| /* |
| * linux/include/asm-arm26/pgtable.h |
| * |
| * Copyright (C) 2000-2002 Russell King |
| * Copyright (C) 2003 Ian Molton |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #ifndef _ASMARM_PGTABLE_H |
| #define _ASMARM_PGTABLE_H |
| |
| #include <asm-generic/4level-fixup.h> |
| |
| #include <linux/config.h> |
| #include <asm/memory.h> |
| |
| /* |
| * The table below defines the page protection levels that we insert into our |
| * Linux page table version. These get translated into the best that the |
| * architecture can perform. Note that on most ARM hardware: |
| * 1) We cannot do execute protection |
| * 2) If we could do execute protection, then read is implied |
| * 3) write implies read permissions |
| */ |
| #define __P000 PAGE_NONE |
| #define __P001 PAGE_READONLY |
| #define __P010 PAGE_COPY |
| #define __P011 PAGE_COPY |
| #define __P100 PAGE_READONLY |
| #define __P101 PAGE_READONLY |
| #define __P110 PAGE_COPY |
| #define __P111 PAGE_COPY |
| |
| #define __S000 PAGE_NONE |
| #define __S001 PAGE_READONLY |
| #define __S010 PAGE_SHARED |
| #define __S011 PAGE_SHARED |
| #define __S100 PAGE_READONLY |
| #define __S101 PAGE_READONLY |
| #define __S110 PAGE_SHARED |
| #define __S111 PAGE_SHARED |
| |
| /* |
| * PMD_SHIFT determines the size of the area a second-level page table can map |
| * PGDIR_SHIFT determines what a third-level page table entry can map |
| */ |
| #define PGD_SHIFT 25 |
| #define PMD_SHIFT 20 |
| |
| #define PGD_SIZE (1UL << PGD_SHIFT) |
| #define PGD_MASK (~(PGD_SIZE-1)) |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| |
| /* The kernel likes to use these names for the above (ick) */ |
| #define PGDIR_SIZE PGD_SIZE |
| #define PGDIR_MASK PGD_MASK |
| |
| #define PTRS_PER_PGD 32 |
| #define PTRS_PER_PMD 1 |
| #define PTRS_PER_PTE 32 |
| |
| /* |
| * This is the lowest virtual address we can permit any user space |
| * mapping to be mapped at. This is particularly important for |
| * non-high vector CPUs. |
| */ |
| #define FIRST_USER_ADDRESS PAGE_SIZE |
| |
| #define FIRST_USER_PGD_NR 1 |
| #define USER_PTRS_PER_PGD ((TASK_SIZE/PGD_SIZE) - FIRST_USER_PGD_NR) |
| |
| // FIXME - WTF? |
| #define LIBRARY_TEXT_START 0x0c000000 |
| |
| |
| |
| #ifndef __ASSEMBLY__ |
| extern void __pte_error(const char *file, int line, unsigned long val); |
| extern void __pmd_error(const char *file, int line, unsigned long val); |
| extern void __pgd_error(const char *file, int line, unsigned long val); |
| |
| #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) |
| #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd)) |
| #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern struct page *empty_zero_page; |
| #define ZERO_PAGE(vaddr) (empty_zero_page) |
| |
| #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) |
| #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) |
| #define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))) |
| #define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT)) |
| #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) |
| #define page_pte_prot(page,prot) mk_pte(page, prot) |
| #define page_pte(page) mk_pte(page, __pgprot(0)) |
| |
| /* |
| * Terminology: PGD = Page Directory, PMD = Page Middle Directory, |
| * PTE = Page Table Entry |
| * |
| * on arm26 we have no 2nd level page table. we simulate this by removing the |
| * PMD. |
| * |
| * pgd_none is 0 to prevernt pmd_alloc() calling __pmd_alloc(). This causes it |
| * to return pmd_offset(pgd,addr) which is a pointer to the pgd (IOW, a no-op). |
| * |
| * however, to work this way, whilst we are allocating 32 pgds, containing 32 |
| * PTEs, the actual work is done on the PMDs, thus: |
| * |
| * instead of mm->pgd->pmd->pte |
| * we have mm->pgdpmd->pte |
| * |
| * IOW, think of PGD operations and PMD ones as being the same thing, just |
| * that PGD stuff deals with the mm_struct side of things, wheras PMD stuff |
| * deals with the pte side of things. |
| * |
| * additionally, we store some bits in the PGD and PTE pointers: |
| * PGDs: |
| * o The lowest (1) bit of the PGD is to determine if it is present or swap. |
| * o The 2nd bit of the PGD is unused and must be zero. |
| * o The top 6 bits of the PGD must be zero. |
| * PTEs: |
| * o The lower 5 bits of a pte are flags. bit 1 is the 'present' flag. The |
| * others determine the pages attributes. |
| * |
| * the pgd_val, pmd_val, and pte_val macros seem to be private to our code. |
| * They get the RAW value of the PGD/PMD/PTE entry, including our flags |
| * encoded into the pointers. |
| * |
| * The pgd_offset, pmd_offset, and pte_offset macros are used by the kernel, |
| * so they shouldnt have our flags attached. |
| * |
| * If you understood that, feel free to explain it to me... |
| * |
| */ |
| |
| #define _PMD_PRESENT (0x01) |
| |
| /* These definitions allow us to optimise out stuff like pmd_alloc() */ |
| #define pgd_none(pgd) (0) |
| #define pgd_bad(pgd) (0) |
| #define pgd_present(pgd) (1) |
| #define pgd_clear(pgdp) do { } while (0) |
| |
| /* Whilst these handle our actual 'page directory' (the agglomeration of pgd and pmd) |
| */ |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_bad(pmd) ((pmd_val(pmd) & 0xfc000002)) |
| #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT) |
| #define set_pmd(pmd_ptr, pmd) ((*(pmd_ptr)) = (pmd)) |
| #define pmd_clear(pmdp) set_pmd(pmdp, __pmd(0)) |
| |
| /* and these handle our pte tables */ |
| #define pte_none(pte) (!pte_val(pte)) |
| #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) |
| #define set_pte(pte_ptr, pte) ((*(pte_ptr)) = (pte)) |
| #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) |
| #define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0)) |
| |
| /* macros to ease the getting of pointers to stuff... */ |
| #define pgd_offset(mm, addr) ((pgd_t *)(mm)->pgd + __pgd_index(addr)) |
| #define pmd_offset(pgd, addr) ((pmd_t *)(pgd)) |
| #define pte_offset(pmd, addr) ((pte_t *)pmd_page(*(pmd)) + __pte_index(addr)) |
| |
| /* there is no __pmd_index as we dont use pmds */ |
| #define __pgd_index(addr) ((addr) >> PGD_SHIFT) |
| #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| |
| |
| /* Keep the kernel happy */ |
| #define pgd_index(addr) __pgd_index(addr) |
| #define pgd_offset_k(addr) (pgd_offset(&init_mm, addr)) |
| |
| /* |
| * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
| * area for the same reason. ;) FIXME: surely 1 page not 4k ? |
| */ |
| #define VMALLOC_START 0x01a00000 |
| #define VMALLOC_END 0x01c00000 |
| |
| /* Is pmd_page supposed to return a pointer to a page in some arches? ours seems to |
| * return a pointer to memory (no special alignment) |
| */ |
| #define pmd_page(pmd) ((struct page *)(pmd_val((pmd)) & ~_PMD_PRESENT)) |
| #define pmd_page_kernel(pmd) ((pte_t *)(pmd_val((pmd)) & ~_PMD_PRESENT)) |
| |
| #define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) |
| |
| #define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) |
| #define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| |
| |
| #define _PAGE_PRESENT 0x01 |
| #define _PAGE_READONLY 0x02 |
| #define _PAGE_NOT_USER 0x04 |
| #define _PAGE_OLD 0x08 |
| #define _PAGE_CLEAN 0x10 |
| |
| // an old page has never been read. |
| // a clean page has never been written. |
| |
| /* -- present -- -- !dirty -- --- !write --- ---- !user --- */ |
| #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY | _PAGE_NOT_USER) |
| #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_CLEAN ) |
| #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY ) |
| #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_CLEAN | _PAGE_READONLY ) |
| #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_NOT_USER) |
| |
| #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_OLD | _PAGE_CLEAN) |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| #define pte_read(pte) (!(pte_val(pte) & _PAGE_NOT_USER)) |
| #define pte_write(pte) (!(pte_val(pte) & _PAGE_READONLY)) |
| #define pte_exec(pte) (!(pte_val(pte) & _PAGE_NOT_USER)) |
| #define pte_dirty(pte) (!(pte_val(pte) & _PAGE_CLEAN)) |
| #define pte_young(pte) (!(pte_val(pte) & _PAGE_OLD)) |
| //ONLY when !pte_present() I think. nicked from arm32 (FIXME!) |
| #define pte_file(pte) (!(pte_val(pte) & _PAGE_OLD)) |
| |
| #define PTE_BIT_FUNC(fn,op) \ |
| static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; } |
| |
| PTE_BIT_FUNC(wrprotect, |= _PAGE_READONLY); |
| PTE_BIT_FUNC(mkwrite, &= ~_PAGE_READONLY); |
| PTE_BIT_FUNC(exprotect, |= _PAGE_NOT_USER); |
| PTE_BIT_FUNC(mkexec, &= ~_PAGE_NOT_USER); |
| PTE_BIT_FUNC(mkclean, |= _PAGE_CLEAN); |
| PTE_BIT_FUNC(mkdirty, &= ~_PAGE_CLEAN); |
| PTE_BIT_FUNC(mkold, |= _PAGE_OLD); |
| PTE_BIT_FUNC(mkyoung, &= ~_PAGE_OLD); |
| |
| /* |
| * We don't store cache state bits in the page table here. FIXME - or do we? |
| */ |
| #define pgprot_noncached(prot) (prot) |
| #define pgprot_writecombine(prot) (prot) //FIXME - is a no-op? |
| |
| extern void pgtable_cache_init(void); |
| |
| //FIXME - nicked from arm32 and brutally hacked. probably wrong. |
| #define pte_to_pgoff(x) (pte_val(x) >> 2) |
| #define pgoff_to_pte(x) __pte(((x) << 2) & ~_PAGE_OLD) |
| |
| //FIXME - next line borrowed from arm32. is it right? |
| #define PTE_FILE_MAX_BITS 30 |
| |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); |
| return pte; |
| } |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| |
| /* Encode and decode a swap entry. |
| * |
| * We support up to 32GB of swap on 4k machines |
| */ |
| #define __swp_type(x) (((x).val >> 2) & 0x7f) |
| #define __swp_offset(x) ((x).val >> 9) |
| #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) |
| |
| /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ |
| /* FIXME: this is not correct */ |
| #define kern_addr_valid(addr) (1) |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) |
| { |
| pte_t pte; |
| pte_val(pte) = physpage | pgprot_val(pgprot); |
| return pte; |
| } |
| |
| |
| #include <asm-generic/pgtable.h> |
| |
| /* |
| * remap a physical address `phys' of size `size' with page protection `prot' |
| * into virtual address `from' |
| */ |
| #define io_remap_page_range(vma,from,phys,size,prot) \ |
| remap_pfn_range(vma, from, (phys) >> PAGE_SHIFT, size, prot) |
| |
| #define io_remap_pfn_range(vma,from,pfn,size,prot) \ |
| remap_pfn_range(vma, from, pfn, size, prot) |
| |
| #define MK_IOSPACE_PFN(space, pfn) (pfn) |
| #define GET_IOSPACE(pfn) 0 |
| #define GET_PFN(pfn) (pfn) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* _ASMARM_PGTABLE_H */ |