;
u8 val = 0;
if (!is_between(voltage_mv, MIN_VOLTAGE_MV, MAX_VOLTAGE_MV)) {
pr_err("Invalid voltage %dmv (min=%d max=%d)\n",
voltage_mv, MIN_VOLTAGE_MV, MAX_VOLTAGE_MV);
return -EINVAL;
}
rc = qpnp_lcdb_set_bst_voltage(lcdb, voltage_mv, type);
if (rc < 0) {
pr_err("Failed to set boost voltage rc=%d\n", rc);
return rc;
}
/* Below logic is only valid for LDO and NCP type */
if (voltage_mv < VOLTAGE_MIN_STEP_50_MV) {
val = DIV_ROUND_UP(voltage_mv - VOLTAGE_MIN_STEP_100_MV,
VOLTAGE_STEP_100_MV);
} else {
val = DIV_ROUND_UP(voltage_mv - VOLTAGE_MIN_STEP_50_MV,
VOLTAGE_STEP_50_MV);
val += VOLTAGE_STEP_50MV_OFFSET;
}
if (type == NCP)
offset = LCDB_NCP_OUTPUT_VOLTAGE_REG;
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base + offset,
SET_OUTPUT_VOLTAGE_MASK, val);
if (rc < 0)
pr_err("Failed to set output voltage %d mv for %s rc=%d\n",
voltage_mv, (type == LDO) ? "LDO" : "NCP", rc);
else
pr_debug("%s voltage set = %d mv (0x%02x = 0x%02x)\n",
(type == LDO) ? "LDO" : "NCP", voltage_mv, offset, val);
return rc;
}
static int qpnp_lcdb_set_voltage_step(struct qpnp_lcdb *lcdb,
int voltage_start_mv, u8 type)
{
int i, ldo_voltage, ncp_voltage, voltage, rc = 0;
for (i = voltage_start_mv; i <= (MAX_VOLTAGE_MV + VOLTAGE_STEP_MV);
i += VOLTAGE_STEP_MV) {
ldo_voltage = (lcdb->ldo.voltage_mv < i) ?
lcdb->ldo.voltage_mv : i;
ncp_voltage = (lcdb->ncp.voltage_mv < i) ?
lcdb->ncp.voltage_mv : i;
if (type == LDO_NCP) {
rc = qpnp_lcdb_set_voltage(lcdb, ldo_voltage, LDO);
if (rc < 0)
return rc;
rc = qpnp_lcdb_set_voltage(lcdb, ncp_voltage, NCP);
if (rc < 0)
return rc;
pr_debug(" LDO voltage step %d NCP voltage step %d\n",
ldo_voltage, ncp_voltage);
if ((i >= lcdb->ncp.voltage_mv) &&
(i >= lcdb->ldo.voltage_mv))
break;
} else {
voltage = (type == LDO) ? ldo_voltage : ncp_voltage;
rc = qpnp_lcdb_set_voltage(lcdb, voltage, type);
if (rc < 0)
return rc;
pr_debug("%s voltage step %d\n",
(type == LDO) ? "LDO" : "NCP", voltage);
if ((type == LDO) && (i >= lcdb->ldo.voltage_mv))
break;
if ((type == NCP) && (i >= lcdb->ncp.voltage_mv))
break;
}
usleep_range(1000, 1100);
}
return rc;
}
static int qpnp_lcdb_get_voltage(struct qpnp_lcdb *lcdb,
u32 *voltage_mv, u8 type)
{
int rc = 0;
u16 offset = LCDB_LDO_OUTPUT_VOLTAGE_REG;
u8 val = 0;
if (type == BST)
return qpnp_lcdb_get_bst_voltage(lcdb, voltage_mv);
if (type == NCP)
offset = LCDB_NCP_OUTPUT_VOLTAGE_REG;
rc = qpnp_lcdb_read(lcdb, lcdb->base + offset, &val, 1);
if (rc < 0) {
pr_err("Failed to read %s volatge rc=%d\n",
(type == LDO) ? "LDO" : "NCP", rc);
return rc;
}
val &= SET_OUTPUT_VOLTAGE_MASK;
if (val < VOLTAGE_STEP_50MV_OFFSET) {
*voltage_mv = VOLTAGE_MIN_STEP_100_MV +
(val * VOLTAGE_STEP_100_MV);
} else {
*voltage_mv = VOLTAGE_MIN_STEP_50_MV +
((val - VOLTAGE_STEP_50MV_OFFSET) * VOLTAGE_STEP_50_MV);
}
if (!rc)
pr_debug("%s voltage read-back = %d mv (0x%02x = 0x%02x)\n",
(type == LDO) ? "LDO" : "NCP",
*voltage_mv, offset, val);
return rc;
}
static int qpnp_lcdb_set_soft_start(struct qpnp_lcdb *lcdb,
u32 ss_us, u8 type)
{
int rc = 0, i = 0;
u16 offset = LCDB_LDO_SOFT_START_CTL_REG;
u8 val = 0;
if (type == NCP)
offset = LCDB_NCP_SOFT_START_CTL_REG;
if (!is_between(ss_us, MIN_SOFT_START_US, MAX_SOFT_START_US)) {
pr_err("Invalid soft_start_us %d (min=%d max=%d)\n",
ss_us, MIN_SOFT_START_US, MAX_SOFT_START_US);
return -EINVAL;
}
i = 0;
while (ss_us > soft_start_us[i])
i++;
val = ((i == 0) ? 0 : i - 1) & SOFT_START_MASK;
rc = qpnp_lcdb_masked_write(lcdb,
lcdb->base + offset, SOFT_START_MASK, val);
if (rc < 0)
pr_err("Failed to write %s soft-start time %d rc=%d",
(type == LDO) ? "LDO" : "NCP", soft_start_us[i], rc);
return rc;
}
static int qpnp_lcdb_ldo_regulator_enable(struct regulator_dev *rdev)
{
int rc = 0;
struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev);
if (lcdb->secure_mode)
return 0;
mutex_lock(&lcdb->lcdb_mutex);
rc = qpnp_lcdb_enable(lcdb);
if (rc < 0)
pr_err("Failed to enable lcdb rc=%d\n", rc);
mutex_unlock(&lcdb->lcdb_mutex);
return rc;
}
static int qpnp_lcdb_ldo_regulator_disable(struct regulator_dev *rdev)
{
int rc = 0;
struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev);
if (lcdb->secure_mode)
return 0;
mutex_lock(&lcdb->lcdb_mutex);
rc = qpnp_lcdb_disable(lcdb);
if (rc < 0)
pr_err("Failed to disable lcdb rc=%d\n", rc);
mutex_unlock(&lcdb->lcdb_mutex);
return rc;
}
static int qpnp_lcdb_ldo_regulator_is_enabled(struct regulator_dev *rdev)
{
struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev);
return lcdb->lcdb_enabled;
}
static int qpnp_lcdb_ldo_regulator_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, unsigned int *selector)
{
int rc = 0;
struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev);
if (lcdb->secure_mode)
return 0;
lcdb->ldo.voltage_mv = min_uV / 1000;
if (lcdb->voltage_step_ramp)
rc = qpnp_lcdb_set_voltage_step(lcdb,
lcdb->ldo.prev_voltage_mv + VOLTAGE_STEP_MV, LDO);
else
rc = qpnp_lcdb_set_voltage(lcdb, lcdb->ldo.voltage_mv, LDO);
if (rc < 0)
pr_err("Failed to set LDO voltage rc=%c\n", rc);
else
lcdb->ldo.prev_voltage_mv = lcdb->ldo.voltage_mv;
return rc;
}
static int qpnp_lcdb_ldo_regulator_get_voltage(struct regulator_dev *rdev)
{
int rc = 0;
u32 voltage_mv = 0;
struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev);
rc = qpnp_lcdb_get_voltage(lcdb, &voltage_mv, LDO);
if (rc < 0) {
pr_err("Failed to get ldo voltage rc=%d\n", rc);
return rc;
}
return voltage_mv * 1000;
}
static struct regulator_ops qpnp_lcdb_ldo_ops = {
.enable = qpnp_lcdb_ldo_regulator_enable,
.disable = qpnp_lcdb_ldo_regulator_disable,
.is_enabled = qpnp_lcdb_ldo_regulator_is_enabled,
.set_voltage = qpnp_lcdb_ldo_regulator_set_voltage,
.get_voltage = qpnp_lcdb_ldo_regulator_get_voltage,
};
static int qpnp_lcdb_ncp_regulator_enable(struct regulator_dev *rdev)
{
int rc = 0;
struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev);
if (lcdb->secure_mode)
return 0;
mutex_lock(&lcdb->lcdb_mutex);
rc = qpnp_lcdb_enable(lcdb);
if (rc < 0)
pr_err("Failed to enable lcdb rc=%d\n", rc);
mutex_unlock(&lcdb->lcdb_mutex);
return rc;
}
static int qpnp_lcdb_ncp_regulator_disable(struct regulator_dev *rdev)
{
int rc = 0;
struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev);
if (lcdb->secure_mode)
return 0;
mutex_lock(&lcdb->lcdb_mutex);
rc = qpnp_lcdb_disable(lcdb);
if (rc < 0)
pr_err("Failed to disable lcdb rc=%d\n", rc);
mutex_unlock(&lcdb->lcdb_mutex);
return rc;
}
static int qpnp_lcdb_ncp_regulator_is_enabled(struct regulator_dev *rdev)
{
struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev);
return lcdb->lcdb_enabled;
}
static int qpnp_lcdb_ncp_regulator_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, unsigned int *selector)
{
int rc = 0;
struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev);
if (lcdb->secure_mode)
return 0;
lcdb->ncp.voltage_mv = min_uV / 1000;
if (lcdb->voltage_step_ramp)
rc = qpnp_lcdb_set_voltage_step(lcdb,
lcdb->ncp.prev_voltage_mv + VOLTAGE_STEP_MV, NCP);
else
rc = qpnp_lcdb_set_voltage(lcdb, lcdb->ncp.voltage_mv, NCP);
if (rc < 0)
pr_err("Failed to set NCP voltage rc=%c\n", rc);
else
lcdb->ncp.prev_voltage_mv = lcdb->ncp.voltage_mv;
return rc;
}
static int qpnp_lcdb_ncp_regulator_get_voltage(struct regulator_dev *rdev)
{
int rc;
u32 voltage_mv = 0;
struct qpnp_lcdb *lcdb = rdev_get_drvdata(rdev);
rc = qpnp_lcdb_get_voltage(lcdb, &voltage_mv, NCP);
if (rc < 0) {
pr_err("Failed to get ncp voltage rc=%d\n", rc);
return rc;
}
return voltage_mv * 1000;
}
static struct regulator_ops qpnp_lcdb_ncp_ops = {
.enable = qpnp_lcdb_ncp_regulator_enable,
.disable = qpnp_lcdb_ncp_regulator_disable,
.is_enabled = qpnp_lcdb_ncp_regulator_is_enabled,
.set_voltage = qpnp_lcdb_ncp_regulator_set_voltage,
.get_voltage = qpnp_lcdb_ncp_regulator_get_voltage,
};
static int qpnp_lcdb_regulator_register(struct qpnp_lcdb *lcdb, u8 type)
{
int rc = 0, off_on_delay = 0;
struct regulator_init_data *init_data;
struct regulator_config cfg = {};
struct regulator_desc *rdesc;
struct regulator_dev *rdev;
struct device_node *node;
if (lcdb->pmic_rev_id->pmic_subtype != PM660L_SUBTYPE)
off_on_delay = PMIC5_LCDB_OFF_ON_DELAY_US;
if (type == LDO) {
node = lcdb->ldo.node;
rdesc = &lcdb->ldo.rdesc;
rdesc->ops = &qpnp_lcdb_ldo_ops;
rdesc->off_on_delay = off_on_delay;
rdev = lcdb->ldo.rdev;
} else if (type == NCP) {
node = lcdb->ncp.node;
rdesc = &lcdb->ncp.rdesc;
rdesc->ops = &qpnp_lcdb_ncp_ops;
rdesc->off_on_delay = off_on_delay;
rdev = lcdb->ncp.rdev;
} else {
pr_err("Invalid regulator type %d\n", type);
return -EINVAL;
}
init_data = of_get_regulator_init_data(lcdb->dev, node, rdesc);
if (!init_data) {
pr_err("Failed to get regulator_init_data for %s\n",
(type == LDO) ? "LDO" : "NCP");
return -ENOMEM;
}
if (init_data->constraints.name) {
rdesc->owner = THIS_MODULE;
rdesc->type = REGULATOR_VOLTAGE;
rdesc->name = init_data->constraints.name;
cfg.dev = lcdb->dev;
cfg.init_data = init_data;
cfg.driver_data = lcdb;
cfg.of_node = node;
if (of_get_property(lcdb->dev->of_node, "parent-supply", NULL))
init_data->supply_regulator = "parent";
init_data->constraints.valid_ops_mask
|= REGULATOR_CHANGE_VOLTAGE
| REGULATOR_CHANGE_STATUS;
rdev = devm_regulator_register(lcdb->dev, rdesc, &cfg);
if (IS_ERR(rdev)) {
rc = PTR_ERR(rdev);
rdev = NULL;
pr_err("Failed to register lcdb_%s regulator rc = %d\n",
(type == LDO) ? "LDO" : "NCP", rc);
return rc;
}
} else {
pr_err("%s_regulator name missing\n",
(type == LDO) ? "LDO" : "NCP");
return -EINVAL;
}
return rc;
}
static int qpnp_lcdb_parse_ttw(struct qpnp_lcdb *lcdb)
{
int rc = 0;
u32 temp;
u8 val = 0;
struct device_node *node = lcdb->dev->of_node;
if (of_property_read_bool(node, "qcom,ttw-mode-sw")) {
lcdb->ttw_mode_sw = true;
rc = of_property_read_u32(node, "qcom,attw-toff-ms", &temp);
if (!rc) {
if (!is_between(temp, ATTW_MIN_MS, ATTW_MAX_MS)) {
pr_err("Invalid TOFF val %d (min=%d max=%d)\n",
temp, ATTW_MIN_MS, ATTW_MAX_MS);
return -EINVAL;
}
val = ilog2(temp / 4) << ATTW_TOFF_TIME_SHIFT;
} else {
pr_err("qcom,attw-toff-ms not specified for TTW SW mode\n");
return rc;
}
rc = of_property_read_u32(node, "qcom,attw-ton-ms", &temp);
if (!rc) {
if (!is_between(temp, ATTW_MIN_MS, ATTW_MAX_MS)) {
pr_err("Invalid TON value %d (min=%d max=%d)\n",
temp, ATTW_MIN_MS, ATTW_MAX_MS);
return -EINVAL;
}
val |= ilog2(temp / 4);
} else {
pr_err("qcom,attw-ton-ms not specified for TTW SW mode\n");
return rc;
}
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_AUTO_TOUCH_WAKE_CTL_REG,
ATTW_TON_TIME_MASK | ATTW_TOFF_TIME_MASK, val);
if (rc < 0) {
pr_err("Failed to write ATTW ON/OFF rc=%d\n", rc);
return rc;
}
}
return 0;
}
static int qpnp_lcdb_ldo_dt_init(struct qpnp_lcdb *lcdb)
{
int rc = 0;
struct device_node *node = lcdb->ldo.node;
/* LDO output voltage */
lcdb->ldo.voltage_mv = -EINVAL;
rc = of_property_read_u32(node, "qcom,ldo-voltage-mv",
&lcdb->ldo.voltage_mv);
if (!rc && !is_between(lcdb->ldo.voltage_mv, MIN_VOLTAGE_MV,
MAX_VOLTAGE_MV)) {
pr_err("Invalid LDO voltage %dmv (min=%d max=%d)\n",
lcdb->ldo.voltage_mv, MIN_VOLTAGE_MV, MAX_VOLTAGE_MV);
return -EINVAL;
}
/* LDO PD configuration */
lcdb->ldo.pd = -EINVAL;
of_property_read_u32(node, "qcom,ldo-pd", &lcdb->ldo.pd);
lcdb->ldo.pd_strength = -EINVAL;
of_property_read_u32(node, "qcom,ldo-pd-strength",
&lcdb->ldo.pd_strength);
/* LDO ILIM configuration */
lcdb->ldo.ilim_ma = -EINVAL;
rc = of_property_read_u32(node, "qcom,ldo-ilim-ma", &lcdb->ldo.ilim_ma);
if (!rc && !is_between(lcdb->ldo.ilim_ma, MIN_LDO_ILIM_MA,
MAX_LDO_ILIM_MA)) {
pr_err("Invalid ilim_ma %d (min=%d, max=%d)\n",
lcdb->ldo.ilim_ma, MIN_LDO_ILIM_MA,
MAX_LDO_ILIM_MA);
return -EINVAL;
}
/* LDO soft-start (SS) configuration */
lcdb->ldo.soft_start_us = -EINVAL;
of_property_read_u32(node, "qcom,ldo-soft-start-us",
&lcdb->ldo.soft_start_us);
return 0;
}
static int qpnp_lcdb_ncp_dt_init(struct qpnp_lcdb *lcdb)
{
int rc = 0;
struct device_node *node = lcdb->ncp.node;
/* NCP output voltage */
lcdb->ncp.voltage_mv = -EINVAL;
rc = of_property_read_u32(node, "qcom,ncp-voltage-mv",
&lcdb->ncp.voltage_mv);
if (!rc && !is_between(lcdb->ncp.voltage_mv, MIN_VOLTAGE_MV,
MAX_VOLTAGE_MV)) {
pr_err("Invalid NCP voltage %dmv (min=%d max=%d)\n",
lcdb->ldo.voltage_mv, MIN_VOLTAGE_MV, MAX_VOLTAGE_MV);
return -EINVAL;
}
/* NCP PD configuration */
lcdb->ncp.pd = -EINVAL;
of_property_read_u32(node, "qcom,ncp-pd", &lcdb->ncp.pd);
lcdb->ncp.pd_strength = -EINVAL;
of_property_read_u32(node, "qcom,ncp-pd-strength",
&lcdb->ncp.pd_strength);
/* NCP ILIM configuration */
lcdb->ncp.ilim_ma = -EINVAL;
rc = of_property_read_u32(node, "qcom,ncp-ilim-ma", &lcdb->ncp.ilim_ma);
if (!rc && !is_between(lcdb->ncp.ilim_ma, MIN_NCP_ILIM_MA,
MAX_NCP_ILIM_MA)) {
pr_err("Invalid ilim_ma %d (min=%d, max=%d)\n",
lcdb->ncp.ilim_ma, MIN_NCP_ILIM_MA, MAX_NCP_ILIM_MA);
return -EINVAL;
}
/* NCP soft-start (SS) configuration */
lcdb->ncp.soft_start_us = -EINVAL;
of_property_read_u32(node, "qcom,ncp-soft-start-us",
&lcdb->ncp.soft_start_us);
return 0;
}
static int qpnp_lcdb_bst_dt_init(struct qpnp_lcdb *lcdb)
{
int rc = 0;
struct device_node *node = lcdb->bst.node;
u16 pmic_subtype = lcdb->pmic_rev_id->pmic_subtype;
u16 default_headroom_mv;
/* Boost PD configuration */
lcdb->bst.pd = -EINVAL;
of_property_read_u32(node, "qcom,bst-pd", &lcdb->bst.pd);
lcdb->bst.pd_strength = -EINVAL;
of_property_read_u32(node, "qcom,bst-pd-strength",
&lcdb->bst.pd_strength);
/* Boost ILIM */
lcdb->bst.ilim_ma = -EINVAL;
rc = of_property_read_u32(node, "qcom,bst-ilim-ma", &lcdb->bst.ilim_ma);
if (!rc && !is_between(lcdb->bst.ilim_ma, MIN_BST_ILIM_MA,
MAX_BST_ILIM_MA)) {
pr_err("Invalid ilim_ma %d (min=%d, max=%d)\n",
lcdb->bst.ilim_ma, MIN_BST_ILIM_MA, MAX_BST_ILIM_MA);
return -EINVAL;
}
/* Boost PS configuration */
lcdb->bst.ps = -EINVAL;
of_property_read_u32(node, "qcom,bst-ps", &lcdb->bst.ps);
lcdb->bst.ps_threshold = -EINVAL;
rc = of_property_read_u32(node, "qcom,bst-ps-threshold-ma",
&lcdb->bst.ps_threshold);
if (!rc && !is_between(lcdb->bst.ps_threshold,
MIN_BST_PS_MA, MAX_BST_PS_MA)) {
pr_err("Invalid bst ps_threshold %d (min=%d, max=%d)\n",
lcdb->bst.ps_threshold, MIN_BST_PS_MA, MAX_BST_PS_MA);
return -EINVAL;
}
default_headroom_mv = (pmic_subtype == PM660L_SUBTYPE) ?
PM660_BST_HEADROOM_DEFAULT_MV :
BST_HEADROOM_DEFAULT_MV;
/* Boost head room configuration */
of_property_read_u16(node, "qcom,bst-headroom-mv",
&lcdb->bst.headroom_mv);
if (lcdb->bst.headroom_mv < default_headroom_mv)
lcdb->bst.headroom_mv = default_headroom_mv;
return 0;
}
static int qpnp_lcdb_init_ldo(struct qpnp_lcdb *lcdb)
{
int rc = 0, ilim_ma;
u8 val = 0;
/* configure parameters only if LCDB is disabled */
if (!is_lcdb_enabled(lcdb)) {
if (lcdb->ldo.voltage_mv != -EINVAL) {
rc = qpnp_lcdb_set_voltage(lcdb,
lcdb->ldo.voltage_mv, LDO);
if (rc < 0) {
pr_err("Failed to set voltage rc=%d\n", rc);
return rc;
}
}
if (lcdb->ldo.pd != -EINVAL) {
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_LDO_PD_CTL_REG, LDO_DIS_PULLDOWN_BIT,
lcdb->ldo.pd ? 0 : LDO_DIS_PULLDOWN_BIT);
if (rc < 0) {
pr_err("Failed to configure LDO PD rc=%d\n",
rc);
return rc;
}
}
if (lcdb->ldo.pd_strength != -EINVAL) {
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_LDO_PD_CTL_REG, LDO_PD_STRENGTH_BIT,
lcdb->ldo.pd_strength ?
LDO_PD_STRENGTH_BIT : 0);
if (rc < 0) {
pr_err("Failed to configure LDO PD strength %s rc=%d",
lcdb->ldo.pd_strength ?
"(strong)" : "(weak)", rc);
return rc;
}
}
if (lcdb->ldo.ilim_ma != -EINVAL) {
ilim_ma = lcdb->ldo.ilim_ma - MIN_LDO_ILIM_MA;
ilim_ma /= LDO_ILIM_STEP_MA;
val = (ilim_ma & SET_LDO_ILIM_MASK) | EN_LDO_ILIM_BIT;
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_LDO_ILIM_CTL1_REG,
SET_LDO_ILIM_MASK | EN_LDO_ILIM_BIT,
val);
if (rc < 0) {
pr_err("Failed to configure LDO ilim_ma (CTL1=%d) rc=%d",
val, rc);
return rc;
}
val = ilim_ma & SET_LDO_ILIM_MASK;
rc = qpnp_lcdb_masked_write(lcdb,
lcdb->base + LCDB_LDO_ILIM_CTL2_REG,
SET_LDO_ILIM_MASK, val);
if (rc < 0) {
pr_err("Failed to configure LDO ilim_ma (CTL2=%d) rc=%d",
val, rc);
return rc;
}
}
if (lcdb->ldo.soft_start_us != -EINVAL) {
rc = qpnp_lcdb_set_soft_start(lcdb,
lcdb->ldo.soft_start_us, LDO);
if (rc < 0) {
pr_err("Failed to set LDO soft_start rc=%d\n",
rc);
return rc;
}
}
}
rc = qpnp_lcdb_get_voltage(lcdb, &lcdb->ldo.voltage_mv, LDO);
if (rc < 0) {
pr_err("Failed to get LDO volatge rc=%d\n", rc);
return rc;
}
lcdb->ldo.prev_voltage_mv = lcdb->ldo.voltage_mv;
rc = qpnp_lcdb_read(lcdb, lcdb->base +
LCDB_LDO_VREG_OK_CTL_REG, &val, 1);
if (rc < 0) {
pr_err("Failed to read ldo_vreg_ok rc=%d\n", rc);
return rc;
}
lcdb->ldo.vreg_ok_dbc_us = dbc_us[val & VREG_OK_DEB_MASK];
rc = qpnp_lcdb_read(lcdb, lcdb->base +
LCDB_LDO_SOFT_START_CTL_REG, &val, 1);
if (rc < 0) {
pr_err("Failed to read ldo_soft_start_ctl rc=%d\n", rc);
return rc;
}
lcdb->ldo.soft_start_us = soft_start_us[val & SOFT_START_MASK];
rc = qpnp_lcdb_regulator_register(lcdb, LDO);
if (rc < 0)
pr_err("Failed to register ldo rc=%d\n", rc);
return rc;
}
static int qpnp_lcdb_init_ncp(struct qpnp_lcdb *lcdb)
{
int rc = 0, i = 0;
u8 val = 0;
/* configure parameters only if LCDB is disabled */
if (!is_lcdb_enabled(lcdb)) {
if (lcdb->ncp.voltage_mv != -EINVAL) {
rc = qpnp_lcdb_set_voltage(lcdb,
lcdb->ncp.voltage_mv, NCP);
if (rc < 0) {
pr_err("Failed to set voltage rc=%d\n", rc);
return rc;
}
}
if (lcdb->ncp.pd != -EINVAL) {
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_NCP_PD_CTL_REG, NCP_DIS_PULLDOWN_BIT,
lcdb->ncp.pd ? 0 : NCP_DIS_PULLDOWN_BIT);
if (rc < 0) {
pr_err("Failed to configure NCP PD rc=%d\n",
rc);
return rc;
}
}
if (lcdb->ncp.pd_strength != -EINVAL) {
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_NCP_PD_CTL_REG, NCP_PD_STRENGTH_BIT,
lcdb->ncp.pd_strength ?
NCP_PD_STRENGTH_BIT : 0);
if (rc < 0) {
pr_err("Failed to configure NCP PD strength %s rc=%d",
lcdb->ncp.pd_strength ?
"(strong)" : "(weak)", rc);
return rc;
}
}
if (lcdb->ncp.ilim_ma != -EINVAL) {
while (lcdb->ncp.ilim_ma > ncp_ilim_ma[i])
i++;
val = (i == 0) ? 0 : i - 1;
val = (lcdb->ncp.ilim_ma & SET_NCP_ILIM_MASK) |
EN_NCP_ILIM_BIT;
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_NCP_ILIM_CTL1_REG,
SET_NCP_ILIM_MASK | EN_NCP_ILIM_BIT, val);
if (rc < 0) {
pr_err("Failed to configure NCP ilim_ma (CTL1=%d) rc=%d",
val, rc);
return rc;
}
val = lcdb->ncp.ilim_ma & SET_NCP_ILIM_MASK;
rc = qpnp_lcdb_masked_write(lcdb,
lcdb->base + LCDB_NCP_ILIM_CTL2_REG,
SET_NCP_ILIM_MASK, val);
if (rc < 0) {
pr_err("Failed to configure NCP ilim_ma (CTL2=%d) rc=%d",
val, rc);
return rc;
}
}
if (lcdb->ncp.soft_start_us != -EINVAL) {
rc = qpnp_lcdb_set_soft_start(lcdb,
lcdb->ncp.soft_start_us, NCP);
if (rc < 0) {
pr_err("Failed to set NCP soft_start rc=%d\n",
rc);
return rc;
}
}
}
rc = qpnp_lcdb_get_voltage(lcdb, &lcdb->ncp.voltage_mv, NCP);
if (rc < 0) {
pr_err("Failed to get NCP volatge rc=%d\n", rc);
return rc;
}
lcdb->ncp.prev_voltage_mv = lcdb->ncp.voltage_mv;
rc = qpnp_lcdb_read(lcdb, lcdb->base +
LCDB_NCP_VREG_OK_CTL_REG, &val, 1);
if (rc < 0) {
pr_err("Failed to read ncp_vreg_ok rc=%d\n", rc);
return rc;
}
lcdb->ncp.vreg_ok_dbc_us = dbc_us[val & VREG_OK_DEB_MASK];
rc = qpnp_lcdb_read(lcdb, lcdb->base +
LCDB_NCP_SOFT_START_CTL_REG, &val, 1);
if (rc < 0) {
pr_err("Failed to read ncp_soft_start_ctl rc=%d\n", rc);
return rc;
}
lcdb->ncp.soft_start_us = soft_start_us[val & SOFT_START_MASK];
rc = qpnp_lcdb_regulator_register(lcdb, NCP);
if (rc < 0)
pr_err("Failed to register NCP rc=%d\n", rc);
return rc;
}
static int qpnp_lcdb_init_bst(struct qpnp_lcdb *lcdb)
{
int rc = 0;
u8 val, mask = 0;
u16 pmic_subtype = lcdb->pmic_rev_id->pmic_subtype;
/* configure parameters only if LCDB is disabled */
if (!is_lcdb_enabled(lcdb)) {
if (lcdb->bst.pd != -EINVAL) {
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_BST_PD_CTL_REG, BOOST_DIS_PULLDOWN_BIT,
lcdb->bst.pd ? 0 : BOOST_DIS_PULLDOWN_BIT);
if (rc < 0) {
pr_err("Failed to configure BST PD rc=%d\n",
rc);
return rc;
}
}
if (lcdb->bst.pd_strength != -EINVAL) {
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_BST_PD_CTL_REG, BOOST_PD_STRENGTH_BIT,
lcdb->bst.pd_strength ?
BOOST_PD_STRENGTH_BIT : 0);
if (rc < 0) {
pr_err("Failed to configure NCP PD strength %s rc=%d",
lcdb->bst.pd_strength ?
"(strong)" : "(weak)", rc);
return rc;
}
}
if (lcdb->bst.ilim_ma != -EINVAL) {
val = (lcdb->bst.ilim_ma / MIN_BST_ILIM_MA) - 1;
val = (lcdb->bst.ilim_ma & SET_BST_ILIM_MASK) |
EN_BST_ILIM_BIT;
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_BST_ILIM_CTL_REG,
SET_BST_ILIM_MASK | EN_BST_ILIM_BIT, val);
if (rc < 0) {
pr_err("Failed to configure BST ilim_ma rc=%d",
rc);
return rc;
}
}
if (lcdb->bst.ps != -EINVAL) {
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_PS_CTL_REG, EN_PS_BIT,
lcdb->bst.ps ? EN_PS_BIT : 0);
if (rc < 0) {
pr_err("Failed to disable BST PS rc=%d", rc);
return rc;
}
}
if (lcdb->bst.ps_threshold != -EINVAL) {
mask = (pmic_subtype == PM660L_SUBTYPE) ?
PM660_PS_THRESH_MASK : PS_THRESH_MASK;
val = (lcdb->bst.ps_threshold - MIN_BST_PS_MA) / 10;
val = (lcdb->bst.ps_threshold & mask) | EN_PS_BIT;
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_PS_CTL_REG,
mask | EN_PS_BIT, val);
if (rc < 0) {
pr_err("Failed to configure BST PS threshold rc=%d",
rc);
return rc;
}
}
}
rc = qpnp_lcdb_get_voltage(lcdb, &lcdb->bst.voltage_mv, BST);
if (rc < 0) {
pr_err("Failed to get BST volatge rc=%d\n", rc);
return rc;
}
rc = qpnp_lcdb_read(lcdb, lcdb->base +
LCDB_BST_VREG_OK_CTL_REG, &val, 1);
if (rc < 0) {
pr_err("Failed to read bst_vreg_ok rc=%d\n", rc);
return rc;
}
lcdb->bst.vreg_ok_dbc_us = dbc_us[val & VREG_OK_DEB_MASK];
if (pmic_subtype == PM660L_SUBTYPE) {
rc = qpnp_lcdb_read(lcdb, lcdb->base +
LCDB_SOFT_START_CTL_REG, &val, 1);
if (rc < 0) {
pr_err("Failed to read lcdb_soft_start_ctl rc=%d\n",
rc);
return rc;
}
lcdb->bst.soft_start_us = (val & SOFT_START_MASK) * 200 + 200;
if (!lcdb->bst.headroom_mv)
lcdb->bst.headroom_mv = PM660_BST_HEADROOM_DEFAULT_MV;
} else {
rc = qpnp_lcdb_read(lcdb, lcdb->base +
LCDB_BST_SS_CTL_REG, &val, 1);
if (rc < 0) {
pr_err("Failed to read bst_soft_start_ctl rc=%d\n", rc);
return rc;
}
lcdb->bst.soft_start_us = soft_start_us[val & SOFT_START_MASK];
if (!lcdb->bst.headroom_mv)
lcdb->bst.headroom_mv = BST_HEADROOM_DEFAULT_MV;
}
return 0;
}
static void qpnp_lcdb_pmic_config(struct qpnp_lcdb *lcdb)
{
switch (lcdb->pmic_rev_id->pmic_subtype) {
case PM660L_SUBTYPE:
if (lcdb->pmic_rev_id->rev4 < PM660L_V2P0_REV4)
lcdb->wa_flags |= NCP_SCP_DISABLE_WA;
break;
case PMI632_SUBTYPE:
case PM855L_SUBTYPE:
lcdb->wa_flags |= FORCE_PD_ENABLE_WA;
break;
default:
break;
}
pr_debug("LCDB wa_flags = 0x%2x\n", lcdb->wa_flags);
}
static int qpnp_lcdb_hw_init(struct qpnp_lcdb *lcdb)
{
int rc = 0;
u8 val = 0;
qpnp_lcdb_pmic_config(lcdb);
if (lcdb->pwrdn_delay_ms != -EINVAL) {
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_PWRUP_PWRDN_CTL_REG,
PWRDN_DELAY_MASK,
lcdb->pwrdn_delay_ms);
if (rc < 0)
return rc;
}
rc = qpnp_lcdb_init_bst(lcdb);
if (rc < 0) {
pr_err("Failed to initialize BOOST rc=%d\n", rc);
return rc;
}
rc = qpnp_lcdb_init_ldo(lcdb);
if (rc < 0) {
pr_err("Failed to initialize LDO rc=%d\n", rc);
return rc;
}
rc = qpnp_lcdb_init_ncp(lcdb);
if (rc < 0) {
pr_err("Failed to initialize NCP rc=%d\n", rc);
return rc;
}
if (lcdb->sc_irq >= 0 && !(lcdb->wa_flags & NCP_SCP_DISABLE_WA)) {
lcdb->sc_count = 0;
irq_set_status_flags(lcdb->sc_irq,
IRQ_DISABLE_UNLAZY);
rc = devm_request_threaded_irq(lcdb->dev, lcdb->sc_irq,
NULL, qpnp_lcdb_sc_irq_handler, IRQF_ONESHOT,
"qpnp_lcdb_sc_irq", lcdb);
if (rc < 0) {
pr_err("Unable to request sc(%d) irq rc=%d\n",
lcdb->sc_irq, rc);
return rc;
}
}
if (!is_lcdb_enabled(lcdb)) {
rc = qpnp_lcdb_read(lcdb, lcdb->base +
LCDB_MODULE_RDY_REG, &val, 1);
if (rc < 0) {
pr_err("Failed to read MODULE_RDY rc=%d\n", rc);
return rc;
}
if (!(val & MODULE_RDY_BIT)) {
rc = qpnp_lcdb_masked_write(lcdb, lcdb->base +
LCDB_MODULE_RDY_REG, MODULE_RDY_BIT,
MODULE_RDY_BIT);
if (rc < 0) {
pr_err("Failed to set MODULE RDY rc=%d\n", rc);
return rc;
}
}
} else {
/* module already enabled */
lcdb->lcdb_enabled = true;
}
return 0;
}
static int qpnp_lcdb_parse_dt(struct qpnp_lcdb *lcdb)
{
int rc = 0, i = 0;
u32 tmp;
const char *label;
struct device_node *revid_dev_node, *temp, *node = lcdb->dev->of_node;
revid_dev_node = of_parse_phandle(node, "qcom,pmic-revid", 0);
if (!revid_dev_node) {
pr_err("Missing qcom,pmic-revid property - fail driver\n");
return -EINVAL;
}
lcdb->pmic_rev_id = get_revid_data(revid_dev_node);
if (IS_ERR(lcdb->pmic_rev_id)) {
pr_debug("Unable to get revid data\n");
/*
* revid should to be defined, return -EPROBE_DEFER
* until the revid module registers.
*/
of_node_put(revid_dev_node);
return -EPROBE_DEFER;
}
of_node_put(revid_dev_node);
for_each_available_child_of_node(node, temp) {
rc = of_property_read_string(temp, "label", &label);
if (rc < 0) {
pr_err("Failed to read label rc=%d\n", rc);
return rc;
}
if (!strcmp(label, "ldo")) {
lcdb->ldo.node = temp;
rc = qpnp_lcdb_ldo_dt_init(lcdb);
} else if (!strcmp(label, "ncp")) {
lcdb->ncp.node = temp;
rc = qpnp_lcdb_ncp_dt_init(lcdb);
} else if (!strcmp(label, "bst")) {
lcdb->bst.node = temp;
rc = qpnp_lcdb_bst_dt_init(lcdb);
} else {
pr_err("Failed to identify label %s\n", label);
return -EINVAL;
}
if (rc < 0) {
pr_err("Failed to register %s module\n", label);
return rc;
}
}
if (of_property_read_bool(node, "qcom,ttw-enable")) {
rc = qpnp_lcdb_parse_ttw(lcdb);
if (rc < 0) {
pr_err("Failed to parse ttw-params rc=%d\n", rc);
return rc;
}
lcdb->ttw_enable = true;
}
lcdb->sc_irq = platform_get_irq_byname(lcdb->pdev, "sc-irq");
if (lcdb->sc_irq < 0)
pr_debug("sc irq is not defined\n");
lcdb->voltage_step_ramp =
of_property_read_bool(node, "qcom,voltage-step-ramp");
lcdb->pwrdn_delay_ms = -EINVAL;
rc = of_property_read_u32(node, "qcom,pwrdn-delay-ms", &tmp);
if (!rc) {
if (!is_between(tmp, PWRDN_DELAY_MIN_MS, PWRDN_DELAY_MAX_MS)) {
pr_err("Invalid PWRDN_DLY val %d (min=%d max=%d)\n",
tmp, PWRDN_DELAY_MIN_MS, PWRDN_DELAY_MAX_MS);
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(pwrup_pwrdn_ms); i++) {
if (tmp == pwrup_pwrdn_ms[i]) {
lcdb->pwrdn_delay_ms = i;
break;
}
}
}
return 0;
}
static ssize_t qpnp_lcdb_irq_control(struct class *c,
struct class_attribute *attr,
const char *buf, size_t count)
{
struct qpnp_lcdb *lcdb = container_of(c, struct qpnp_lcdb,
lcdb_class);
int val, rc;
rc = kstrtouint(buf, 0, &val);
if (rc < 0)
return rc;
if (val != 0 && val != 1)
return count;
if (val == 1 && !lcdb->secure_mode) {
if (lcdb->sc_irq > 0)
disable_irq(lcdb->sc_irq);
lcdb->secure_mode = true;
} else if (val == 0 && lcdb->secure_mode) {
if (lcdb->sc_irq > 0)
enable_irq(lcdb->sc_irq);
lcdb->secure_mode = false;
}
return count;
}
static struct class_attribute lcdb_attributes[] = {
[0] = __ATTR(secure_mode, 0664, NULL,
qpnp_lcdb_irq_control),
__ATTR_NULL,
};
static int qpnp_lcdb_regulator_probe(struct platform_device *pdev)
{
int rc;
struct device_node *node;
struct qpnp_lcdb *lcdb;
node = pdev->dev.of_node;
if (!node) {
pr_err("No nodes defined\n");
return -ENODEV;
}
lcdb = devm_kzalloc(&pdev->dev, sizeof(*lcdb), GFP_KERNEL);
if (!lcdb)
return -ENOMEM;
rc = of_property_read_u32(node, "reg", &lcdb->base);
if (rc < 0) {
pr_err("Failed to find reg node rc=%d\n", rc);
return rc;
}
lcdb->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!lcdb->regmap) {
pr_err("Failed to get the regmap handle rc=%d\n", rc);
return -EINVAL;
}
lcdb->dev = &pdev->dev;
lcdb->pdev = pdev;
mutex_init(&lcdb->lcdb_mutex);
mutex_init(&lcdb->read_write_mutex);
rc = qpnp_lcdb_parse_dt(lcdb);
if (rc < 0) {
pr_err("Failed to parse dt rc=%d\n", rc);
return rc;
}
lcdb->lcdb_class.name = "lcd_bias";
lcdb->lcdb_class.owner = THIS_MODULE;
lcdb->lcdb_class.class_attrs = lcdb_attributes;
rc = class_register(&lcdb->lcdb_class);
if (rc < 0) {
pr_err("Failed to register lcdb class rc = %d\n", rc);
return rc;
}
rc = qpnp_lcdb_hw_init(lcdb);
if (rc < 0)
pr_err("Failed to initialize LCDB module rc=%d\n", rc);
else
pr_info("LCDB module successfully registered! lcdb_en=%d ldo_voltage=%dmV ncp_voltage=%dmV bst_voltage=%dmV\n",
lcdb->lcdb_enabled, lcdb->ldo.voltage_mv,
lcdb->ncp.voltage_mv, lcdb->bst.voltage_mv);
return rc;
}
static int qpnp_lcdb_regulator_remove(struct platform_device *pdev)
{
struct qpnp_lcdb *lcdb = dev_get_drvdata(&pdev->dev);
mutex_destroy(&lcdb->lcdb_mutex);
mutex_destroy(&lcdb->read_write_mutex);
return 0;
}
static const struct of_device_id lcdb_match_table[] = {
{ .compatible = QPNP_LCDB_REGULATOR_DRIVER_NAME, },
{ },
};
static struct platform_driver qpnp_lcdb_regulator_driver = {
.driver = {
.name = QPNP_LCDB_REGULATOR_DRIVER_NAME,
.of_match_table = lcdb_match_table,
},
.probe = qpnp_lcdb_regulator_probe,
.remove = qpnp_lcdb_regulator_remove,
};
static int __init qpnp_lcdb_regulator_init(void)
{
return platform_driver_register(&qpnp_lcdb_regulator_driver);
}
arch_initcall(qpnp_lcdb_regulator_init);
static void __exit qpnp_lcdb_regulator_exit(void)
{
platform_driver_unregister(&qpnp_lcdb_regulator_driver);
}
module_exit(qpnp_lcdb_regulator_exit);
MODULE_DESCRIPTION("QPNP LCDB regulator driver");
MODULE_LICENSE("GPL v2");