| /* |
| * bcache journalling code, for btree insertions |
| * |
| * Copyright 2012 Google, Inc. |
| */ |
| |
| #include "bcache.h" |
| #include "btree.h" |
| #include "debug.h" |
| #include "request.h" |
| |
| #include <trace/events/bcache.h> |
| |
| /* |
| * Journal replay/recovery: |
| * |
| * This code is all driven from run_cache_set(); we first read the journal |
| * entries, do some other stuff, then we mark all the keys in the journal |
| * entries (same as garbage collection would), then we replay them - reinserting |
| * them into the cache in precisely the same order as they appear in the |
| * journal. |
| * |
| * We only journal keys that go in leaf nodes, which simplifies things quite a |
| * bit. |
| */ |
| |
| static void journal_read_endio(struct bio *bio, int error) |
| { |
| struct closure *cl = bio->bi_private; |
| closure_put(cl); |
| } |
| |
| static int journal_read_bucket(struct cache *ca, struct list_head *list, |
| struct btree_op *op, unsigned bucket_index) |
| { |
| struct journal_device *ja = &ca->journal; |
| struct bio *bio = &ja->bio; |
| |
| struct journal_replay *i; |
| struct jset *j, *data = ca->set->journal.w[0].data; |
| unsigned len, left, offset = 0; |
| int ret = 0; |
| sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]); |
| |
| pr_debug("reading %llu", (uint64_t) bucket); |
| |
| while (offset < ca->sb.bucket_size) { |
| reread: left = ca->sb.bucket_size - offset; |
| len = min_t(unsigned, left, PAGE_SECTORS * 8); |
| |
| bio_reset(bio); |
| bio->bi_sector = bucket + offset; |
| bio->bi_bdev = ca->bdev; |
| bio->bi_rw = READ; |
| bio->bi_size = len << 9; |
| |
| bio->bi_end_io = journal_read_endio; |
| bio->bi_private = &op->cl; |
| bch_bio_map(bio, data); |
| |
| closure_bio_submit(bio, &op->cl, ca); |
| closure_sync(&op->cl); |
| |
| /* This function could be simpler now since we no longer write |
| * journal entries that overlap bucket boundaries; this means |
| * the start of a bucket will always have a valid journal entry |
| * if it has any journal entries at all. |
| */ |
| |
| j = data; |
| while (len) { |
| struct list_head *where; |
| size_t blocks, bytes = set_bytes(j); |
| |
| if (j->magic != jset_magic(ca->set)) |
| return ret; |
| |
| if (bytes > left << 9) |
| return ret; |
| |
| if (bytes > len << 9) |
| goto reread; |
| |
| if (j->csum != csum_set(j)) |
| return ret; |
| |
| blocks = set_blocks(j, ca->set); |
| |
| while (!list_empty(list)) { |
| i = list_first_entry(list, |
| struct journal_replay, list); |
| if (i->j.seq >= j->last_seq) |
| break; |
| list_del(&i->list); |
| kfree(i); |
| } |
| |
| list_for_each_entry_reverse(i, list, list) { |
| if (j->seq == i->j.seq) |
| goto next_set; |
| |
| if (j->seq < i->j.last_seq) |
| goto next_set; |
| |
| if (j->seq > i->j.seq) { |
| where = &i->list; |
| goto add; |
| } |
| } |
| |
| where = list; |
| add: |
| i = kmalloc(offsetof(struct journal_replay, j) + |
| bytes, GFP_KERNEL); |
| if (!i) |
| return -ENOMEM; |
| memcpy(&i->j, j, bytes); |
| list_add(&i->list, where); |
| ret = 1; |
| |
| ja->seq[bucket_index] = j->seq; |
| next_set: |
| offset += blocks * ca->sb.block_size; |
| len -= blocks * ca->sb.block_size; |
| j = ((void *) j) + blocks * block_bytes(ca); |
| } |
| } |
| |
| return ret; |
| } |
| |
| int bch_journal_read(struct cache_set *c, struct list_head *list, |
| struct btree_op *op) |
| { |
| #define read_bucket(b) \ |
| ({ \ |
| int ret = journal_read_bucket(ca, list, op, b); \ |
| __set_bit(b, bitmap); \ |
| if (ret < 0) \ |
| return ret; \ |
| ret; \ |
| }) |
| |
| struct cache *ca; |
| unsigned iter; |
| |
| for_each_cache(ca, c, iter) { |
| struct journal_device *ja = &ca->journal; |
| unsigned long bitmap[SB_JOURNAL_BUCKETS / BITS_PER_LONG]; |
| unsigned i, l, r, m; |
| uint64_t seq; |
| |
| bitmap_zero(bitmap, SB_JOURNAL_BUCKETS); |
| pr_debug("%u journal buckets", ca->sb.njournal_buckets); |
| |
| /* Read journal buckets ordered by golden ratio hash to quickly |
| * find a sequence of buckets with valid journal entries |
| */ |
| for (i = 0; i < ca->sb.njournal_buckets; i++) { |
| l = (i * 2654435769U) % ca->sb.njournal_buckets; |
| |
| if (test_bit(l, bitmap)) |
| break; |
| |
| if (read_bucket(l)) |
| goto bsearch; |
| } |
| |
| /* If that fails, check all the buckets we haven't checked |
| * already |
| */ |
| pr_debug("falling back to linear search"); |
| |
| for (l = 0; l < ca->sb.njournal_buckets; l++) { |
| if (test_bit(l, bitmap)) |
| continue; |
| |
| if (read_bucket(l)) |
| goto bsearch; |
| } |
| bsearch: |
| /* Binary search */ |
| m = r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1); |
| pr_debug("starting binary search, l %u r %u", l, r); |
| |
| while (l + 1 < r) { |
| seq = list_entry(list->prev, struct journal_replay, |
| list)->j.seq; |
| |
| m = (l + r) >> 1; |
| read_bucket(m); |
| |
| if (seq != list_entry(list->prev, struct journal_replay, |
| list)->j.seq) |
| l = m; |
| else |
| r = m; |
| } |
| |
| /* Read buckets in reverse order until we stop finding more |
| * journal entries |
| */ |
| pr_debug("finishing up"); |
| l = m; |
| |
| while (1) { |
| if (!l--) |
| l = ca->sb.njournal_buckets - 1; |
| |
| if (l == m) |
| break; |
| |
| if (test_bit(l, bitmap)) |
| continue; |
| |
| if (!read_bucket(l)) |
| break; |
| } |
| |
| seq = 0; |
| |
| for (i = 0; i < ca->sb.njournal_buckets; i++) |
| if (ja->seq[i] > seq) { |
| seq = ja->seq[i]; |
| ja->cur_idx = ja->discard_idx = |
| ja->last_idx = i; |
| |
| } |
| } |
| |
| c->journal.seq = list_entry(list->prev, |
| struct journal_replay, |
| list)->j.seq; |
| |
| return 0; |
| #undef read_bucket |
| } |
| |
| void bch_journal_mark(struct cache_set *c, struct list_head *list) |
| { |
| atomic_t p = { 0 }; |
| struct bkey *k; |
| struct journal_replay *i; |
| struct journal *j = &c->journal; |
| uint64_t last = j->seq; |
| |
| /* |
| * journal.pin should never fill up - we never write a journal |
| * entry when it would fill up. But if for some reason it does, we |
| * iterate over the list in reverse order so that we can just skip that |
| * refcount instead of bugging. |
| */ |
| |
| list_for_each_entry_reverse(i, list, list) { |
| BUG_ON(last < i->j.seq); |
| i->pin = NULL; |
| |
| while (last-- != i->j.seq) |
| if (fifo_free(&j->pin) > 1) { |
| fifo_push_front(&j->pin, p); |
| atomic_set(&fifo_front(&j->pin), 0); |
| } |
| |
| if (fifo_free(&j->pin) > 1) { |
| fifo_push_front(&j->pin, p); |
| i->pin = &fifo_front(&j->pin); |
| atomic_set(i->pin, 1); |
| } |
| |
| for (k = i->j.start; |
| k < end(&i->j); |
| k = bkey_next(k)) { |
| unsigned j; |
| |
| for (j = 0; j < KEY_PTRS(k); j++) { |
| struct bucket *g = PTR_BUCKET(c, k, j); |
| atomic_inc(&g->pin); |
| |
| if (g->prio == BTREE_PRIO && |
| !ptr_stale(c, k, j)) |
| g->prio = INITIAL_PRIO; |
| } |
| |
| __bch_btree_mark_key(c, 0, k); |
| } |
| } |
| } |
| |
| int bch_journal_replay(struct cache_set *s, struct list_head *list, |
| struct btree_op *op) |
| { |
| int ret = 0, keys = 0, entries = 0; |
| struct bkey *k; |
| struct journal_replay *i = |
| list_entry(list->prev, struct journal_replay, list); |
| |
| uint64_t start = i->j.last_seq, end = i->j.seq, n = start; |
| |
| list_for_each_entry(i, list, list) { |
| BUG_ON(i->pin && atomic_read(i->pin) != 1); |
| |
| if (n != i->j.seq) |
| pr_err( |
| "journal entries %llu-%llu missing! (replaying %llu-%llu)\n", |
| n, i->j.seq - 1, start, end); |
| |
| for (k = i->j.start; |
| k < end(&i->j); |
| k = bkey_next(k)) { |
| trace_bcache_journal_replay_key(k); |
| |
| bkey_copy(op->keys.top, k); |
| bch_keylist_push(&op->keys); |
| |
| op->journal = i->pin; |
| atomic_inc(op->journal); |
| |
| ret = bch_btree_insert(op, s); |
| if (ret) |
| goto err; |
| |
| BUG_ON(!bch_keylist_empty(&op->keys)); |
| keys++; |
| |
| cond_resched(); |
| } |
| |
| if (i->pin) |
| atomic_dec(i->pin); |
| n = i->j.seq + 1; |
| entries++; |
| } |
| |
| pr_info("journal replay done, %i keys in %i entries, seq %llu", |
| keys, entries, end); |
| |
| while (!list_empty(list)) { |
| i = list_first_entry(list, struct journal_replay, list); |
| list_del(&i->list); |
| kfree(i); |
| } |
| err: |
| closure_sync(&op->cl); |
| return ret; |
| } |
| |
| /* Journalling */ |
| |
| static void btree_flush_write(struct cache_set *c) |
| { |
| /* |
| * Try to find the btree node with that references the oldest journal |
| * entry, best is our current candidate and is locked if non NULL: |
| */ |
| struct btree *b, *best = NULL; |
| unsigned iter; |
| |
| for_each_cached_btree(b, c, iter) { |
| if (!down_write_trylock(&b->lock)) |
| continue; |
| |
| if (!btree_node_dirty(b) || |
| !btree_current_write(b)->journal) { |
| rw_unlock(true, b); |
| continue; |
| } |
| |
| if (!best) |
| best = b; |
| else if (journal_pin_cmp(c, |
| btree_current_write(best), |
| btree_current_write(b))) { |
| rw_unlock(true, best); |
| best = b; |
| } else |
| rw_unlock(true, b); |
| } |
| |
| if (best) |
| goto out; |
| |
| /* We can't find the best btree node, just pick the first */ |
| list_for_each_entry(b, &c->btree_cache, list) |
| if (!b->level && btree_node_dirty(b)) { |
| best = b; |
| rw_lock(true, best, best->level); |
| goto found; |
| } |
| |
| out: |
| if (!best) |
| return; |
| found: |
| if (btree_node_dirty(best)) |
| bch_btree_node_write(best, NULL); |
| rw_unlock(true, best); |
| } |
| |
| #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1) |
| |
| static void journal_discard_endio(struct bio *bio, int error) |
| { |
| struct journal_device *ja = |
| container_of(bio, struct journal_device, discard_bio); |
| struct cache *ca = container_of(ja, struct cache, journal); |
| |
| atomic_set(&ja->discard_in_flight, DISCARD_DONE); |
| |
| closure_wake_up(&ca->set->journal.wait); |
| closure_put(&ca->set->cl); |
| } |
| |
| static void journal_discard_work(struct work_struct *work) |
| { |
| struct journal_device *ja = |
| container_of(work, struct journal_device, discard_work); |
| |
| submit_bio(0, &ja->discard_bio); |
| } |
| |
| static void do_journal_discard(struct cache *ca) |
| { |
| struct journal_device *ja = &ca->journal; |
| struct bio *bio = &ja->discard_bio; |
| |
| if (!ca->discard) { |
| ja->discard_idx = ja->last_idx; |
| return; |
| } |
| |
| switch (atomic_read(&ja->discard_in_flight) == DISCARD_IN_FLIGHT) { |
| case DISCARD_IN_FLIGHT: |
| return; |
| |
| case DISCARD_DONE: |
| ja->discard_idx = (ja->discard_idx + 1) % |
| ca->sb.njournal_buckets; |
| |
| atomic_set(&ja->discard_in_flight, DISCARD_READY); |
| /* fallthrough */ |
| |
| case DISCARD_READY: |
| if (ja->discard_idx == ja->last_idx) |
| return; |
| |
| atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT); |
| |
| bio_init(bio); |
| bio->bi_sector = bucket_to_sector(ca->set, |
| ca->sb.d[ja->discard_idx]); |
| bio->bi_bdev = ca->bdev; |
| bio->bi_rw = REQ_WRITE|REQ_DISCARD; |
| bio->bi_max_vecs = 1; |
| bio->bi_io_vec = bio->bi_inline_vecs; |
| bio->bi_size = bucket_bytes(ca); |
| bio->bi_end_io = journal_discard_endio; |
| |
| closure_get(&ca->set->cl); |
| INIT_WORK(&ja->discard_work, journal_discard_work); |
| schedule_work(&ja->discard_work); |
| } |
| } |
| |
| static void journal_reclaim(struct cache_set *c) |
| { |
| struct bkey *k = &c->journal.key; |
| struct cache *ca; |
| uint64_t last_seq; |
| unsigned iter, n = 0; |
| atomic_t p; |
| |
| while (!atomic_read(&fifo_front(&c->journal.pin))) |
| fifo_pop(&c->journal.pin, p); |
| |
| last_seq = last_seq(&c->journal); |
| |
| /* Update last_idx */ |
| |
| for_each_cache(ca, c, iter) { |
| struct journal_device *ja = &ca->journal; |
| |
| while (ja->last_idx != ja->cur_idx && |
| ja->seq[ja->last_idx] < last_seq) |
| ja->last_idx = (ja->last_idx + 1) % |
| ca->sb.njournal_buckets; |
| } |
| |
| for_each_cache(ca, c, iter) |
| do_journal_discard(ca); |
| |
| if (c->journal.blocks_free) |
| return; |
| |
| /* |
| * Allocate: |
| * XXX: Sort by free journal space |
| */ |
| |
| for_each_cache(ca, c, iter) { |
| struct journal_device *ja = &ca->journal; |
| unsigned next = (ja->cur_idx + 1) % ca->sb.njournal_buckets; |
| |
| /* No space available on this device */ |
| if (next == ja->discard_idx) |
| continue; |
| |
| ja->cur_idx = next; |
| k->ptr[n++] = PTR(0, |
| bucket_to_sector(c, ca->sb.d[ja->cur_idx]), |
| ca->sb.nr_this_dev); |
| } |
| |
| bkey_init(k); |
| SET_KEY_PTRS(k, n); |
| |
| if (n) |
| c->journal.blocks_free = c->sb.bucket_size >> c->block_bits; |
| |
| if (!journal_full(&c->journal)) |
| __closure_wake_up(&c->journal.wait); |
| } |
| |
| void bch_journal_next(struct journal *j) |
| { |
| atomic_t p = { 1 }; |
| |
| j->cur = (j->cur == j->w) |
| ? &j->w[1] |
| : &j->w[0]; |
| |
| /* |
| * The fifo_push() needs to happen at the same time as j->seq is |
| * incremented for last_seq() to be calculated correctly |
| */ |
| BUG_ON(!fifo_push(&j->pin, p)); |
| atomic_set(&fifo_back(&j->pin), 1); |
| |
| j->cur->data->seq = ++j->seq; |
| j->cur->need_write = false; |
| j->cur->data->keys = 0; |
| |
| if (fifo_full(&j->pin)) |
| pr_debug("journal_pin full (%zu)", fifo_used(&j->pin)); |
| } |
| |
| static void journal_write_endio(struct bio *bio, int error) |
| { |
| struct journal_write *w = bio->bi_private; |
| |
| cache_set_err_on(error, w->c, "journal io error"); |
| closure_put(&w->c->journal.io.cl); |
| } |
| |
| static void journal_write(struct closure *); |
| |
| static void journal_write_done(struct closure *cl) |
| { |
| struct journal *j = container_of(cl, struct journal, io.cl); |
| struct cache_set *c = container_of(j, struct cache_set, journal); |
| |
| struct journal_write *w = (j->cur == j->w) |
| ? &j->w[1] |
| : &j->w[0]; |
| |
| __closure_wake_up(&w->wait); |
| |
| if (c->journal_delay_ms) |
| closure_delay(&j->io, msecs_to_jiffies(c->journal_delay_ms)); |
| |
| continue_at(cl, journal_write, system_wq); |
| } |
| |
| static void journal_write_unlocked(struct closure *cl) |
| __releases(c->journal.lock) |
| { |
| struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl); |
| struct cache *ca; |
| struct journal_write *w = c->journal.cur; |
| struct bkey *k = &c->journal.key; |
| unsigned i, sectors = set_blocks(w->data, c) * c->sb.block_size; |
| |
| struct bio *bio; |
| struct bio_list list; |
| bio_list_init(&list); |
| |
| if (!w->need_write) { |
| /* |
| * XXX: have to unlock closure before we unlock journal lock, |
| * else we race with bch_journal(). But this way we race |
| * against cache set unregister. Doh. |
| */ |
| set_closure_fn(cl, NULL, NULL); |
| closure_sub(cl, CLOSURE_RUNNING + 1); |
| spin_unlock(&c->journal.lock); |
| return; |
| } else if (journal_full(&c->journal)) { |
| journal_reclaim(c); |
| spin_unlock(&c->journal.lock); |
| |
| btree_flush_write(c); |
| continue_at(cl, journal_write, system_wq); |
| } |
| |
| c->journal.blocks_free -= set_blocks(w->data, c); |
| |
| w->data->btree_level = c->root->level; |
| |
| bkey_copy(&w->data->btree_root, &c->root->key); |
| bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket); |
| |
| for_each_cache(ca, c, i) |
| w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0]; |
| |
| w->data->magic = jset_magic(c); |
| w->data->version = BCACHE_JSET_VERSION; |
| w->data->last_seq = last_seq(&c->journal); |
| w->data->csum = csum_set(w->data); |
| |
| for (i = 0; i < KEY_PTRS(k); i++) { |
| ca = PTR_CACHE(c, k, i); |
| bio = &ca->journal.bio; |
| |
| atomic_long_add(sectors, &ca->meta_sectors_written); |
| |
| bio_reset(bio); |
| bio->bi_sector = PTR_OFFSET(k, i); |
| bio->bi_bdev = ca->bdev; |
| bio->bi_rw = REQ_WRITE|REQ_SYNC|REQ_META|REQ_FLUSH|REQ_FUA; |
| bio->bi_size = sectors << 9; |
| |
| bio->bi_end_io = journal_write_endio; |
| bio->bi_private = w; |
| bch_bio_map(bio, w->data); |
| |
| trace_bcache_journal_write(bio); |
| bio_list_add(&list, bio); |
| |
| SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors); |
| |
| ca->journal.seq[ca->journal.cur_idx] = w->data->seq; |
| } |
| |
| atomic_dec_bug(&fifo_back(&c->journal.pin)); |
| bch_journal_next(&c->journal); |
| journal_reclaim(c); |
| |
| spin_unlock(&c->journal.lock); |
| |
| while ((bio = bio_list_pop(&list))) |
| closure_bio_submit(bio, cl, c->cache[0]); |
| |
| continue_at(cl, journal_write_done, NULL); |
| } |
| |
| static void journal_write(struct closure *cl) |
| { |
| struct cache_set *c = container_of(cl, struct cache_set, journal.io.cl); |
| |
| spin_lock(&c->journal.lock); |
| journal_write_unlocked(cl); |
| } |
| |
| static void __journal_try_write(struct cache_set *c, bool noflush) |
| __releases(c->journal.lock) |
| { |
| struct closure *cl = &c->journal.io.cl; |
| |
| if (!closure_trylock(cl, &c->cl)) |
| spin_unlock(&c->journal.lock); |
| else if (noflush && journal_full(&c->journal)) { |
| spin_unlock(&c->journal.lock); |
| continue_at(cl, journal_write, system_wq); |
| } else |
| journal_write_unlocked(cl); |
| } |
| |
| #define journal_try_write(c) __journal_try_write(c, false) |
| |
| void bch_journal_meta(struct cache_set *c, struct closure *cl) |
| { |
| struct journal_write *w; |
| |
| if (CACHE_SYNC(&c->sb)) { |
| spin_lock(&c->journal.lock); |
| |
| w = c->journal.cur; |
| w->need_write = true; |
| |
| if (cl) |
| BUG_ON(!closure_wait(&w->wait, cl)); |
| |
| __journal_try_write(c, true); |
| } |
| } |
| |
| /* |
| * Entry point to the journalling code - bio_insert() and btree_invalidate() |
| * pass bch_journal() a list of keys to be journalled, and then |
| * bch_journal() hands those same keys off to btree_insert_async() |
| */ |
| |
| void bch_journal(struct closure *cl) |
| { |
| struct btree_op *op = container_of(cl, struct btree_op, cl); |
| struct cache_set *c = op->c; |
| struct journal_write *w; |
| size_t b, n = ((uint64_t *) op->keys.top) - op->keys.list; |
| |
| if (op->type != BTREE_INSERT || |
| !CACHE_SYNC(&c->sb)) |
| goto out; |
| |
| /* |
| * If we're looping because we errored, might already be waiting on |
| * another journal write: |
| */ |
| while (atomic_read(&cl->parent->remaining) & CLOSURE_WAITING) |
| closure_sync(cl->parent); |
| |
| spin_lock(&c->journal.lock); |
| |
| if (journal_full(&c->journal)) { |
| trace_bcache_journal_full(c); |
| |
| closure_wait(&c->journal.wait, cl); |
| |
| journal_reclaim(c); |
| spin_unlock(&c->journal.lock); |
| |
| btree_flush_write(c); |
| continue_at(cl, bch_journal, bcache_wq); |
| } |
| |
| w = c->journal.cur; |
| w->need_write = true; |
| b = __set_blocks(w->data, w->data->keys + n, c); |
| |
| if (b * c->sb.block_size > PAGE_SECTORS << JSET_BITS || |
| b > c->journal.blocks_free) { |
| trace_bcache_journal_entry_full(c); |
| |
| /* |
| * XXX: If we were inserting so many keys that they won't fit in |
| * an _empty_ journal write, we'll deadlock. For now, handle |
| * this in bch_keylist_realloc() - but something to think about. |
| */ |
| BUG_ON(!w->data->keys); |
| |
| BUG_ON(!closure_wait(&w->wait, cl)); |
| |
| closure_flush(&c->journal.io); |
| |
| journal_try_write(c); |
| continue_at(cl, bch_journal, bcache_wq); |
| } |
| |
| memcpy(end(w->data), op->keys.list, n * sizeof(uint64_t)); |
| w->data->keys += n; |
| |
| op->journal = &fifo_back(&c->journal.pin); |
| atomic_inc(op->journal); |
| |
| if (op->flush_journal) { |
| closure_flush(&c->journal.io); |
| closure_wait(&w->wait, cl->parent); |
| } |
| |
| journal_try_write(c); |
| out: |
| bch_btree_insert_async(cl); |
| } |
| |
| void bch_journal_free(struct cache_set *c) |
| { |
| free_pages((unsigned long) c->journal.w[1].data, JSET_BITS); |
| free_pages((unsigned long) c->journal.w[0].data, JSET_BITS); |
| free_fifo(&c->journal.pin); |
| } |
| |
| int bch_journal_alloc(struct cache_set *c) |
| { |
| struct journal *j = &c->journal; |
| |
| closure_init_unlocked(&j->io); |
| spin_lock_init(&j->lock); |
| |
| c->journal_delay_ms = 100; |
| |
| j->w[0].c = c; |
| j->w[1].c = c; |
| |
| if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || |
| !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS)) || |
| !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL, JSET_BITS))) |
| return -ENOMEM; |
| |
| return 0; |
| } |