| /* |
| * Copyright (C) 2013 Broadcom Corporation |
| * Copyright 2013 Linaro Limited |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation version 2. |
| * |
| * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| * kind, whether express or implied; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/io.h> |
| #include <linux/of_address.h> |
| |
| #include "clk-kona.h" |
| |
| /* These are used when a selector or trigger is found to be unneeded */ |
| #define selector_clear_exists(sel) ((sel)->width = 0) |
| #define trigger_clear_exists(trig) FLAG_CLEAR(trig, TRIG, EXISTS) |
| |
| LIST_HEAD(ccu_list); /* The list of set up CCUs */ |
| |
| /* Validity checking */ |
| |
| static bool clk_requires_trigger(struct kona_clk *bcm_clk) |
| { |
| struct peri_clk_data *peri = bcm_clk->u.peri; |
| struct bcm_clk_sel *sel; |
| struct bcm_clk_div *div; |
| |
| if (bcm_clk->type != bcm_clk_peri) |
| return false; |
| |
| sel = &peri->sel; |
| if (sel->parent_count && selector_exists(sel)) |
| return true; |
| |
| div = &peri->div; |
| if (!divider_exists(div)) |
| return false; |
| |
| /* Fixed dividers don't need triggers */ |
| if (!divider_is_fixed(div)) |
| return true; |
| |
| div = &peri->pre_div; |
| |
| return divider_exists(div) && !divider_is_fixed(div); |
| } |
| |
| static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk) |
| { |
| struct peri_clk_data *peri; |
| struct bcm_clk_gate *gate; |
| struct bcm_clk_div *div; |
| struct bcm_clk_sel *sel; |
| struct bcm_clk_trig *trig; |
| const char *name; |
| u32 range; |
| u32 limit; |
| |
| BUG_ON(bcm_clk->type != bcm_clk_peri); |
| peri = bcm_clk->u.peri; |
| name = bcm_clk->name; |
| range = bcm_clk->ccu->range; |
| |
| limit = range - sizeof(u32); |
| limit = round_down(limit, sizeof(u32)); |
| |
| gate = &peri->gate; |
| if (gate_exists(gate)) { |
| if (gate->offset > limit) { |
| pr_err("%s: bad gate offset for %s (%u > %u)\n", |
| __func__, name, gate->offset, limit); |
| return false; |
| } |
| } |
| |
| div = &peri->div; |
| if (divider_exists(div)) { |
| if (div->u.s.offset > limit) { |
| pr_err("%s: bad divider offset for %s (%u > %u)\n", |
| __func__, name, div->u.s.offset, limit); |
| return false; |
| } |
| } |
| |
| div = &peri->pre_div; |
| if (divider_exists(div)) { |
| if (div->u.s.offset > limit) { |
| pr_err("%s: bad pre-divider offset for %s " |
| "(%u > %u)\n", |
| __func__, name, div->u.s.offset, limit); |
| return false; |
| } |
| } |
| |
| sel = &peri->sel; |
| if (selector_exists(sel)) { |
| if (sel->offset > limit) { |
| pr_err("%s: bad selector offset for %s (%u > %u)\n", |
| __func__, name, sel->offset, limit); |
| return false; |
| } |
| } |
| |
| trig = &peri->trig; |
| if (trigger_exists(trig)) { |
| if (trig->offset > limit) { |
| pr_err("%s: bad trigger offset for %s (%u > %u)\n", |
| __func__, name, trig->offset, limit); |
| return false; |
| } |
| } |
| |
| trig = &peri->pre_trig; |
| if (trigger_exists(trig)) { |
| if (trig->offset > limit) { |
| pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n", |
| __func__, name, trig->offset, limit); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* A bit position must be less than the number of bits in a 32-bit register. */ |
| static bool bit_posn_valid(u32 bit_posn, const char *field_name, |
| const char *clock_name) |
| { |
| u32 limit = BITS_PER_BYTE * sizeof(u32) - 1; |
| |
| if (bit_posn > limit) { |
| pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__, |
| field_name, clock_name, bit_posn, limit); |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * A bitfield must be at least 1 bit wide. Both the low-order and |
| * high-order bits must lie within a 32-bit register. We require |
| * fields to be less than 32 bits wide, mainly because we use |
| * shifting to produce field masks, and shifting a full word width |
| * is not well-defined by the C standard. |
| */ |
| static bool bitfield_valid(u32 shift, u32 width, const char *field_name, |
| const char *clock_name) |
| { |
| u32 limit = BITS_PER_BYTE * sizeof(u32); |
| |
| if (!width) { |
| pr_err("%s: bad %s field width 0 for %s\n", __func__, |
| field_name, clock_name); |
| return false; |
| } |
| if (shift + width > limit) { |
| pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__, |
| field_name, clock_name, shift, width, limit); |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * All gates, if defined, have a status bit, and for hardware-only |
| * gates, that's it. Gates that can be software controlled also |
| * have an enable bit. And a gate that can be hardware or software |
| * controlled will have a hardware/software select bit. |
| */ |
| static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name, |
| const char *clock_name) |
| { |
| if (!bit_posn_valid(gate->status_bit, "gate status", clock_name)) |
| return false; |
| |
| if (gate_is_sw_controllable(gate)) { |
| if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name)) |
| return false; |
| |
| if (gate_is_hw_controllable(gate)) { |
| if (!bit_posn_valid(gate->hw_sw_sel_bit, |
| "gate hw/sw select", |
| clock_name)) |
| return false; |
| } |
| } else { |
| BUG_ON(!gate_is_hw_controllable(gate)); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * A selector bitfield must be valid. Its parent_sel array must |
| * also be reasonable for the field. |
| */ |
| static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name, |
| const char *clock_name) |
| { |
| if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name)) |
| return false; |
| |
| if (sel->parent_count) { |
| u32 max_sel; |
| u32 limit; |
| |
| /* |
| * Make sure the selector field can hold all the |
| * selector values we expect to be able to use. A |
| * clock only needs to have a selector defined if it |
| * has more than one parent. And in that case the |
| * highest selector value will be in the last entry |
| * in the array. |
| */ |
| max_sel = sel->parent_sel[sel->parent_count - 1]; |
| limit = (1 << sel->width) - 1; |
| if (max_sel > limit) { |
| pr_err("%s: bad selector for %s " |
| "(%u needs > %u bits)\n", |
| __func__, clock_name, max_sel, |
| sel->width); |
| return false; |
| } |
| } else { |
| pr_warn("%s: ignoring selector for %s (no parents)\n", |
| __func__, clock_name); |
| selector_clear_exists(sel); |
| kfree(sel->parent_sel); |
| sel->parent_sel = NULL; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * A fixed divider just needs to be non-zero. A variable divider |
| * has to have a valid divider bitfield, and if it has a fraction, |
| * the width of the fraction must not be no more than the width of |
| * the divider as a whole. |
| */ |
| static bool div_valid(struct bcm_clk_div *div, const char *field_name, |
| const char *clock_name) |
| { |
| if (divider_is_fixed(div)) { |
| /* Any fixed divider value but 0 is OK */ |
| if (div->u.fixed == 0) { |
| pr_err("%s: bad %s fixed value 0 for %s\n", __func__, |
| field_name, clock_name); |
| return false; |
| } |
| return true; |
| } |
| if (!bitfield_valid(div->u.s.shift, div->u.s.width, |
| field_name, clock_name)) |
| return false; |
| |
| if (divider_has_fraction(div)) |
| if (div->u.s.frac_width > div->u.s.width) { |
| pr_warn("%s: bad %s fraction width for %s (%u > %u)\n", |
| __func__, field_name, clock_name, |
| div->u.s.frac_width, div->u.s.width); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * If a clock has two dividers, the combined number of fractional |
| * bits must be representable in a 32-bit unsigned value. This |
| * is because we scale up a dividend using both dividers before |
| * dividing to improve accuracy, and we need to avoid overflow. |
| */ |
| static bool kona_dividers_valid(struct kona_clk *bcm_clk) |
| { |
| struct peri_clk_data *peri = bcm_clk->u.peri; |
| struct bcm_clk_div *div; |
| struct bcm_clk_div *pre_div; |
| u32 limit; |
| |
| BUG_ON(bcm_clk->type != bcm_clk_peri); |
| |
| if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div)) |
| return true; |
| |
| div = &peri->div; |
| pre_div = &peri->pre_div; |
| if (divider_is_fixed(div) || divider_is_fixed(pre_div)) |
| return true; |
| |
| limit = BITS_PER_BYTE * sizeof(u32); |
| |
| return div->u.s.frac_width + pre_div->u.s.frac_width <= limit; |
| } |
| |
| |
| /* A trigger just needs to represent a valid bit position */ |
| static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name, |
| const char *clock_name) |
| { |
| return bit_posn_valid(trig->bit, field_name, clock_name); |
| } |
| |
| /* Determine whether the set of peripheral clock registers are valid. */ |
| static bool |
| peri_clk_data_valid(struct kona_clk *bcm_clk) |
| { |
| struct peri_clk_data *peri; |
| struct bcm_clk_gate *gate; |
| struct bcm_clk_sel *sel; |
| struct bcm_clk_div *div; |
| struct bcm_clk_div *pre_div; |
| struct bcm_clk_trig *trig; |
| const char *name; |
| |
| BUG_ON(bcm_clk->type != bcm_clk_peri); |
| |
| /* |
| * First validate register offsets. This is the only place |
| * where we need something from the ccu, so we do these |
| * together. |
| */ |
| if (!peri_clk_data_offsets_valid(bcm_clk)) |
| return false; |
| |
| peri = bcm_clk->u.peri; |
| name = bcm_clk->name; |
| gate = &peri->gate; |
| if (gate_exists(gate) && !gate_valid(gate, "gate", name)) |
| return false; |
| |
| sel = &peri->sel; |
| if (selector_exists(sel)) { |
| if (!sel_valid(sel, "selector", name)) |
| return false; |
| |
| } else if (sel->parent_count > 1) { |
| pr_err("%s: multiple parents but no selector for %s\n", |
| __func__, name); |
| |
| return false; |
| } |
| |
| div = &peri->div; |
| pre_div = &peri->pre_div; |
| if (divider_exists(div)) { |
| if (!div_valid(div, "divider", name)) |
| return false; |
| |
| if (divider_exists(pre_div)) |
| if (!div_valid(pre_div, "pre-divider", name)) |
| return false; |
| } else if (divider_exists(pre_div)) { |
| pr_err("%s: pre-divider but no divider for %s\n", __func__, |
| name); |
| return false; |
| } |
| |
| trig = &peri->trig; |
| if (trigger_exists(trig)) { |
| if (!trig_valid(trig, "trigger", name)) |
| return false; |
| |
| if (trigger_exists(&peri->pre_trig)) { |
| if (!trig_valid(trig, "pre-trigger", name)) { |
| return false; |
| } |
| } |
| if (!clk_requires_trigger(bcm_clk)) { |
| pr_warn("%s: ignoring trigger for %s (not needed)\n", |
| __func__, name); |
| trigger_clear_exists(trig); |
| } |
| } else if (trigger_exists(&peri->pre_trig)) { |
| pr_err("%s: pre-trigger but no trigger for %s\n", __func__, |
| name); |
| return false; |
| } else if (clk_requires_trigger(bcm_clk)) { |
| pr_err("%s: required trigger missing for %s\n", __func__, |
| name); |
| return false; |
| } |
| |
| return kona_dividers_valid(bcm_clk); |
| } |
| |
| static bool kona_clk_valid(struct kona_clk *bcm_clk) |
| { |
| switch (bcm_clk->type) { |
| case bcm_clk_peri: |
| if (!peri_clk_data_valid(bcm_clk)) |
| return false; |
| break; |
| default: |
| pr_err("%s: unrecognized clock type (%d)\n", __func__, |
| (int)bcm_clk->type); |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * Scan an array of parent clock names to determine whether there |
| * are any entries containing BAD_CLK_NAME. Such entries are |
| * placeholders for non-supported clocks. Keep track of the |
| * position of each clock name in the original array. |
| * |
| * Allocates an array of pointers to to hold the names of all |
| * non-null entries in the original array, and returns a pointer to |
| * that array in *names. This will be used for registering the |
| * clock with the common clock code. On successful return, |
| * *count indicates how many entries are in that names array. |
| * |
| * If there is more than one entry in the resulting names array, |
| * another array is allocated to record the parent selector value |
| * for each (defined) parent clock. This is the value that |
| * represents this parent clock in the clock's source selector |
| * register. The position of the clock in the original parent array |
| * defines that selector value. The number of entries in this array |
| * is the same as the number of entries in the parent names array. |
| * |
| * The array of selector values is returned. If the clock has no |
| * parents, no selector is required and a null pointer is returned. |
| * |
| * Returns a null pointer if the clock names array supplied was |
| * null. (This is not an error.) |
| * |
| * Returns a pointer-coded error if an error occurs. |
| */ |
| static u32 *parent_process(const char *clocks[], |
| u32 *count, const char ***names) |
| { |
| static const char **parent_names; |
| static u32 *parent_sel; |
| const char **clock; |
| u32 parent_count; |
| u32 bad_count = 0; |
| u32 orig_count; |
| u32 i; |
| u32 j; |
| |
| *count = 0; /* In case of early return */ |
| *names = NULL; |
| if (!clocks) |
| return NULL; |
| |
| /* |
| * Count the number of names in the null-terminated array, |
| * and find out how many of those are actually clock names. |
| */ |
| for (clock = clocks; *clock; clock++) |
| if (*clock == BAD_CLK_NAME) |
| bad_count++; |
| orig_count = (u32)(clock - clocks); |
| parent_count = orig_count - bad_count; |
| |
| /* If all clocks are unsupported, we treat it as no clock */ |
| if (!parent_count) |
| return NULL; |
| |
| /* Avoid exceeding our parent clock limit */ |
| if (parent_count > PARENT_COUNT_MAX) { |
| pr_err("%s: too many parents (%u > %u)\n", __func__, |
| parent_count, PARENT_COUNT_MAX); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* |
| * There is one parent name for each defined parent clock. |
| * We also maintain an array containing the selector value |
| * for each defined clock. If there's only one clock, the |
| * selector is not required, but we allocate space for the |
| * array anyway to keep things simple. |
| */ |
| parent_names = kmalloc(parent_count * sizeof(parent_names), GFP_KERNEL); |
| if (!parent_names) { |
| pr_err("%s: error allocating %u parent names\n", __func__, |
| parent_count); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* There is at least one parent, so allocate a selector array */ |
| |
| parent_sel = kmalloc(parent_count * sizeof(*parent_sel), GFP_KERNEL); |
| if (!parent_sel) { |
| pr_err("%s: error allocating %u parent selectors\n", __func__, |
| parent_count); |
| kfree(parent_names); |
| |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* Now fill in the parent names and selector arrays */ |
| for (i = 0, j = 0; i < orig_count; i++) { |
| if (clocks[i] != BAD_CLK_NAME) { |
| parent_names[j] = clocks[i]; |
| parent_sel[j] = i; |
| j++; |
| } |
| } |
| *names = parent_names; |
| *count = parent_count; |
| |
| return parent_sel; |
| } |
| |
| static int |
| clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel, |
| struct clk_init_data *init_data) |
| { |
| const char **parent_names = NULL; |
| u32 parent_count = 0; |
| u32 *parent_sel; |
| |
| /* |
| * If a peripheral clock has multiple parents, the value |
| * used by the hardware to select that parent is represented |
| * by the parent clock's position in the "clocks" list. Some |
| * values don't have defined or supported clocks; these will |
| * have BAD_CLK_NAME entries in the parents[] array. The |
| * list is terminated by a NULL entry. |
| * |
| * We need to supply (only) the names of defined parent |
| * clocks when registering a clock though, so we use an |
| * array of parent selector values to map between the |
| * indexes the common clock code uses and the selector |
| * values we need. |
| */ |
| parent_sel = parent_process(clocks, &parent_count, &parent_names); |
| if (IS_ERR(parent_sel)) { |
| int ret = PTR_ERR(parent_sel); |
| |
| pr_err("%s: error processing parent clocks for %s (%d)\n", |
| __func__, init_data->name, ret); |
| |
| return ret; |
| } |
| |
| init_data->parent_names = parent_names; |
| init_data->num_parents = parent_count; |
| |
| sel->parent_count = parent_count; |
| sel->parent_sel = parent_sel; |
| |
| return 0; |
| } |
| |
| static void clk_sel_teardown(struct bcm_clk_sel *sel, |
| struct clk_init_data *init_data) |
| { |
| kfree(sel->parent_sel); |
| sel->parent_sel = NULL; |
| sel->parent_count = 0; |
| |
| init_data->num_parents = 0; |
| kfree(init_data->parent_names); |
| init_data->parent_names = NULL; |
| } |
| |
| static void peri_clk_teardown(struct peri_clk_data *data, |
| struct clk_init_data *init_data) |
| { |
| clk_sel_teardown(&data->sel, init_data); |
| init_data->ops = NULL; |
| } |
| |
| /* |
| * Caller is responsible for freeing the parent_names[] and |
| * parent_sel[] arrays in the peripheral clock's "data" structure |
| * that can be assigned if the clock has one or more parent clocks |
| * associated with it. |
| */ |
| static int peri_clk_setup(struct ccu_data *ccu, struct peri_clk_data *data, |
| struct clk_init_data *init_data) |
| { |
| init_data->ops = &kona_peri_clk_ops; |
| init_data->flags = CLK_IGNORE_UNUSED; |
| |
| return clk_sel_setup(data->clocks, &data->sel, init_data); |
| } |
| |
| static void bcm_clk_teardown(struct kona_clk *bcm_clk) |
| { |
| switch (bcm_clk->type) { |
| case bcm_clk_peri: |
| peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data); |
| break; |
| default: |
| break; |
| } |
| bcm_clk->u.data = NULL; |
| bcm_clk->type = bcm_clk_none; |
| } |
| |
| static void kona_clk_teardown(struct clk *clk) |
| { |
| struct clk_hw *hw; |
| struct kona_clk *bcm_clk; |
| |
| if (!clk) |
| return; |
| |
| hw = __clk_get_hw(clk); |
| if (!hw) { |
| pr_err("%s: clk %p has null hw pointer\n", __func__, clk); |
| return; |
| } |
| clk_unregister(clk); |
| |
| bcm_clk = to_kona_clk(hw); |
| bcm_clk_teardown(bcm_clk); |
| } |
| |
| struct clk *kona_clk_setup(struct ccu_data *ccu, const char *name, |
| enum bcm_clk_type type, void *data) |
| { |
| struct kona_clk *bcm_clk; |
| struct clk_init_data *init_data; |
| struct clk *clk = NULL; |
| |
| bcm_clk = kzalloc(sizeof(*bcm_clk), GFP_KERNEL); |
| if (!bcm_clk) { |
| pr_err("%s: failed to allocate bcm_clk for %s\n", __func__, |
| name); |
| return NULL; |
| } |
| bcm_clk->ccu = ccu; |
| bcm_clk->name = name; |
| |
| init_data = &bcm_clk->init_data; |
| init_data->name = name; |
| switch (type) { |
| case bcm_clk_peri: |
| if (peri_clk_setup(ccu, data, init_data)) |
| goto out_free; |
| break; |
| default: |
| data = NULL; |
| break; |
| } |
| bcm_clk->type = type; |
| bcm_clk->u.data = data; |
| |
| /* Make sure everything makes sense before we set it up */ |
| if (!kona_clk_valid(bcm_clk)) { |
| pr_err("%s: clock data invalid for %s\n", __func__, name); |
| goto out_teardown; |
| } |
| |
| bcm_clk->hw.init = init_data; |
| clk = clk_register(NULL, &bcm_clk->hw); |
| if (IS_ERR(clk)) { |
| pr_err("%s: error registering clock %s (%ld)\n", __func__, |
| name, PTR_ERR(clk)); |
| goto out_teardown; |
| } |
| BUG_ON(!clk); |
| |
| return clk; |
| out_teardown: |
| bcm_clk_teardown(bcm_clk); |
| out_free: |
| kfree(bcm_clk); |
| |
| return NULL; |
| } |
| |
| static void ccu_clks_teardown(struct ccu_data *ccu) |
| { |
| u32 i; |
| |
| for (i = 0; i < ccu->data.clk_num; i++) |
| kona_clk_teardown(ccu->data.clks[i]); |
| kfree(ccu->data.clks); |
| } |
| |
| static void kona_ccu_teardown(struct ccu_data *ccu) |
| { |
| if (!ccu) |
| return; |
| |
| if (!ccu->base) |
| goto done; |
| |
| of_clk_del_provider(ccu->node); /* safe if never added */ |
| ccu_clks_teardown(ccu); |
| list_del(&ccu->links); |
| of_node_put(ccu->node); |
| iounmap(ccu->base); |
| done: |
| kfree(ccu->name); |
| kfree(ccu); |
| } |
| |
| /* |
| * Set up a CCU. Call the provided ccu_clks_setup callback to |
| * initialize the array of clocks provided by the CCU. |
| */ |
| void __init kona_dt_ccu_setup(struct device_node *node, |
| int (*ccu_clks_setup)(struct ccu_data *)) |
| { |
| struct ccu_data *ccu; |
| struct resource res = { 0 }; |
| resource_size_t range; |
| int ret; |
| |
| ccu = kzalloc(sizeof(*ccu), GFP_KERNEL); |
| if (ccu) |
| ccu->name = kstrdup(node->name, GFP_KERNEL); |
| if (!ccu || !ccu->name) { |
| pr_err("%s: unable to allocate CCU struct for %s\n", |
| __func__, node->name); |
| kfree(ccu); |
| |
| return; |
| } |
| |
| ret = of_address_to_resource(node, 0, &res); |
| if (ret) { |
| pr_err("%s: no valid CCU registers found for %s\n", __func__, |
| node->name); |
| goto out_err; |
| } |
| |
| range = resource_size(&res); |
| if (range > (resource_size_t)U32_MAX) { |
| pr_err("%s: address range too large for %s\n", __func__, |
| node->name); |
| goto out_err; |
| } |
| |
| ccu->range = (u32)range; |
| ccu->base = ioremap(res.start, ccu->range); |
| if (!ccu->base) { |
| pr_err("%s: unable to map CCU registers for %s\n", __func__, |
| node->name); |
| goto out_err; |
| } |
| |
| spin_lock_init(&ccu->lock); |
| INIT_LIST_HEAD(&ccu->links); |
| ccu->node = of_node_get(node); |
| |
| list_add_tail(&ccu->links, &ccu_list); |
| |
| /* Set up clocks array (in ccu->data) */ |
| if (ccu_clks_setup(ccu)) |
| goto out_err; |
| |
| ret = of_clk_add_provider(node, of_clk_src_onecell_get, &ccu->data); |
| if (ret) { |
| pr_err("%s: error adding ccu %s as provider (%d)\n", __func__, |
| node->name, ret); |
| goto out_err; |
| } |
| |
| if (!kona_ccu_init(ccu)) |
| pr_err("Broadcom %s initialization had errors\n", node->name); |
| |
| return; |
| out_err: |
| kona_ccu_teardown(ccu); |
| pr_err("Broadcom %s setup aborted\n", node->name); |
| } |