blob: dcaf691f56b5577352d2238bdfd27e2f1aca2386 [file] [log] [blame]
/*
* Copyright 2009 Jerome Glisse.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/*
* Authors:
* Jerome Glisse <glisse@freedesktop.org>
* Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
* Dave Airlie
*/
#include <ttm/ttm_bo_api.h>
#include <ttm/ttm_bo_driver.h>
#include <ttm/ttm_placement.h>
#include <ttm/ttm_module.h>
#include <ttm/ttm_page_alloc.h>
#include <ttm/ttm_memory.h>
#include <drm/drmP.h>
#include <drm/amdgpu_drm.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/swiotlb.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/debugfs.h>
#include "amdgpu.h"
#include "bif/bif_4_1_d.h"
#define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
static struct amdgpu_device *amdgpu_get_adev(struct ttm_bo_device *bdev)
{
struct amdgpu_mman *mman;
struct amdgpu_device *adev;
mman = container_of(bdev, struct amdgpu_mman, bdev);
adev = container_of(mman, struct amdgpu_device, mman);
return adev;
}
/*
* Global memory.
*/
static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref)
{
return ttm_mem_global_init(ref->object);
}
static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref)
{
ttm_mem_global_release(ref->object);
}
int amdgpu_ttm_global_init(struct amdgpu_device *adev)
{
struct drm_global_reference *global_ref;
struct amdgpu_ring *ring;
struct amd_sched_rq *rq;
int r;
adev->mman.mem_global_referenced = false;
global_ref = &adev->mman.mem_global_ref;
global_ref->global_type = DRM_GLOBAL_TTM_MEM;
global_ref->size = sizeof(struct ttm_mem_global);
global_ref->init = &amdgpu_ttm_mem_global_init;
global_ref->release = &amdgpu_ttm_mem_global_release;
r = drm_global_item_ref(global_ref);
if (r) {
DRM_ERROR("Failed setting up TTM memory accounting "
"subsystem.\n");
goto error_mem;
}
adev->mman.bo_global_ref.mem_glob =
adev->mman.mem_global_ref.object;
global_ref = &adev->mman.bo_global_ref.ref;
global_ref->global_type = DRM_GLOBAL_TTM_BO;
global_ref->size = sizeof(struct ttm_bo_global);
global_ref->init = &ttm_bo_global_init;
global_ref->release = &ttm_bo_global_release;
r = drm_global_item_ref(global_ref);
if (r) {
DRM_ERROR("Failed setting up TTM BO subsystem.\n");
goto error_bo;
}
ring = adev->mman.buffer_funcs_ring;
rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
r = amd_sched_entity_init(&ring->sched, &adev->mman.entity,
rq, amdgpu_sched_jobs);
if (r) {
DRM_ERROR("Failed setting up TTM BO move run queue.\n");
goto error_entity;
}
adev->mman.mem_global_referenced = true;
return 0;
error_entity:
drm_global_item_unref(&adev->mman.bo_global_ref.ref);
error_bo:
drm_global_item_unref(&adev->mman.mem_global_ref);
error_mem:
return r;
}
static void amdgpu_ttm_global_fini(struct amdgpu_device *adev)
{
if (adev->mman.mem_global_referenced) {
amd_sched_entity_fini(adev->mman.entity.sched,
&adev->mman.entity);
drm_global_item_unref(&adev->mman.bo_global_ref.ref);
drm_global_item_unref(&adev->mman.mem_global_ref);
adev->mman.mem_global_referenced = false;
}
}
static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
{
return 0;
}
static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
struct ttm_mem_type_manager *man)
{
struct amdgpu_device *adev;
adev = amdgpu_get_adev(bdev);
switch (type) {
case TTM_PL_SYSTEM:
/* System memory */
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
break;
case TTM_PL_TT:
man->func = &amdgpu_gtt_mgr_func;
man->gpu_offset = adev->mc.gtt_start;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
break;
case TTM_PL_VRAM:
/* "On-card" video ram */
man->func = &ttm_bo_manager_func;
man->gpu_offset = adev->mc.vram_start;
man->flags = TTM_MEMTYPE_FLAG_FIXED |
TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
man->default_caching = TTM_PL_FLAG_WC;
break;
case AMDGPU_PL_GDS:
case AMDGPU_PL_GWS:
case AMDGPU_PL_OA:
/* On-chip GDS memory*/
man->func = &ttm_bo_manager_func;
man->gpu_offset = 0;
man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
man->available_caching = TTM_PL_FLAG_UNCACHED;
man->default_caching = TTM_PL_FLAG_UNCACHED;
break;
default:
DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
return -EINVAL;
}
return 0;
}
static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
struct amdgpu_bo *abo;
static struct ttm_place placements = {
.fpfn = 0,
.lpfn = 0,
.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
};
unsigned i;
if (!amdgpu_ttm_bo_is_amdgpu_bo(bo)) {
placement->placement = &placements;
placement->busy_placement = &placements;
placement->num_placement = 1;
placement->num_busy_placement = 1;
return;
}
abo = container_of(bo, struct amdgpu_bo, tbo);
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
if (abo->adev->mman.buffer_funcs_ring->ready == false) {
amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
} else {
amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
for (i = 0; i < abo->placement.num_placement; ++i) {
if (!(abo->placements[i].flags &
TTM_PL_FLAG_TT))
continue;
if (abo->placements[i].lpfn)
continue;
/* set an upper limit to force directly
* allocating address space for the BO.
*/
abo->placements[i].lpfn =
abo->adev->mc.gtt_size >> PAGE_SHIFT;
}
}
break;
case TTM_PL_TT:
default:
amdgpu_ttm_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
}
*placement = abo->placement;
}
static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
{
struct amdgpu_bo *abo = container_of(bo, struct amdgpu_bo, tbo);
if (amdgpu_ttm_tt_get_usermm(bo->ttm))
return -EPERM;
return drm_vma_node_verify_access(&abo->gem_base.vma_node,
filp->private_data);
}
static void amdgpu_move_null(struct ttm_buffer_object *bo,
struct ttm_mem_reg *new_mem)
{
struct ttm_mem_reg *old_mem = &bo->mem;
BUG_ON(old_mem->mm_node != NULL);
*old_mem = *new_mem;
new_mem->mm_node = NULL;
}
static int amdgpu_move_blit(struct ttm_buffer_object *bo,
bool evict, bool no_wait_gpu,
struct ttm_mem_reg *new_mem,
struct ttm_mem_reg *old_mem)
{
struct amdgpu_device *adev;
struct amdgpu_ring *ring;
uint64_t old_start, new_start;
struct fence *fence;
int r;
adev = amdgpu_get_adev(bo->bdev);
ring = adev->mman.buffer_funcs_ring;
switch (old_mem->mem_type) {
case TTM_PL_TT:
r = amdgpu_ttm_bind(bo, old_mem);
if (r)
return r;
case TTM_PL_VRAM:
old_start = (u64)old_mem->start << PAGE_SHIFT;
old_start += bo->bdev->man[old_mem->mem_type].gpu_offset;
break;
default:
DRM_ERROR("Unknown placement %d\n", old_mem->mem_type);
return -EINVAL;
}
switch (new_mem->mem_type) {
case TTM_PL_TT:
r = amdgpu_ttm_bind(bo, new_mem);
if (r)
return r;
case TTM_PL_VRAM:
new_start = (u64)new_mem->start << PAGE_SHIFT;
new_start += bo->bdev->man[new_mem->mem_type].gpu_offset;
break;
default:
DRM_ERROR("Unknown placement %d\n", old_mem->mem_type);
return -EINVAL;
}
if (!ring->ready) {
DRM_ERROR("Trying to move memory with ring turned off.\n");
return -EINVAL;
}
BUILD_BUG_ON((PAGE_SIZE % AMDGPU_GPU_PAGE_SIZE) != 0);
r = amdgpu_copy_buffer(ring, old_start, new_start,
new_mem->num_pages * PAGE_SIZE, /* bytes */
bo->resv, &fence, false);
if (r)
return r;
r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
fence_put(fence);
return r;
}
static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo,
bool evict, bool interruptible,
bool no_wait_gpu,
struct ttm_mem_reg *new_mem)
{
struct amdgpu_device *adev;
struct ttm_mem_reg *old_mem = &bo->mem;
struct ttm_mem_reg tmp_mem;
struct ttm_place placements;
struct ttm_placement placement;
int r;
adev = amdgpu_get_adev(bo->bdev);
tmp_mem = *new_mem;
tmp_mem.mm_node = NULL;
placement.num_placement = 1;
placement.placement = &placements;
placement.num_busy_placement = 1;
placement.busy_placement = &placements;
placements.fpfn = 0;
placements.lpfn = adev->mc.gtt_size >> PAGE_SHIFT;
placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
r = ttm_bo_mem_space(bo, &placement, &tmp_mem,
interruptible, no_wait_gpu);
if (unlikely(r)) {
return r;
}
r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
if (unlikely(r)) {
goto out_cleanup;
}
r = ttm_tt_bind(bo->ttm, &tmp_mem);
if (unlikely(r)) {
goto out_cleanup;
}
r = amdgpu_move_blit(bo, true, no_wait_gpu, &tmp_mem, old_mem);
if (unlikely(r)) {
goto out_cleanup;
}
r = ttm_bo_move_ttm(bo, interruptible, no_wait_gpu, new_mem);
out_cleanup:
ttm_bo_mem_put(bo, &tmp_mem);
return r;
}
static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo,
bool evict, bool interruptible,
bool no_wait_gpu,
struct ttm_mem_reg *new_mem)
{
struct amdgpu_device *adev;
struct ttm_mem_reg *old_mem = &bo->mem;
struct ttm_mem_reg tmp_mem;
struct ttm_placement placement;
struct ttm_place placements;
int r;
adev = amdgpu_get_adev(bo->bdev);
tmp_mem = *new_mem;
tmp_mem.mm_node = NULL;
placement.num_placement = 1;
placement.placement = &placements;
placement.num_busy_placement = 1;
placement.busy_placement = &placements;
placements.fpfn = 0;
placements.lpfn = adev->mc.gtt_size >> PAGE_SHIFT;
placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
r = ttm_bo_mem_space(bo, &placement, &tmp_mem,
interruptible, no_wait_gpu);
if (unlikely(r)) {
return r;
}
r = ttm_bo_move_ttm(bo, interruptible, no_wait_gpu, &tmp_mem);
if (unlikely(r)) {
goto out_cleanup;
}
r = amdgpu_move_blit(bo, true, no_wait_gpu, new_mem, old_mem);
if (unlikely(r)) {
goto out_cleanup;
}
out_cleanup:
ttm_bo_mem_put(bo, &tmp_mem);
return r;
}
static int amdgpu_bo_move(struct ttm_buffer_object *bo,
bool evict, bool interruptible,
bool no_wait_gpu,
struct ttm_mem_reg *new_mem)
{
struct amdgpu_device *adev;
struct amdgpu_bo *abo;
struct ttm_mem_reg *old_mem = &bo->mem;
int r;
/* Can't move a pinned BO */
abo = container_of(bo, struct amdgpu_bo, tbo);
if (WARN_ON_ONCE(abo->pin_count > 0))
return -EINVAL;
adev = amdgpu_get_adev(bo->bdev);
/* remember the eviction */
if (evict)
atomic64_inc(&adev->num_evictions);
if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
amdgpu_move_null(bo, new_mem);
return 0;
}
if ((old_mem->mem_type == TTM_PL_TT &&
new_mem->mem_type == TTM_PL_SYSTEM) ||
(old_mem->mem_type == TTM_PL_SYSTEM &&
new_mem->mem_type == TTM_PL_TT)) {
/* bind is enough */
amdgpu_move_null(bo, new_mem);
return 0;
}
if (adev->mman.buffer_funcs == NULL ||
adev->mman.buffer_funcs_ring == NULL ||
!adev->mman.buffer_funcs_ring->ready) {
/* use memcpy */
goto memcpy;
}
if (old_mem->mem_type == TTM_PL_VRAM &&
new_mem->mem_type == TTM_PL_SYSTEM) {
r = amdgpu_move_vram_ram(bo, evict, interruptible,
no_wait_gpu, new_mem);
} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
new_mem->mem_type == TTM_PL_VRAM) {
r = amdgpu_move_ram_vram(bo, evict, interruptible,
no_wait_gpu, new_mem);
} else {
r = amdgpu_move_blit(bo, evict, no_wait_gpu, new_mem, old_mem);
}
if (r) {
memcpy:
r = ttm_bo_move_memcpy(bo, interruptible, no_wait_gpu, new_mem);
if (r) {
return r;
}
}
/* update statistics */
atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
return 0;
}
static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
struct amdgpu_device *adev = amdgpu_get_adev(bdev);
mem->bus.addr = NULL;
mem->bus.offset = 0;
mem->bus.size = mem->num_pages << PAGE_SHIFT;
mem->bus.base = 0;
mem->bus.is_iomem = false;
if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
return -EINVAL;
switch (mem->mem_type) {
case TTM_PL_SYSTEM:
/* system memory */
return 0;
case TTM_PL_TT:
break;
case TTM_PL_VRAM:
mem->bus.offset = mem->start << PAGE_SHIFT;
/* check if it's visible */
if ((mem->bus.offset + mem->bus.size) > adev->mc.visible_vram_size)
return -EINVAL;
mem->bus.base = adev->mc.aper_base;
mem->bus.is_iomem = true;
#ifdef __alpha__
/*
* Alpha: use bus.addr to hold the ioremap() return,
* so we can modify bus.base below.
*/
if (mem->placement & TTM_PL_FLAG_WC)
mem->bus.addr =
ioremap_wc(mem->bus.base + mem->bus.offset,
mem->bus.size);
else
mem->bus.addr =
ioremap_nocache(mem->bus.base + mem->bus.offset,
mem->bus.size);
/*
* Alpha: Use just the bus offset plus
* the hose/domain memory base for bus.base.
* It then can be used to build PTEs for VRAM
* access, as done in ttm_bo_vm_fault().
*/
mem->bus.base = (mem->bus.base & 0x0ffffffffUL) +
adev->ddev->hose->dense_mem_base;
#endif
break;
default:
return -EINVAL;
}
return 0;
}
static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
}
/*
* TTM backend functions.
*/
struct amdgpu_ttm_gup_task_list {
struct list_head list;
struct task_struct *task;
};
struct amdgpu_ttm_tt {
struct ttm_dma_tt ttm;
struct amdgpu_device *adev;
u64 offset;
uint64_t userptr;
struct mm_struct *usermm;
uint32_t userflags;
spinlock_t guptasklock;
struct list_head guptasks;
atomic_t mmu_invalidations;
struct list_head list;
};
int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
unsigned int flags = 0;
unsigned pinned = 0;
int r;
if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
flags |= FOLL_WRITE;
if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
/* check that we only use anonymous memory
to prevent problems with writeback */
unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
struct vm_area_struct *vma;
vma = find_vma(gtt->usermm, gtt->userptr);
if (!vma || vma->vm_file || vma->vm_end < end)
return -EPERM;
}
do {
unsigned num_pages = ttm->num_pages - pinned;
uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
struct page **p = pages + pinned;
struct amdgpu_ttm_gup_task_list guptask;
guptask.task = current;
spin_lock(&gtt->guptasklock);
list_add(&guptask.list, &gtt->guptasks);
spin_unlock(&gtt->guptasklock);
r = get_user_pages(userptr, num_pages, flags, p, NULL);
spin_lock(&gtt->guptasklock);
list_del(&guptask.list);
spin_unlock(&gtt->guptasklock);
if (r < 0)
goto release_pages;
pinned += r;
} while (pinned < ttm->num_pages);
return 0;
release_pages:
release_pages(pages, pinned, 0);
return r;
}
/* prepare the sg table with the user pages */
static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
{
struct amdgpu_device *adev = amdgpu_get_adev(ttm->bdev);
struct amdgpu_ttm_tt *gtt = (void *)ttm;
unsigned nents;
int r;
int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
enum dma_data_direction direction = write ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
ttm->num_pages << PAGE_SHIFT,
GFP_KERNEL);
if (r)
goto release_sg;
r = -ENOMEM;
nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
if (nents != ttm->sg->nents)
goto release_sg;
drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
gtt->ttm.dma_address, ttm->num_pages);
return 0;
release_sg:
kfree(ttm->sg);
return r;
}
static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
{
struct amdgpu_device *adev = amdgpu_get_adev(ttm->bdev);
struct amdgpu_ttm_tt *gtt = (void *)ttm;
struct sg_page_iter sg_iter;
int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
enum dma_data_direction direction = write ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
/* double check that we don't free the table twice */
if (!ttm->sg->sgl)
return;
/* free the sg table and pages again */
dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
for_each_sg_page(ttm->sg->sgl, &sg_iter, ttm->sg->nents, 0) {
struct page *page = sg_page_iter_page(&sg_iter);
if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
set_page_dirty(page);
mark_page_accessed(page);
put_page(page);
}
sg_free_table(ttm->sg);
}
static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
struct ttm_mem_reg *bo_mem)
{
struct amdgpu_ttm_tt *gtt = (void*)ttm;
int r;
if (gtt->userptr) {
r = amdgpu_ttm_tt_pin_userptr(ttm);
if (r) {
DRM_ERROR("failed to pin userptr\n");
return r;
}
}
if (!ttm->num_pages) {
WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
ttm->num_pages, bo_mem, ttm);
}
if (bo_mem->mem_type == AMDGPU_PL_GDS ||
bo_mem->mem_type == AMDGPU_PL_GWS ||
bo_mem->mem_type == AMDGPU_PL_OA)
return -EINVAL;
return 0;
}
bool amdgpu_ttm_is_bound(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
return gtt && !list_empty(&gtt->list);
}
int amdgpu_ttm_bind(struct ttm_buffer_object *bo, struct ttm_mem_reg *bo_mem)
{
struct ttm_tt *ttm = bo->ttm;
struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
uint32_t flags;
int r;
if (!ttm || amdgpu_ttm_is_bound(ttm))
return 0;
r = amdgpu_gtt_mgr_alloc(&bo->bdev->man[TTM_PL_TT], bo,
NULL, bo_mem);
if (r) {
DRM_ERROR("Failed to allocate GTT address space (%d)\n", r);
return r;
}
flags = amdgpu_ttm_tt_pte_flags(gtt->adev, ttm, bo_mem);
gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
r = amdgpu_gart_bind(gtt->adev, gtt->offset, ttm->num_pages,
ttm->pages, gtt->ttm.dma_address, flags);
if (r) {
DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
ttm->num_pages, gtt->offset);
return r;
}
spin_lock(&gtt->adev->gtt_list_lock);
list_add_tail(&gtt->list, &gtt->adev->gtt_list);
spin_unlock(&gtt->adev->gtt_list_lock);
return 0;
}
int amdgpu_ttm_recover_gart(struct amdgpu_device *adev)
{
struct amdgpu_ttm_tt *gtt, *tmp;
struct ttm_mem_reg bo_mem;
uint32_t flags;
int r;
bo_mem.mem_type = TTM_PL_TT;
spin_lock(&adev->gtt_list_lock);
list_for_each_entry_safe(gtt, tmp, &adev->gtt_list, list) {
flags = amdgpu_ttm_tt_pte_flags(gtt->adev, &gtt->ttm.ttm, &bo_mem);
r = amdgpu_gart_bind(adev, gtt->offset, gtt->ttm.ttm.num_pages,
gtt->ttm.ttm.pages, gtt->ttm.dma_address,
flags);
if (r) {
spin_unlock(&adev->gtt_list_lock);
DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
gtt->ttm.ttm.num_pages, gtt->offset);
return r;
}
}
spin_unlock(&adev->gtt_list_lock);
return 0;
}
static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
if (gtt->userptr)
amdgpu_ttm_tt_unpin_userptr(ttm);
if (!amdgpu_ttm_is_bound(ttm))
return 0;
/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
if (gtt->adev->gart.ready)
amdgpu_gart_unbind(gtt->adev, gtt->offset, ttm->num_pages);
spin_lock(&gtt->adev->gtt_list_lock);
list_del_init(&gtt->list);
spin_unlock(&gtt->adev->gtt_list_lock);
return 0;
}
static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
ttm_dma_tt_fini(&gtt->ttm);
kfree(gtt);
}
static struct ttm_backend_func amdgpu_backend_func = {
.bind = &amdgpu_ttm_backend_bind,
.unbind = &amdgpu_ttm_backend_unbind,
.destroy = &amdgpu_ttm_backend_destroy,
};
static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_bo_device *bdev,
unsigned long size, uint32_t page_flags,
struct page *dummy_read_page)
{
struct amdgpu_device *adev;
struct amdgpu_ttm_tt *gtt;
adev = amdgpu_get_adev(bdev);
gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
if (gtt == NULL) {
return NULL;
}
gtt->ttm.ttm.func = &amdgpu_backend_func;
gtt->adev = adev;
if (ttm_dma_tt_init(&gtt->ttm, bdev, size, page_flags, dummy_read_page)) {
kfree(gtt);
return NULL;
}
INIT_LIST_HEAD(&gtt->list);
return &gtt->ttm.ttm;
}
static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm)
{
struct amdgpu_device *adev;
struct amdgpu_ttm_tt *gtt = (void *)ttm;
unsigned i;
int r;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
if (ttm->state != tt_unpopulated)
return 0;
if (gtt && gtt->userptr) {
ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
if (!ttm->sg)
return -ENOMEM;
ttm->page_flags |= TTM_PAGE_FLAG_SG;
ttm->state = tt_unbound;
return 0;
}
if (slave && ttm->sg) {
drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
gtt->ttm.dma_address, ttm->num_pages);
ttm->state = tt_unbound;
return 0;
}
adev = amdgpu_get_adev(ttm->bdev);
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
return ttm_dma_populate(&gtt->ttm, adev->dev);
}
#endif
r = ttm_pool_populate(ttm);
if (r) {
return r;
}
for (i = 0; i < ttm->num_pages; i++) {
gtt->ttm.dma_address[i] = pci_map_page(adev->pdev, ttm->pages[i],
0, PAGE_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(adev->pdev, gtt->ttm.dma_address[i])) {
while (i--) {
pci_unmap_page(adev->pdev, gtt->ttm.dma_address[i],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
gtt->ttm.dma_address[i] = 0;
}
ttm_pool_unpopulate(ttm);
return -EFAULT;
}
}
return 0;
}
static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
{
struct amdgpu_device *adev;
struct amdgpu_ttm_tt *gtt = (void *)ttm;
unsigned i;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
if (gtt && gtt->userptr) {
kfree(ttm->sg);
ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
return;
}
if (slave)
return;
adev = amdgpu_get_adev(ttm->bdev);
#ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) {
ttm_dma_unpopulate(&gtt->ttm, adev->dev);
return;
}
#endif
for (i = 0; i < ttm->num_pages; i++) {
if (gtt->ttm.dma_address[i]) {
pci_unmap_page(adev->pdev, gtt->ttm.dma_address[i],
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
}
}
ttm_pool_unpopulate(ttm);
}
int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
uint32_t flags)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
if (gtt == NULL)
return -EINVAL;
gtt->userptr = addr;
gtt->usermm = current->mm;
gtt->userflags = flags;
spin_lock_init(&gtt->guptasklock);
INIT_LIST_HEAD(&gtt->guptasks);
atomic_set(&gtt->mmu_invalidations, 0);
return 0;
}
struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
if (gtt == NULL)
return NULL;
return gtt->usermm;
}
bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
unsigned long end)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
struct amdgpu_ttm_gup_task_list *entry;
unsigned long size;
if (gtt == NULL || !gtt->userptr)
return false;
size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
if (gtt->userptr > end || gtt->userptr + size <= start)
return false;
spin_lock(&gtt->guptasklock);
list_for_each_entry(entry, &gtt->guptasks, list) {
if (entry->task == current) {
spin_unlock(&gtt->guptasklock);
return false;
}
}
spin_unlock(&gtt->guptasklock);
atomic_inc(&gtt->mmu_invalidations);
return true;
}
bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
int *last_invalidated)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
int prev_invalidated = *last_invalidated;
*last_invalidated = atomic_read(&gtt->mmu_invalidations);
return prev_invalidated != *last_invalidated;
}
bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
if (gtt == NULL)
return false;
return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
}
uint32_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
struct ttm_mem_reg *mem)
{
uint32_t flags = 0;
if (mem && mem->mem_type != TTM_PL_SYSTEM)
flags |= AMDGPU_PTE_VALID;
if (mem && mem->mem_type == TTM_PL_TT) {
flags |= AMDGPU_PTE_SYSTEM;
if (ttm->caching_state == tt_cached)
flags |= AMDGPU_PTE_SNOOPED;
}
if (adev->asic_type >= CHIP_TONGA)
flags |= AMDGPU_PTE_EXECUTABLE;
flags |= AMDGPU_PTE_READABLE;
if (!amdgpu_ttm_tt_is_readonly(ttm))
flags |= AMDGPU_PTE_WRITEABLE;
return flags;
}
static void amdgpu_ttm_lru_removal(struct ttm_buffer_object *tbo)
{
struct amdgpu_device *adev = amdgpu_get_adev(tbo->bdev);
unsigned i, j;
for (i = 0; i < AMDGPU_TTM_LRU_SIZE; ++i) {
struct amdgpu_mman_lru *lru = &adev->mman.log2_size[i];
for (j = 0; j < TTM_NUM_MEM_TYPES; ++j)
if (&tbo->lru == lru->lru[j])
lru->lru[j] = tbo->lru.prev;
if (&tbo->swap == lru->swap_lru)
lru->swap_lru = tbo->swap.prev;
}
}
static struct amdgpu_mman_lru *amdgpu_ttm_lru(struct ttm_buffer_object *tbo)
{
struct amdgpu_device *adev = amdgpu_get_adev(tbo->bdev);
unsigned log2_size = min(ilog2(tbo->num_pages),
AMDGPU_TTM_LRU_SIZE - 1);
return &adev->mman.log2_size[log2_size];
}
static struct list_head *amdgpu_ttm_lru_tail(struct ttm_buffer_object *tbo)
{
struct amdgpu_mman_lru *lru = amdgpu_ttm_lru(tbo);
struct list_head *res = lru->lru[tbo->mem.mem_type];
lru->lru[tbo->mem.mem_type] = &tbo->lru;
while ((++lru)->lru[tbo->mem.mem_type] == res)
lru->lru[tbo->mem.mem_type] = &tbo->lru;
return res;
}
static struct list_head *amdgpu_ttm_swap_lru_tail(struct ttm_buffer_object *tbo)
{
struct amdgpu_mman_lru *lru = amdgpu_ttm_lru(tbo);
struct list_head *res = lru->swap_lru;
lru->swap_lru = &tbo->swap;
while ((++lru)->swap_lru == res)
lru->swap_lru = &tbo->swap;
return res;
}
static struct ttm_bo_driver amdgpu_bo_driver = {
.ttm_tt_create = &amdgpu_ttm_tt_create,
.ttm_tt_populate = &amdgpu_ttm_tt_populate,
.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
.invalidate_caches = &amdgpu_invalidate_caches,
.init_mem_type = &amdgpu_init_mem_type,
.evict_flags = &amdgpu_evict_flags,
.move = &amdgpu_bo_move,
.verify_access = &amdgpu_verify_access,
.move_notify = &amdgpu_bo_move_notify,
.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
.io_mem_free = &amdgpu_ttm_io_mem_free,
.lru_removal = &amdgpu_ttm_lru_removal,
.lru_tail = &amdgpu_ttm_lru_tail,
.swap_lru_tail = &amdgpu_ttm_swap_lru_tail,
};
int amdgpu_ttm_init(struct amdgpu_device *adev)
{
unsigned i, j;
int r;
/* No others user of address space so set it to 0 */
r = ttm_bo_device_init(&adev->mman.bdev,
adev->mman.bo_global_ref.ref.object,
&amdgpu_bo_driver,
adev->ddev->anon_inode->i_mapping,
DRM_FILE_PAGE_OFFSET,
adev->need_dma32);
if (r) {
DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
return r;
}
for (i = 0; i < AMDGPU_TTM_LRU_SIZE; ++i) {
struct amdgpu_mman_lru *lru = &adev->mman.log2_size[i];
for (j = 0; j < TTM_NUM_MEM_TYPES; ++j)
lru->lru[j] = &adev->mman.bdev.man[j].lru;
lru->swap_lru = &adev->mman.bdev.glob->swap_lru;
}
for (j = 0; j < TTM_NUM_MEM_TYPES; ++j)
adev->mman.guard.lru[j] = NULL;
adev->mman.guard.swap_lru = NULL;
adev->mman.initialized = true;
r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
adev->mc.real_vram_size >> PAGE_SHIFT);
if (r) {
DRM_ERROR("Failed initializing VRAM heap.\n");
return r;
}
/* Change the size here instead of the init above so only lpfn is affected */
amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
r = amdgpu_bo_create(adev, 256 * 1024, PAGE_SIZE, true,
AMDGPU_GEM_DOMAIN_VRAM,
AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED,
NULL, NULL, &adev->stollen_vga_memory);
if (r) {
return r;
}
r = amdgpu_bo_reserve(adev->stollen_vga_memory, false);
if (r)
return r;
r = amdgpu_bo_pin(adev->stollen_vga_memory, AMDGPU_GEM_DOMAIN_VRAM, NULL);
amdgpu_bo_unreserve(adev->stollen_vga_memory);
if (r) {
amdgpu_bo_unref(&adev->stollen_vga_memory);
return r;
}
DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
(unsigned) (adev->mc.real_vram_size / (1024 * 1024)));
r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT,
adev->mc.gtt_size >> PAGE_SHIFT);
if (r) {
DRM_ERROR("Failed initializing GTT heap.\n");
return r;
}
DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
(unsigned)(adev->mc.gtt_size / (1024 * 1024)));
adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT;
adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT;
adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT;
adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT;
adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT;
adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT;
adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT;
adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT;
adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT;
/* GDS Memory */
r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
adev->gds.mem.total_size >> PAGE_SHIFT);
if (r) {
DRM_ERROR("Failed initializing GDS heap.\n");
return r;
}
/* GWS */
r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
adev->gds.gws.total_size >> PAGE_SHIFT);
if (r) {
DRM_ERROR("Failed initializing gws heap.\n");
return r;
}
/* OA */
r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
adev->gds.oa.total_size >> PAGE_SHIFT);
if (r) {
DRM_ERROR("Failed initializing oa heap.\n");
return r;
}
r = amdgpu_ttm_debugfs_init(adev);
if (r) {
DRM_ERROR("Failed to init debugfs\n");
return r;
}
return 0;
}
void amdgpu_ttm_fini(struct amdgpu_device *adev)
{
int r;
if (!adev->mman.initialized)
return;
amdgpu_ttm_debugfs_fini(adev);
if (adev->stollen_vga_memory) {
r = amdgpu_bo_reserve(adev->stollen_vga_memory, false);
if (r == 0) {
amdgpu_bo_unpin(adev->stollen_vga_memory);
amdgpu_bo_unreserve(adev->stollen_vga_memory);
}
amdgpu_bo_unref(&adev->stollen_vga_memory);
}
ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
ttm_bo_device_release(&adev->mman.bdev);
amdgpu_gart_fini(adev);
amdgpu_ttm_global_fini(adev);
adev->mman.initialized = false;
DRM_INFO("amdgpu: ttm finalized\n");
}
/* this should only be called at bootup or when userspace
* isn't running */
void amdgpu_ttm_set_active_vram_size(struct amdgpu_device *adev, u64 size)
{
struct ttm_mem_type_manager *man;
if (!adev->mman.initialized)
return;
man = &adev->mman.bdev.man[TTM_PL_VRAM];
/* this just adjusts TTM size idea, which sets lpfn to the correct value */
man->size = size >> PAGE_SHIFT;
}
int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct drm_file *file_priv;
struct amdgpu_device *adev;
if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
return -EINVAL;
file_priv = filp->private_data;
adev = file_priv->minor->dev->dev_private;
if (adev == NULL)
return -EINVAL;
return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
}
int amdgpu_copy_buffer(struct amdgpu_ring *ring,
uint64_t src_offset,
uint64_t dst_offset,
uint32_t byte_count,
struct reservation_object *resv,
struct fence **fence, bool direct_submit)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_job *job;
uint32_t max_bytes;
unsigned num_loops, num_dw;
unsigned i;
int r;
max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
num_loops = DIV_ROUND_UP(byte_count, max_bytes);
num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
/* for IB padding */
while (num_dw & 0x7)
num_dw++;
r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
if (r)
return r;
if (resv) {
r = amdgpu_sync_resv(adev, &job->sync, resv,
AMDGPU_FENCE_OWNER_UNDEFINED);
if (r) {
DRM_ERROR("sync failed (%d).\n", r);
goto error_free;
}
}
for (i = 0; i < num_loops; i++) {
uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
dst_offset, cur_size_in_bytes);
src_offset += cur_size_in_bytes;
dst_offset += cur_size_in_bytes;
byte_count -= cur_size_in_bytes;
}
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > num_dw);
if (direct_submit) {
r = amdgpu_ib_schedule(ring, job->num_ibs, job->ibs,
NULL, NULL, fence);
job->fence = fence_get(*fence);
if (r)
DRM_ERROR("Error scheduling IBs (%d)\n", r);
amdgpu_job_free(job);
} else {
r = amdgpu_job_submit(job, ring, &adev->mman.entity,
AMDGPU_FENCE_OWNER_UNDEFINED, fence);
if (r)
goto error_free;
}
return r;
error_free:
amdgpu_job_free(job);
return r;
}
int amdgpu_fill_buffer(struct amdgpu_bo *bo,
uint32_t src_data,
struct reservation_object *resv,
struct fence **fence)
{
struct amdgpu_device *adev = bo->adev;
struct amdgpu_job *job;
struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
uint32_t max_bytes, byte_count;
uint64_t dst_offset;
unsigned int num_loops, num_dw;
unsigned int i;
int r;
byte_count = bo->tbo.num_pages << PAGE_SHIFT;
max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
num_loops = DIV_ROUND_UP(byte_count, max_bytes);
num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
/* for IB padding */
while (num_dw & 0x7)
num_dw++;
r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
if (r)
return r;
if (resv) {
r = amdgpu_sync_resv(adev, &job->sync, resv,
AMDGPU_FENCE_OWNER_UNDEFINED);
if (r) {
DRM_ERROR("sync failed (%d).\n", r);
goto error_free;
}
}
dst_offset = bo->tbo.mem.start << PAGE_SHIFT;
for (i = 0; i < num_loops; i++) {
uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
dst_offset, cur_size_in_bytes);
dst_offset += cur_size_in_bytes;
byte_count -= cur_size_in_bytes;
}
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > num_dw);
r = amdgpu_job_submit(job, ring, &adev->mman.entity,
AMDGPU_FENCE_OWNER_UNDEFINED, fence);
if (r)
goto error_free;
return 0;
error_free:
amdgpu_job_free(job);
return r;
}
#if defined(CONFIG_DEBUG_FS)
static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
unsigned ttm_pl = *(int *)node->info_ent->data;
struct drm_device *dev = node->minor->dev;
struct amdgpu_device *adev = dev->dev_private;
struct drm_mm *mm = (struct drm_mm *)adev->mman.bdev.man[ttm_pl].priv;
int ret;
struct ttm_bo_global *glob = adev->mman.bdev.glob;
spin_lock(&glob->lru_lock);
ret = drm_mm_dump_table(m, mm);
spin_unlock(&glob->lru_lock);
if (ttm_pl == TTM_PL_VRAM)
seq_printf(m, "man size:%llu pages, ram usage:%lluMB, vis usage:%lluMB\n",
adev->mman.bdev.man[ttm_pl].size,
(u64)atomic64_read(&adev->vram_usage) >> 20,
(u64)atomic64_read(&adev->vram_vis_usage) >> 20);
return ret;
}
static int ttm_pl_vram = TTM_PL_VRAM;
static int ttm_pl_tt = TTM_PL_TT;
static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram},
{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt},
{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
#ifdef CONFIG_SWIOTLB
{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
#endif
};
static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = f->f_inode->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
while (size) {
unsigned long flags;
uint32_t value;
if (*pos >= adev->mc.mc_vram_size)
return result;
spin_lock_irqsave(&adev->mmio_idx_lock, flags);
WREG32(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
WREG32(mmMM_INDEX_HI, *pos >> 31);
value = RREG32(mmMM_DATA);
spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
r = put_user(value, (uint32_t *)buf);
if (r)
return r;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
static const struct file_operations amdgpu_ttm_vram_fops = {
.owner = THIS_MODULE,
.read = amdgpu_ttm_vram_read,
.llseek = default_llseek
};
#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = f->f_inode->i_private;
ssize_t result = 0;
int r;
while (size) {
loff_t p = *pos / PAGE_SIZE;
unsigned off = *pos & ~PAGE_MASK;
size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
struct page *page;
void *ptr;
if (p >= adev->gart.num_cpu_pages)
return result;
page = adev->gart.pages[p];
if (page) {
ptr = kmap(page);
ptr += off;
r = copy_to_user(buf, ptr, cur_size);
kunmap(adev->gart.pages[p]);
} else
r = clear_user(buf, cur_size);
if (r)
return -EFAULT;
result += cur_size;
buf += cur_size;
*pos += cur_size;
size -= cur_size;
}
return result;
}
static const struct file_operations amdgpu_ttm_gtt_fops = {
.owner = THIS_MODULE,
.read = amdgpu_ttm_gtt_read,
.llseek = default_llseek
};
#endif
#endif
static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
unsigned count;
struct drm_minor *minor = adev->ddev->primary;
struct dentry *ent, *root = minor->debugfs_root;
ent = debugfs_create_file("amdgpu_vram", S_IFREG | S_IRUGO, root,
adev, &amdgpu_ttm_vram_fops);
if (IS_ERR(ent))
return PTR_ERR(ent);
i_size_write(ent->d_inode, adev->mc.mc_vram_size);
adev->mman.vram = ent;
#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
ent = debugfs_create_file("amdgpu_gtt", S_IFREG | S_IRUGO, root,
adev, &amdgpu_ttm_gtt_fops);
if (IS_ERR(ent))
return PTR_ERR(ent);
i_size_write(ent->d_inode, adev->mc.gtt_size);
adev->mman.gtt = ent;
#endif
count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
#ifdef CONFIG_SWIOTLB
if (!swiotlb_nr_tbl())
--count;
#endif
return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
#else
return 0;
#endif
}
static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
debugfs_remove(adev->mman.vram);
adev->mman.vram = NULL;
#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
debugfs_remove(adev->mman.gtt);
adev->mman.gtt = NULL;
#endif
#endif
}
u64 amdgpu_ttm_get_gtt_mem_size(struct amdgpu_device *adev)
{
return ttm_get_kernel_zone_memory_size(adev->mman.mem_global_ref.object);
}