| /* |
| * fs/f2fs/node.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/mpage.h> |
| #include <linux/backing-dev.h> |
| #include <linux/blkdev.h> |
| #include <linux/pagevec.h> |
| #include <linux/swap.h> |
| |
| #include "f2fs.h" |
| #include "node.h" |
| #include "segment.h" |
| #include "trace.h" |
| #include <trace/events/f2fs.h> |
| |
| #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock) |
| |
| static struct kmem_cache *nat_entry_slab; |
| static struct kmem_cache *free_nid_slab; |
| static struct kmem_cache *nat_entry_set_slab; |
| |
| bool available_free_memory(struct f2fs_sb_info *sbi, int type) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct sysinfo val; |
| unsigned long avail_ram; |
| unsigned long mem_size = 0; |
| bool res = false; |
| |
| si_meminfo(&val); |
| |
| /* only uses low memory */ |
| avail_ram = val.totalram - val.totalhigh; |
| |
| /* |
| * give 25%, 25%, 50%, 50%, 50% memory for each components respectively |
| */ |
| if (type == FREE_NIDS) { |
| mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> |
| PAGE_CACHE_SHIFT; |
| res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); |
| } else if (type == NAT_ENTRIES) { |
| mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> |
| PAGE_CACHE_SHIFT; |
| res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); |
| } else if (type == DIRTY_DENTS) { |
| if (sbi->sb->s_bdi->dirty_exceeded) |
| return false; |
| mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); |
| res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); |
| } else if (type == INO_ENTRIES) { |
| int i; |
| |
| for (i = 0; i <= UPDATE_INO; i++) |
| mem_size += (sbi->im[i].ino_num * |
| sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT; |
| res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); |
| } else if (type == EXTENT_CACHE) { |
| mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) + |
| atomic_read(&sbi->total_ext_node) * |
| sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT; |
| res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); |
| } else { |
| if (sbi->sb->s_bdi->dirty_exceeded) |
| return false; |
| } |
| return res; |
| } |
| |
| static void clear_node_page_dirty(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| unsigned int long flags; |
| |
| if (PageDirty(page)) { |
| spin_lock_irqsave(&mapping->tree_lock, flags); |
| radix_tree_tag_clear(&mapping->page_tree, |
| page_index(page), |
| PAGECACHE_TAG_DIRTY); |
| spin_unlock_irqrestore(&mapping->tree_lock, flags); |
| |
| clear_page_dirty_for_io(page); |
| dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); |
| } |
| ClearPageUptodate(page); |
| } |
| |
| static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) |
| { |
| pgoff_t index = current_nat_addr(sbi, nid); |
| return get_meta_page(sbi, index); |
| } |
| |
| static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) |
| { |
| struct page *src_page; |
| struct page *dst_page; |
| pgoff_t src_off; |
| pgoff_t dst_off; |
| void *src_addr; |
| void *dst_addr; |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| |
| src_off = current_nat_addr(sbi, nid); |
| dst_off = next_nat_addr(sbi, src_off); |
| |
| /* get current nat block page with lock */ |
| src_page = get_meta_page(sbi, src_off); |
| dst_page = grab_meta_page(sbi, dst_off); |
| f2fs_bug_on(sbi, PageDirty(src_page)); |
| |
| src_addr = page_address(src_page); |
| dst_addr = page_address(dst_page); |
| memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); |
| set_page_dirty(dst_page); |
| f2fs_put_page(src_page, 1); |
| |
| set_to_next_nat(nm_i, nid); |
| |
| return dst_page; |
| } |
| |
| static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) |
| { |
| return radix_tree_lookup(&nm_i->nat_root, n); |
| } |
| |
| static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, |
| nid_t start, unsigned int nr, struct nat_entry **ep) |
| { |
| return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); |
| } |
| |
| static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) |
| { |
| list_del(&e->list); |
| radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); |
| nm_i->nat_cnt--; |
| kmem_cache_free(nat_entry_slab, e); |
| } |
| |
| static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, |
| struct nat_entry *ne) |
| { |
| nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); |
| struct nat_entry_set *head; |
| |
| if (get_nat_flag(ne, IS_DIRTY)) |
| return; |
| |
| head = radix_tree_lookup(&nm_i->nat_set_root, set); |
| if (!head) { |
| head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC); |
| |
| INIT_LIST_HEAD(&head->entry_list); |
| INIT_LIST_HEAD(&head->set_list); |
| head->set = set; |
| head->entry_cnt = 0; |
| f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); |
| } |
| list_move_tail(&ne->list, &head->entry_list); |
| nm_i->dirty_nat_cnt++; |
| head->entry_cnt++; |
| set_nat_flag(ne, IS_DIRTY, true); |
| } |
| |
| static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, |
| struct nat_entry *ne) |
| { |
| nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); |
| struct nat_entry_set *head; |
| |
| head = radix_tree_lookup(&nm_i->nat_set_root, set); |
| if (head) { |
| list_move_tail(&ne->list, &nm_i->nat_entries); |
| set_nat_flag(ne, IS_DIRTY, false); |
| head->entry_cnt--; |
| nm_i->dirty_nat_cnt--; |
| } |
| } |
| |
| static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, |
| nid_t start, unsigned int nr, struct nat_entry_set **ep) |
| { |
| return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, |
| start, nr); |
| } |
| |
| int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct nat_entry *e; |
| bool need = false; |
| |
| down_read(&nm_i->nat_tree_lock); |
| e = __lookup_nat_cache(nm_i, nid); |
| if (e) { |
| if (!get_nat_flag(e, IS_CHECKPOINTED) && |
| !get_nat_flag(e, HAS_FSYNCED_INODE)) |
| need = true; |
| } |
| up_read(&nm_i->nat_tree_lock); |
| return need; |
| } |
| |
| bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct nat_entry *e; |
| bool is_cp = true; |
| |
| down_read(&nm_i->nat_tree_lock); |
| e = __lookup_nat_cache(nm_i, nid); |
| if (e && !get_nat_flag(e, IS_CHECKPOINTED)) |
| is_cp = false; |
| up_read(&nm_i->nat_tree_lock); |
| return is_cp; |
| } |
| |
| bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct nat_entry *e; |
| bool need_update = true; |
| |
| down_read(&nm_i->nat_tree_lock); |
| e = __lookup_nat_cache(nm_i, ino); |
| if (e && get_nat_flag(e, HAS_LAST_FSYNC) && |
| (get_nat_flag(e, IS_CHECKPOINTED) || |
| get_nat_flag(e, HAS_FSYNCED_INODE))) |
| need_update = false; |
| up_read(&nm_i->nat_tree_lock); |
| return need_update; |
| } |
| |
| static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) |
| { |
| struct nat_entry *new; |
| |
| new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); |
| f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); |
| memset(new, 0, sizeof(struct nat_entry)); |
| nat_set_nid(new, nid); |
| nat_reset_flag(new); |
| list_add_tail(&new->list, &nm_i->nat_entries); |
| nm_i->nat_cnt++; |
| return new; |
| } |
| |
| static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, |
| struct f2fs_nat_entry *ne) |
| { |
| struct nat_entry *e; |
| |
| down_write(&nm_i->nat_tree_lock); |
| e = __lookup_nat_cache(nm_i, nid); |
| if (!e) { |
| e = grab_nat_entry(nm_i, nid); |
| node_info_from_raw_nat(&e->ni, ne); |
| } |
| up_write(&nm_i->nat_tree_lock); |
| } |
| |
| static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, |
| block_t new_blkaddr, bool fsync_done) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct nat_entry *e; |
| |
| down_write(&nm_i->nat_tree_lock); |
| e = __lookup_nat_cache(nm_i, ni->nid); |
| if (!e) { |
| e = grab_nat_entry(nm_i, ni->nid); |
| copy_node_info(&e->ni, ni); |
| f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); |
| } else if (new_blkaddr == NEW_ADDR) { |
| /* |
| * when nid is reallocated, |
| * previous nat entry can be remained in nat cache. |
| * So, reinitialize it with new information. |
| */ |
| copy_node_info(&e->ni, ni); |
| f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); |
| } |
| |
| /* sanity check */ |
| f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); |
| f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && |
| new_blkaddr == NULL_ADDR); |
| f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && |
| new_blkaddr == NEW_ADDR); |
| f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && |
| nat_get_blkaddr(e) != NULL_ADDR && |
| new_blkaddr == NEW_ADDR); |
| |
| /* increment version no as node is removed */ |
| if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { |
| unsigned char version = nat_get_version(e); |
| nat_set_version(e, inc_node_version(version)); |
| } |
| |
| /* change address */ |
| nat_set_blkaddr(e, new_blkaddr); |
| if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) |
| set_nat_flag(e, IS_CHECKPOINTED, false); |
| __set_nat_cache_dirty(nm_i, e); |
| |
| /* update fsync_mark if its inode nat entry is still alive */ |
| if (ni->nid != ni->ino) |
| e = __lookup_nat_cache(nm_i, ni->ino); |
| if (e) { |
| if (fsync_done && ni->nid == ni->ino) |
| set_nat_flag(e, HAS_FSYNCED_INODE, true); |
| set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); |
| } |
| up_write(&nm_i->nat_tree_lock); |
| } |
| |
| int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| |
| if (available_free_memory(sbi, NAT_ENTRIES)) |
| return 0; |
| |
| down_write(&nm_i->nat_tree_lock); |
| while (nr_shrink && !list_empty(&nm_i->nat_entries)) { |
| struct nat_entry *ne; |
| ne = list_first_entry(&nm_i->nat_entries, |
| struct nat_entry, list); |
| __del_from_nat_cache(nm_i, ne); |
| nr_shrink--; |
| } |
| up_write(&nm_i->nat_tree_lock); |
| return nr_shrink; |
| } |
| |
| /* |
| * This function always returns success |
| */ |
| void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| nid_t start_nid = START_NID(nid); |
| struct f2fs_nat_block *nat_blk; |
| struct page *page = NULL; |
| struct f2fs_nat_entry ne; |
| struct nat_entry *e; |
| int i; |
| |
| ni->nid = nid; |
| |
| /* Check nat cache */ |
| down_read(&nm_i->nat_tree_lock); |
| e = __lookup_nat_cache(nm_i, nid); |
| if (e) { |
| ni->ino = nat_get_ino(e); |
| ni->blk_addr = nat_get_blkaddr(e); |
| ni->version = nat_get_version(e); |
| } |
| up_read(&nm_i->nat_tree_lock); |
| if (e) |
| return; |
| |
| memset(&ne, 0, sizeof(struct f2fs_nat_entry)); |
| |
| /* Check current segment summary */ |
| mutex_lock(&curseg->curseg_mutex); |
| i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); |
| if (i >= 0) { |
| ne = nat_in_journal(sum, i); |
| node_info_from_raw_nat(ni, &ne); |
| } |
| mutex_unlock(&curseg->curseg_mutex); |
| if (i >= 0) |
| goto cache; |
| |
| /* Fill node_info from nat page */ |
| page = get_current_nat_page(sbi, start_nid); |
| nat_blk = (struct f2fs_nat_block *)page_address(page); |
| ne = nat_blk->entries[nid - start_nid]; |
| node_info_from_raw_nat(ni, &ne); |
| f2fs_put_page(page, 1); |
| cache: |
| /* cache nat entry */ |
| cache_nat_entry(NM_I(sbi), nid, &ne); |
| } |
| |
| /* |
| * The maximum depth is four. |
| * Offset[0] will have raw inode offset. |
| */ |
| static int get_node_path(struct f2fs_inode_info *fi, long block, |
| int offset[4], unsigned int noffset[4]) |
| { |
| const long direct_index = ADDRS_PER_INODE(fi); |
| const long direct_blks = ADDRS_PER_BLOCK; |
| const long dptrs_per_blk = NIDS_PER_BLOCK; |
| const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; |
| const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; |
| int n = 0; |
| int level = 0; |
| |
| noffset[0] = 0; |
| |
| if (block < direct_index) { |
| offset[n] = block; |
| goto got; |
| } |
| block -= direct_index; |
| if (block < direct_blks) { |
| offset[n++] = NODE_DIR1_BLOCK; |
| noffset[n] = 1; |
| offset[n] = block; |
| level = 1; |
| goto got; |
| } |
| block -= direct_blks; |
| if (block < direct_blks) { |
| offset[n++] = NODE_DIR2_BLOCK; |
| noffset[n] = 2; |
| offset[n] = block; |
| level = 1; |
| goto got; |
| } |
| block -= direct_blks; |
| if (block < indirect_blks) { |
| offset[n++] = NODE_IND1_BLOCK; |
| noffset[n] = 3; |
| offset[n++] = block / direct_blks; |
| noffset[n] = 4 + offset[n - 1]; |
| offset[n] = block % direct_blks; |
| level = 2; |
| goto got; |
| } |
| block -= indirect_blks; |
| if (block < indirect_blks) { |
| offset[n++] = NODE_IND2_BLOCK; |
| noffset[n] = 4 + dptrs_per_blk; |
| offset[n++] = block / direct_blks; |
| noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; |
| offset[n] = block % direct_blks; |
| level = 2; |
| goto got; |
| } |
| block -= indirect_blks; |
| if (block < dindirect_blks) { |
| offset[n++] = NODE_DIND_BLOCK; |
| noffset[n] = 5 + (dptrs_per_blk * 2); |
| offset[n++] = block / indirect_blks; |
| noffset[n] = 6 + (dptrs_per_blk * 2) + |
| offset[n - 1] * (dptrs_per_blk + 1); |
| offset[n++] = (block / direct_blks) % dptrs_per_blk; |
| noffset[n] = 7 + (dptrs_per_blk * 2) + |
| offset[n - 2] * (dptrs_per_blk + 1) + |
| offset[n - 1]; |
| offset[n] = block % direct_blks; |
| level = 3; |
| goto got; |
| } else { |
| BUG(); |
| } |
| got: |
| return level; |
| } |
| |
| /* |
| * Caller should call f2fs_put_dnode(dn). |
| * Also, it should grab and release a rwsem by calling f2fs_lock_op() and |
| * f2fs_unlock_op() only if ro is not set RDONLY_NODE. |
| * In the case of RDONLY_NODE, we don't need to care about mutex. |
| */ |
| int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| struct page *npage[4]; |
| struct page *parent = NULL; |
| int offset[4]; |
| unsigned int noffset[4]; |
| nid_t nids[4]; |
| int level, i; |
| int err = 0; |
| |
| level = get_node_path(F2FS_I(dn->inode), index, offset, noffset); |
| |
| nids[0] = dn->inode->i_ino; |
| npage[0] = dn->inode_page; |
| |
| if (!npage[0]) { |
| npage[0] = get_node_page(sbi, nids[0]); |
| if (IS_ERR(npage[0])) |
| return PTR_ERR(npage[0]); |
| } |
| |
| /* if inline_data is set, should not report any block indices */ |
| if (f2fs_has_inline_data(dn->inode) && index) { |
| err = -ENOENT; |
| f2fs_put_page(npage[0], 1); |
| goto release_out; |
| } |
| |
| parent = npage[0]; |
| if (level != 0) |
| nids[1] = get_nid(parent, offset[0], true); |
| dn->inode_page = npage[0]; |
| dn->inode_page_locked = true; |
| |
| /* get indirect or direct nodes */ |
| for (i = 1; i <= level; i++) { |
| bool done = false; |
| |
| if (!nids[i] && mode == ALLOC_NODE) { |
| /* alloc new node */ |
| if (!alloc_nid(sbi, &(nids[i]))) { |
| err = -ENOSPC; |
| goto release_pages; |
| } |
| |
| dn->nid = nids[i]; |
| npage[i] = new_node_page(dn, noffset[i], NULL); |
| if (IS_ERR(npage[i])) { |
| alloc_nid_failed(sbi, nids[i]); |
| err = PTR_ERR(npage[i]); |
| goto release_pages; |
| } |
| |
| set_nid(parent, offset[i - 1], nids[i], i == 1); |
| alloc_nid_done(sbi, nids[i]); |
| done = true; |
| } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { |
| npage[i] = get_node_page_ra(parent, offset[i - 1]); |
| if (IS_ERR(npage[i])) { |
| err = PTR_ERR(npage[i]); |
| goto release_pages; |
| } |
| done = true; |
| } |
| if (i == 1) { |
| dn->inode_page_locked = false; |
| unlock_page(parent); |
| } else { |
| f2fs_put_page(parent, 1); |
| } |
| |
| if (!done) { |
| npage[i] = get_node_page(sbi, nids[i]); |
| if (IS_ERR(npage[i])) { |
| err = PTR_ERR(npage[i]); |
| f2fs_put_page(npage[0], 0); |
| goto release_out; |
| } |
| } |
| if (i < level) { |
| parent = npage[i]; |
| nids[i + 1] = get_nid(parent, offset[i], false); |
| } |
| } |
| dn->nid = nids[level]; |
| dn->ofs_in_node = offset[level]; |
| dn->node_page = npage[level]; |
| dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); |
| return 0; |
| |
| release_pages: |
| f2fs_put_page(parent, 1); |
| if (i > 1) |
| f2fs_put_page(npage[0], 0); |
| release_out: |
| dn->inode_page = NULL; |
| dn->node_page = NULL; |
| return err; |
| } |
| |
| static void truncate_node(struct dnode_of_data *dn) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| struct node_info ni; |
| |
| get_node_info(sbi, dn->nid, &ni); |
| if (dn->inode->i_blocks == 0) { |
| f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); |
| goto invalidate; |
| } |
| f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); |
| |
| /* Deallocate node address */ |
| invalidate_blocks(sbi, ni.blk_addr); |
| dec_valid_node_count(sbi, dn->inode); |
| set_node_addr(sbi, &ni, NULL_ADDR, false); |
| |
| if (dn->nid == dn->inode->i_ino) { |
| remove_orphan_inode(sbi, dn->nid); |
| dec_valid_inode_count(sbi); |
| } else { |
| sync_inode_page(dn); |
| } |
| invalidate: |
| clear_node_page_dirty(dn->node_page); |
| set_sbi_flag(sbi, SBI_IS_DIRTY); |
| |
| f2fs_put_page(dn->node_page, 1); |
| |
| invalidate_mapping_pages(NODE_MAPPING(sbi), |
| dn->node_page->index, dn->node_page->index); |
| |
| dn->node_page = NULL; |
| trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); |
| } |
| |
| static int truncate_dnode(struct dnode_of_data *dn) |
| { |
| struct page *page; |
| |
| if (dn->nid == 0) |
| return 1; |
| |
| /* get direct node */ |
| page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); |
| if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) |
| return 1; |
| else if (IS_ERR(page)) |
| return PTR_ERR(page); |
| |
| /* Make dnode_of_data for parameter */ |
| dn->node_page = page; |
| dn->ofs_in_node = 0; |
| truncate_data_blocks(dn); |
| truncate_node(dn); |
| return 1; |
| } |
| |
| static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, |
| int ofs, int depth) |
| { |
| struct dnode_of_data rdn = *dn; |
| struct page *page; |
| struct f2fs_node *rn; |
| nid_t child_nid; |
| unsigned int child_nofs; |
| int freed = 0; |
| int i, ret; |
| |
| if (dn->nid == 0) |
| return NIDS_PER_BLOCK + 1; |
| |
| trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); |
| |
| page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); |
| if (IS_ERR(page)) { |
| trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); |
| return PTR_ERR(page); |
| } |
| |
| rn = F2FS_NODE(page); |
| if (depth < 3) { |
| for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { |
| child_nid = le32_to_cpu(rn->in.nid[i]); |
| if (child_nid == 0) |
| continue; |
| rdn.nid = child_nid; |
| ret = truncate_dnode(&rdn); |
| if (ret < 0) |
| goto out_err; |
| set_nid(page, i, 0, false); |
| } |
| } else { |
| child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; |
| for (i = ofs; i < NIDS_PER_BLOCK; i++) { |
| child_nid = le32_to_cpu(rn->in.nid[i]); |
| if (child_nid == 0) { |
| child_nofs += NIDS_PER_BLOCK + 1; |
| continue; |
| } |
| rdn.nid = child_nid; |
| ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); |
| if (ret == (NIDS_PER_BLOCK + 1)) { |
| set_nid(page, i, 0, false); |
| child_nofs += ret; |
| } else if (ret < 0 && ret != -ENOENT) { |
| goto out_err; |
| } |
| } |
| freed = child_nofs; |
| } |
| |
| if (!ofs) { |
| /* remove current indirect node */ |
| dn->node_page = page; |
| truncate_node(dn); |
| freed++; |
| } else { |
| f2fs_put_page(page, 1); |
| } |
| trace_f2fs_truncate_nodes_exit(dn->inode, freed); |
| return freed; |
| |
| out_err: |
| f2fs_put_page(page, 1); |
| trace_f2fs_truncate_nodes_exit(dn->inode, ret); |
| return ret; |
| } |
| |
| static int truncate_partial_nodes(struct dnode_of_data *dn, |
| struct f2fs_inode *ri, int *offset, int depth) |
| { |
| struct page *pages[2]; |
| nid_t nid[3]; |
| nid_t child_nid; |
| int err = 0; |
| int i; |
| int idx = depth - 2; |
| |
| nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); |
| if (!nid[0]) |
| return 0; |
| |
| /* get indirect nodes in the path */ |
| for (i = 0; i < idx + 1; i++) { |
| /* reference count'll be increased */ |
| pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); |
| if (IS_ERR(pages[i])) { |
| err = PTR_ERR(pages[i]); |
| idx = i - 1; |
| goto fail; |
| } |
| nid[i + 1] = get_nid(pages[i], offset[i + 1], false); |
| } |
| |
| /* free direct nodes linked to a partial indirect node */ |
| for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { |
| child_nid = get_nid(pages[idx], i, false); |
| if (!child_nid) |
| continue; |
| dn->nid = child_nid; |
| err = truncate_dnode(dn); |
| if (err < 0) |
| goto fail; |
| set_nid(pages[idx], i, 0, false); |
| } |
| |
| if (offset[idx + 1] == 0) { |
| dn->node_page = pages[idx]; |
| dn->nid = nid[idx]; |
| truncate_node(dn); |
| } else { |
| f2fs_put_page(pages[idx], 1); |
| } |
| offset[idx]++; |
| offset[idx + 1] = 0; |
| idx--; |
| fail: |
| for (i = idx; i >= 0; i--) |
| f2fs_put_page(pages[i], 1); |
| |
| trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); |
| |
| return err; |
| } |
| |
| /* |
| * All the block addresses of data and nodes should be nullified. |
| */ |
| int truncate_inode_blocks(struct inode *inode, pgoff_t from) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| int err = 0, cont = 1; |
| int level, offset[4], noffset[4]; |
| unsigned int nofs = 0; |
| struct f2fs_inode *ri; |
| struct dnode_of_data dn; |
| struct page *page; |
| |
| trace_f2fs_truncate_inode_blocks_enter(inode, from); |
| |
| level = get_node_path(F2FS_I(inode), from, offset, noffset); |
| restart: |
| page = get_node_page(sbi, inode->i_ino); |
| if (IS_ERR(page)) { |
| trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); |
| return PTR_ERR(page); |
| } |
| |
| set_new_dnode(&dn, inode, page, NULL, 0); |
| unlock_page(page); |
| |
| ri = F2FS_INODE(page); |
| switch (level) { |
| case 0: |
| case 1: |
| nofs = noffset[1]; |
| break; |
| case 2: |
| nofs = noffset[1]; |
| if (!offset[level - 1]) |
| goto skip_partial; |
| err = truncate_partial_nodes(&dn, ri, offset, level); |
| if (err < 0 && err != -ENOENT) |
| goto fail; |
| nofs += 1 + NIDS_PER_BLOCK; |
| break; |
| case 3: |
| nofs = 5 + 2 * NIDS_PER_BLOCK; |
| if (!offset[level - 1]) |
| goto skip_partial; |
| err = truncate_partial_nodes(&dn, ri, offset, level); |
| if (err < 0 && err != -ENOENT) |
| goto fail; |
| break; |
| default: |
| BUG(); |
| } |
| |
| skip_partial: |
| while (cont) { |
| dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); |
| switch (offset[0]) { |
| case NODE_DIR1_BLOCK: |
| case NODE_DIR2_BLOCK: |
| err = truncate_dnode(&dn); |
| break; |
| |
| case NODE_IND1_BLOCK: |
| case NODE_IND2_BLOCK: |
| err = truncate_nodes(&dn, nofs, offset[1], 2); |
| break; |
| |
| case NODE_DIND_BLOCK: |
| err = truncate_nodes(&dn, nofs, offset[1], 3); |
| cont = 0; |
| break; |
| |
| default: |
| BUG(); |
| } |
| if (err < 0 && err != -ENOENT) |
| goto fail; |
| if (offset[1] == 0 && |
| ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { |
| lock_page(page); |
| if (unlikely(page->mapping != NODE_MAPPING(sbi))) { |
| f2fs_put_page(page, 1); |
| goto restart; |
| } |
| f2fs_wait_on_page_writeback(page, NODE); |
| ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; |
| set_page_dirty(page); |
| unlock_page(page); |
| } |
| offset[1] = 0; |
| offset[0]++; |
| nofs += err; |
| } |
| fail: |
| f2fs_put_page(page, 0); |
| trace_f2fs_truncate_inode_blocks_exit(inode, err); |
| return err > 0 ? 0 : err; |
| } |
| |
| int truncate_xattr_node(struct inode *inode, struct page *page) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| nid_t nid = F2FS_I(inode)->i_xattr_nid; |
| struct dnode_of_data dn; |
| struct page *npage; |
| |
| if (!nid) |
| return 0; |
| |
| npage = get_node_page(sbi, nid); |
| if (IS_ERR(npage)) |
| return PTR_ERR(npage); |
| |
| F2FS_I(inode)->i_xattr_nid = 0; |
| |
| /* need to do checkpoint during fsync */ |
| F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); |
| |
| set_new_dnode(&dn, inode, page, npage, nid); |
| |
| if (page) |
| dn.inode_page_locked = true; |
| truncate_node(&dn); |
| return 0; |
| } |
| |
| /* |
| * Caller should grab and release a rwsem by calling f2fs_lock_op() and |
| * f2fs_unlock_op(). |
| */ |
| void remove_inode_page(struct inode *inode) |
| { |
| struct dnode_of_data dn; |
| |
| set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); |
| if (get_dnode_of_data(&dn, 0, LOOKUP_NODE)) |
| return; |
| |
| if (truncate_xattr_node(inode, dn.inode_page)) { |
| f2fs_put_dnode(&dn); |
| return; |
| } |
| |
| /* remove potential inline_data blocks */ |
| if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || |
| S_ISLNK(inode->i_mode)) |
| truncate_data_blocks_range(&dn, 1); |
| |
| /* 0 is possible, after f2fs_new_inode() has failed */ |
| f2fs_bug_on(F2FS_I_SB(inode), |
| inode->i_blocks != 0 && inode->i_blocks != 1); |
| |
| /* will put inode & node pages */ |
| truncate_node(&dn); |
| } |
| |
| struct page *new_inode_page(struct inode *inode) |
| { |
| struct dnode_of_data dn; |
| |
| /* allocate inode page for new inode */ |
| set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); |
| |
| /* caller should f2fs_put_page(page, 1); */ |
| return new_node_page(&dn, 0, NULL); |
| } |
| |
| struct page *new_node_page(struct dnode_of_data *dn, |
| unsigned int ofs, struct page *ipage) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); |
| struct node_info old_ni, new_ni; |
| struct page *page; |
| int err; |
| |
| if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) |
| return ERR_PTR(-EPERM); |
| |
| page = grab_cache_page(NODE_MAPPING(sbi), dn->nid); |
| if (!page) |
| return ERR_PTR(-ENOMEM); |
| |
| if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { |
| err = -ENOSPC; |
| goto fail; |
| } |
| |
| get_node_info(sbi, dn->nid, &old_ni); |
| |
| /* Reinitialize old_ni with new node page */ |
| f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR); |
| new_ni = old_ni; |
| new_ni.ino = dn->inode->i_ino; |
| set_node_addr(sbi, &new_ni, NEW_ADDR, false); |
| |
| f2fs_wait_on_page_writeback(page, NODE); |
| fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); |
| set_cold_node(dn->inode, page); |
| SetPageUptodate(page); |
| set_page_dirty(page); |
| |
| if (f2fs_has_xattr_block(ofs)) |
| F2FS_I(dn->inode)->i_xattr_nid = dn->nid; |
| |
| dn->node_page = page; |
| if (ipage) |
| update_inode(dn->inode, ipage); |
| else |
| sync_inode_page(dn); |
| if (ofs == 0) |
| inc_valid_inode_count(sbi); |
| |
| return page; |
| |
| fail: |
| clear_node_page_dirty(page); |
| f2fs_put_page(page, 1); |
| return ERR_PTR(err); |
| } |
| |
| /* |
| * Caller should do after getting the following values. |
| * 0: f2fs_put_page(page, 0) |
| * LOCKED_PAGE: f2fs_put_page(page, 1) |
| * error: nothing |
| */ |
| static int read_node_page(struct page *page, int rw) |
| { |
| struct f2fs_sb_info *sbi = F2FS_P_SB(page); |
| struct node_info ni; |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .type = NODE, |
| .rw = rw, |
| .page = page, |
| .encrypted_page = NULL, |
| }; |
| |
| get_node_info(sbi, page->index, &ni); |
| |
| if (unlikely(ni.blk_addr == NULL_ADDR)) { |
| ClearPageUptodate(page); |
| f2fs_put_page(page, 1); |
| return -ENOENT; |
| } |
| |
| if (PageUptodate(page)) |
| return LOCKED_PAGE; |
| |
| fio.blk_addr = ni.blk_addr; |
| return f2fs_submit_page_bio(&fio); |
| } |
| |
| /* |
| * Readahead a node page |
| */ |
| void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) |
| { |
| struct page *apage; |
| int err; |
| |
| apage = find_get_page(NODE_MAPPING(sbi), nid); |
| if (apage && PageUptodate(apage)) { |
| f2fs_put_page(apage, 0); |
| return; |
| } |
| f2fs_put_page(apage, 0); |
| |
| apage = grab_cache_page(NODE_MAPPING(sbi), nid); |
| if (!apage) |
| return; |
| |
| err = read_node_page(apage, READA); |
| if (err == 0) |
| f2fs_put_page(apage, 0); |
| else if (err == LOCKED_PAGE) |
| f2fs_put_page(apage, 1); |
| } |
| |
| struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) |
| { |
| struct page *page; |
| int err; |
| repeat: |
| page = grab_cache_page(NODE_MAPPING(sbi), nid); |
| if (!page) |
| return ERR_PTR(-ENOMEM); |
| |
| err = read_node_page(page, READ_SYNC); |
| if (err < 0) |
| return ERR_PTR(err); |
| else if (err != LOCKED_PAGE) |
| lock_page(page); |
| |
| if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) { |
| ClearPageUptodate(page); |
| f2fs_put_page(page, 1); |
| return ERR_PTR(-EIO); |
| } |
| if (unlikely(page->mapping != NODE_MAPPING(sbi))) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| return page; |
| } |
| |
| /* |
| * Return a locked page for the desired node page. |
| * And, readahead MAX_RA_NODE number of node pages. |
| */ |
| struct page *get_node_page_ra(struct page *parent, int start) |
| { |
| struct f2fs_sb_info *sbi = F2FS_P_SB(parent); |
| struct blk_plug plug; |
| struct page *page; |
| int err, i, end; |
| nid_t nid; |
| |
| /* First, try getting the desired direct node. */ |
| nid = get_nid(parent, start, false); |
| if (!nid) |
| return ERR_PTR(-ENOENT); |
| repeat: |
| page = grab_cache_page(NODE_MAPPING(sbi), nid); |
| if (!page) |
| return ERR_PTR(-ENOMEM); |
| |
| err = read_node_page(page, READ_SYNC); |
| if (err < 0) |
| return ERR_PTR(err); |
| else if (err == LOCKED_PAGE) |
| goto page_hit; |
| |
| blk_start_plug(&plug); |
| |
| /* Then, try readahead for siblings of the desired node */ |
| end = start + MAX_RA_NODE; |
| end = min(end, NIDS_PER_BLOCK); |
| for (i = start + 1; i < end; i++) { |
| nid = get_nid(parent, i, false); |
| if (!nid) |
| continue; |
| ra_node_page(sbi, nid); |
| } |
| |
| blk_finish_plug(&plug); |
| |
| lock_page(page); |
| if (unlikely(page->mapping != NODE_MAPPING(sbi))) { |
| f2fs_put_page(page, 1); |
| goto repeat; |
| } |
| page_hit: |
| if (unlikely(!PageUptodate(page))) { |
| f2fs_put_page(page, 1); |
| return ERR_PTR(-EIO); |
| } |
| return page; |
| } |
| |
| void sync_inode_page(struct dnode_of_data *dn) |
| { |
| if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { |
| update_inode(dn->inode, dn->node_page); |
| } else if (dn->inode_page) { |
| if (!dn->inode_page_locked) |
| lock_page(dn->inode_page); |
| update_inode(dn->inode, dn->inode_page); |
| if (!dn->inode_page_locked) |
| unlock_page(dn->inode_page); |
| } else { |
| update_inode_page(dn->inode); |
| } |
| } |
| |
| int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, |
| struct writeback_control *wbc) |
| { |
| pgoff_t index, end; |
| struct pagevec pvec; |
| int step = ino ? 2 : 0; |
| int nwritten = 0, wrote = 0; |
| |
| pagevec_init(&pvec, 0); |
| |
| next_step: |
| index = 0; |
| end = LONG_MAX; |
| |
| while (index <= end) { |
| int i, nr_pages; |
| nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, |
| PAGECACHE_TAG_DIRTY, |
| min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
| if (nr_pages == 0) |
| break; |
| |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page = pvec.pages[i]; |
| |
| /* |
| * flushing sequence with step: |
| * 0. indirect nodes |
| * 1. dentry dnodes |
| * 2. file dnodes |
| */ |
| if (step == 0 && IS_DNODE(page)) |
| continue; |
| if (step == 1 && (!IS_DNODE(page) || |
| is_cold_node(page))) |
| continue; |
| if (step == 2 && (!IS_DNODE(page) || |
| !is_cold_node(page))) |
| continue; |
| |
| /* |
| * If an fsync mode, |
| * we should not skip writing node pages. |
| */ |
| if (ino && ino_of_node(page) == ino) |
| lock_page(page); |
| else if (!trylock_page(page)) |
| continue; |
| |
| if (unlikely(page->mapping != NODE_MAPPING(sbi))) { |
| continue_unlock: |
| unlock_page(page); |
| continue; |
| } |
| if (ino && ino_of_node(page) != ino) |
| goto continue_unlock; |
| |
| if (!PageDirty(page)) { |
| /* someone wrote it for us */ |
| goto continue_unlock; |
| } |
| |
| if (!clear_page_dirty_for_io(page)) |
| goto continue_unlock; |
| |
| /* called by fsync() */ |
| if (ino && IS_DNODE(page)) { |
| set_fsync_mark(page, 1); |
| if (IS_INODE(page)) |
| set_dentry_mark(page, |
| need_dentry_mark(sbi, ino)); |
| nwritten++; |
| } else { |
| set_fsync_mark(page, 0); |
| set_dentry_mark(page, 0); |
| } |
| |
| if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc)) |
| unlock_page(page); |
| else |
| wrote++; |
| |
| if (--wbc->nr_to_write == 0) |
| break; |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| |
| if (wbc->nr_to_write == 0) { |
| step = 2; |
| break; |
| } |
| } |
| |
| if (step < 2) { |
| step++; |
| goto next_step; |
| } |
| |
| if (wrote) |
| f2fs_submit_merged_bio(sbi, NODE, WRITE); |
| return nwritten; |
| } |
| |
| int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) |
| { |
| pgoff_t index = 0, end = LONG_MAX; |
| struct pagevec pvec; |
| int ret2 = 0, ret = 0; |
| |
| pagevec_init(&pvec, 0); |
| |
| while (index <= end) { |
| int i, nr_pages; |
| nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, |
| PAGECACHE_TAG_WRITEBACK, |
| min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
| if (nr_pages == 0) |
| break; |
| |
| for (i = 0; i < nr_pages; i++) { |
| struct page *page = pvec.pages[i]; |
| |
| /* until radix tree lookup accepts end_index */ |
| if (unlikely(page->index > end)) |
| continue; |
| |
| if (ino && ino_of_node(page) == ino) { |
| f2fs_wait_on_page_writeback(page, NODE); |
| if (TestClearPageError(page)) |
| ret = -EIO; |
| } |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| |
| if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags))) |
| ret2 = -ENOSPC; |
| if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags))) |
| ret2 = -EIO; |
| if (!ret) |
| ret = ret2; |
| return ret; |
| } |
| |
| static int f2fs_write_node_page(struct page *page, |
| struct writeback_control *wbc) |
| { |
| struct f2fs_sb_info *sbi = F2FS_P_SB(page); |
| nid_t nid; |
| struct node_info ni; |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .type = NODE, |
| .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, |
| .page = page, |
| .encrypted_page = NULL, |
| }; |
| |
| trace_f2fs_writepage(page, NODE); |
| |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| goto redirty_out; |
| if (unlikely(f2fs_cp_error(sbi))) |
| goto redirty_out; |
| |
| f2fs_wait_on_page_writeback(page, NODE); |
| |
| /* get old block addr of this node page */ |
| nid = nid_of_node(page); |
| f2fs_bug_on(sbi, page->index != nid); |
| |
| get_node_info(sbi, nid, &ni); |
| |
| /* This page is already truncated */ |
| if (unlikely(ni.blk_addr == NULL_ADDR)) { |
| ClearPageUptodate(page); |
| dec_page_count(sbi, F2FS_DIRTY_NODES); |
| unlock_page(page); |
| return 0; |
| } |
| |
| if (wbc->for_reclaim) { |
| if (!down_read_trylock(&sbi->node_write)) |
| goto redirty_out; |
| } else { |
| down_read(&sbi->node_write); |
| } |
| |
| set_page_writeback(page); |
| fio.blk_addr = ni.blk_addr; |
| write_node_page(nid, &fio); |
| set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page)); |
| dec_page_count(sbi, F2FS_DIRTY_NODES); |
| up_read(&sbi->node_write); |
| unlock_page(page); |
| |
| if (wbc->for_reclaim) |
| f2fs_submit_merged_bio(sbi, NODE, WRITE); |
| |
| return 0; |
| |
| redirty_out: |
| redirty_page_for_writepage(wbc, page); |
| return AOP_WRITEPAGE_ACTIVATE; |
| } |
| |
| static int f2fs_write_node_pages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); |
| long diff; |
| |
| trace_f2fs_writepages(mapping->host, wbc, NODE); |
| |
| /* balancing f2fs's metadata in background */ |
| f2fs_balance_fs_bg(sbi); |
| |
| /* collect a number of dirty node pages and write together */ |
| if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) |
| goto skip_write; |
| |
| diff = nr_pages_to_write(sbi, NODE, wbc); |
| wbc->sync_mode = WB_SYNC_NONE; |
| sync_node_pages(sbi, 0, wbc); |
| wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); |
| return 0; |
| |
| skip_write: |
| wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); |
| return 0; |
| } |
| |
| static int f2fs_set_node_page_dirty(struct page *page) |
| { |
| trace_f2fs_set_page_dirty(page, NODE); |
| |
| SetPageUptodate(page); |
| if (!PageDirty(page)) { |
| __set_page_dirty_nobuffers(page); |
| inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); |
| SetPagePrivate(page); |
| f2fs_trace_pid(page); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Structure of the f2fs node operations |
| */ |
| const struct address_space_operations f2fs_node_aops = { |
| .writepage = f2fs_write_node_page, |
| .writepages = f2fs_write_node_pages, |
| .set_page_dirty = f2fs_set_node_page_dirty, |
| .invalidatepage = f2fs_invalidate_page, |
| .releasepage = f2fs_release_page, |
| }; |
| |
| static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, |
| nid_t n) |
| { |
| return radix_tree_lookup(&nm_i->free_nid_root, n); |
| } |
| |
| static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i, |
| struct free_nid *i) |
| { |
| list_del(&i->list); |
| radix_tree_delete(&nm_i->free_nid_root, i->nid); |
| } |
| |
| static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct free_nid *i; |
| struct nat_entry *ne; |
| bool allocated = false; |
| |
| if (!available_free_memory(sbi, FREE_NIDS)) |
| return -1; |
| |
| /* 0 nid should not be used */ |
| if (unlikely(nid == 0)) |
| return 0; |
| |
| if (build) { |
| /* do not add allocated nids */ |
| down_read(&nm_i->nat_tree_lock); |
| ne = __lookup_nat_cache(nm_i, nid); |
| if (ne && |
| (!get_nat_flag(ne, IS_CHECKPOINTED) || |
| nat_get_blkaddr(ne) != NULL_ADDR)) |
| allocated = true; |
| up_read(&nm_i->nat_tree_lock); |
| if (allocated) |
| return 0; |
| } |
| |
| i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); |
| i->nid = nid; |
| i->state = NID_NEW; |
| |
| if (radix_tree_preload(GFP_NOFS)) { |
| kmem_cache_free(free_nid_slab, i); |
| return 0; |
| } |
| |
| spin_lock(&nm_i->free_nid_list_lock); |
| if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) { |
| spin_unlock(&nm_i->free_nid_list_lock); |
| radix_tree_preload_end(); |
| kmem_cache_free(free_nid_slab, i); |
| return 0; |
| } |
| list_add_tail(&i->list, &nm_i->free_nid_list); |
| nm_i->fcnt++; |
| spin_unlock(&nm_i->free_nid_list_lock); |
| radix_tree_preload_end(); |
| return 1; |
| } |
| |
| static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) |
| { |
| struct free_nid *i; |
| bool need_free = false; |
| |
| spin_lock(&nm_i->free_nid_list_lock); |
| i = __lookup_free_nid_list(nm_i, nid); |
| if (i && i->state == NID_NEW) { |
| __del_from_free_nid_list(nm_i, i); |
| nm_i->fcnt--; |
| need_free = true; |
| } |
| spin_unlock(&nm_i->free_nid_list_lock); |
| |
| if (need_free) |
| kmem_cache_free(free_nid_slab, i); |
| } |
| |
| static void scan_nat_page(struct f2fs_sb_info *sbi, |
| struct page *nat_page, nid_t start_nid) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct f2fs_nat_block *nat_blk = page_address(nat_page); |
| block_t blk_addr; |
| int i; |
| |
| i = start_nid % NAT_ENTRY_PER_BLOCK; |
| |
| for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { |
| |
| if (unlikely(start_nid >= nm_i->max_nid)) |
| break; |
| |
| blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); |
| f2fs_bug_on(sbi, blk_addr == NEW_ADDR); |
| if (blk_addr == NULL_ADDR) { |
| if (add_free_nid(sbi, start_nid, true) < 0) |
| break; |
| } |
| } |
| } |
| |
| static void build_free_nids(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| int i = 0; |
| nid_t nid = nm_i->next_scan_nid; |
| |
| /* Enough entries */ |
| if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) |
| return; |
| |
| /* readahead nat pages to be scanned */ |
| ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT); |
| |
| while (1) { |
| struct page *page = get_current_nat_page(sbi, nid); |
| |
| scan_nat_page(sbi, page, nid); |
| f2fs_put_page(page, 1); |
| |
| nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); |
| if (unlikely(nid >= nm_i->max_nid)) |
| nid = 0; |
| |
| if (i++ == FREE_NID_PAGES) |
| break; |
| } |
| |
| /* go to the next free nat pages to find free nids abundantly */ |
| nm_i->next_scan_nid = nid; |
| |
| /* find free nids from current sum_pages */ |
| mutex_lock(&curseg->curseg_mutex); |
| for (i = 0; i < nats_in_cursum(sum); i++) { |
| block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); |
| nid = le32_to_cpu(nid_in_journal(sum, i)); |
| if (addr == NULL_ADDR) |
| add_free_nid(sbi, nid, true); |
| else |
| remove_free_nid(nm_i, nid); |
| } |
| mutex_unlock(&curseg->curseg_mutex); |
| } |
| |
| /* |
| * If this function returns success, caller can obtain a new nid |
| * from second parameter of this function. |
| * The returned nid could be used ino as well as nid when inode is created. |
| */ |
| bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct free_nid *i = NULL; |
| retry: |
| if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids)) |
| return false; |
| |
| spin_lock(&nm_i->free_nid_list_lock); |
| |
| /* We should not use stale free nids created by build_free_nids */ |
| if (nm_i->fcnt && !on_build_free_nids(nm_i)) { |
| f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); |
| list_for_each_entry(i, &nm_i->free_nid_list, list) |
| if (i->state == NID_NEW) |
| break; |
| |
| f2fs_bug_on(sbi, i->state != NID_NEW); |
| *nid = i->nid; |
| i->state = NID_ALLOC; |
| nm_i->fcnt--; |
| spin_unlock(&nm_i->free_nid_list_lock); |
| return true; |
| } |
| spin_unlock(&nm_i->free_nid_list_lock); |
| |
| /* Let's scan nat pages and its caches to get free nids */ |
| mutex_lock(&nm_i->build_lock); |
| build_free_nids(sbi); |
| mutex_unlock(&nm_i->build_lock); |
| goto retry; |
| } |
| |
| /* |
| * alloc_nid() should be called prior to this function. |
| */ |
| void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct free_nid *i; |
| |
| spin_lock(&nm_i->free_nid_list_lock); |
| i = __lookup_free_nid_list(nm_i, nid); |
| f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); |
| __del_from_free_nid_list(nm_i, i); |
| spin_unlock(&nm_i->free_nid_list_lock); |
| |
| kmem_cache_free(free_nid_slab, i); |
| } |
| |
| /* |
| * alloc_nid() should be called prior to this function. |
| */ |
| void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct free_nid *i; |
| bool need_free = false; |
| |
| if (!nid) |
| return; |
| |
| spin_lock(&nm_i->free_nid_list_lock); |
| i = __lookup_free_nid_list(nm_i, nid); |
| f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); |
| if (!available_free_memory(sbi, FREE_NIDS)) { |
| __del_from_free_nid_list(nm_i, i); |
| need_free = true; |
| } else { |
| i->state = NID_NEW; |
| nm_i->fcnt++; |
| } |
| spin_unlock(&nm_i->free_nid_list_lock); |
| |
| if (need_free) |
| kmem_cache_free(free_nid_slab, i); |
| } |
| |
| void recover_inline_xattr(struct inode *inode, struct page *page) |
| { |
| void *src_addr, *dst_addr; |
| size_t inline_size; |
| struct page *ipage; |
| struct f2fs_inode *ri; |
| |
| ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); |
| f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); |
| |
| ri = F2FS_INODE(page); |
| if (!(ri->i_inline & F2FS_INLINE_XATTR)) { |
| clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR); |
| goto update_inode; |
| } |
| |
| dst_addr = inline_xattr_addr(ipage); |
| src_addr = inline_xattr_addr(page); |
| inline_size = inline_xattr_size(inode); |
| |
| f2fs_wait_on_page_writeback(ipage, NODE); |
| memcpy(dst_addr, src_addr, inline_size); |
| update_inode: |
| update_inode(inode, ipage); |
| f2fs_put_page(ipage, 1); |
| } |
| |
| void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; |
| nid_t new_xnid = nid_of_node(page); |
| struct node_info ni; |
| |
| /* 1: invalidate the previous xattr nid */ |
| if (!prev_xnid) |
| goto recover_xnid; |
| |
| /* Deallocate node address */ |
| get_node_info(sbi, prev_xnid, &ni); |
| f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); |
| invalidate_blocks(sbi, ni.blk_addr); |
| dec_valid_node_count(sbi, inode); |
| set_node_addr(sbi, &ni, NULL_ADDR, false); |
| |
| recover_xnid: |
| /* 2: allocate new xattr nid */ |
| if (unlikely(!inc_valid_node_count(sbi, inode))) |
| f2fs_bug_on(sbi, 1); |
| |
| remove_free_nid(NM_I(sbi), new_xnid); |
| get_node_info(sbi, new_xnid, &ni); |
| ni.ino = inode->i_ino; |
| set_node_addr(sbi, &ni, NEW_ADDR, false); |
| F2FS_I(inode)->i_xattr_nid = new_xnid; |
| |
| /* 3: update xattr blkaddr */ |
| refresh_sit_entry(sbi, NEW_ADDR, blkaddr); |
| set_node_addr(sbi, &ni, blkaddr, false); |
| |
| update_inode_page(inode); |
| } |
| |
| int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) |
| { |
| struct f2fs_inode *src, *dst; |
| nid_t ino = ino_of_node(page); |
| struct node_info old_ni, new_ni; |
| struct page *ipage; |
| |
| get_node_info(sbi, ino, &old_ni); |
| |
| if (unlikely(old_ni.blk_addr != NULL_ADDR)) |
| return -EINVAL; |
| |
| ipage = grab_cache_page(NODE_MAPPING(sbi), ino); |
| if (!ipage) |
| return -ENOMEM; |
| |
| /* Should not use this inode from free nid list */ |
| remove_free_nid(NM_I(sbi), ino); |
| |
| SetPageUptodate(ipage); |
| fill_node_footer(ipage, ino, ino, 0, true); |
| |
| src = F2FS_INODE(page); |
| dst = F2FS_INODE(ipage); |
| |
| memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); |
| dst->i_size = 0; |
| dst->i_blocks = cpu_to_le64(1); |
| dst->i_links = cpu_to_le32(1); |
| dst->i_xattr_nid = 0; |
| dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; |
| |
| new_ni = old_ni; |
| new_ni.ino = ino; |
| |
| if (unlikely(!inc_valid_node_count(sbi, NULL))) |
| WARN_ON(1); |
| set_node_addr(sbi, &new_ni, NEW_ADDR, false); |
| inc_valid_inode_count(sbi); |
| set_page_dirty(ipage); |
| f2fs_put_page(ipage, 1); |
| return 0; |
| } |
| |
| int restore_node_summary(struct f2fs_sb_info *sbi, |
| unsigned int segno, struct f2fs_summary_block *sum) |
| { |
| struct f2fs_node *rn; |
| struct f2fs_summary *sum_entry; |
| block_t addr; |
| int bio_blocks = MAX_BIO_BLOCKS(sbi); |
| int i, idx, last_offset, nrpages; |
| |
| /* scan the node segment */ |
| last_offset = sbi->blocks_per_seg; |
| addr = START_BLOCK(sbi, segno); |
| sum_entry = &sum->entries[0]; |
| |
| for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { |
| nrpages = min(last_offset - i, bio_blocks); |
| |
| /* readahead node pages */ |
| ra_meta_pages(sbi, addr, nrpages, META_POR); |
| |
| for (idx = addr; idx < addr + nrpages; idx++) { |
| struct page *page = get_meta_page(sbi, idx); |
| |
| rn = F2FS_NODE(page); |
| sum_entry->nid = rn->footer.nid; |
| sum_entry->version = 0; |
| sum_entry->ofs_in_node = 0; |
| sum_entry++; |
| f2fs_put_page(page, 1); |
| } |
| |
| invalidate_mapping_pages(META_MAPPING(sbi), addr, |
| addr + nrpages); |
| } |
| return 0; |
| } |
| |
| static void remove_nats_in_journal(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| int i; |
| |
| mutex_lock(&curseg->curseg_mutex); |
| for (i = 0; i < nats_in_cursum(sum); i++) { |
| struct nat_entry *ne; |
| struct f2fs_nat_entry raw_ne; |
| nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); |
| |
| raw_ne = nat_in_journal(sum, i); |
| |
| down_write(&nm_i->nat_tree_lock); |
| ne = __lookup_nat_cache(nm_i, nid); |
| if (!ne) { |
| ne = grab_nat_entry(nm_i, nid); |
| node_info_from_raw_nat(&ne->ni, &raw_ne); |
| } |
| __set_nat_cache_dirty(nm_i, ne); |
| up_write(&nm_i->nat_tree_lock); |
| } |
| update_nats_in_cursum(sum, -i); |
| mutex_unlock(&curseg->curseg_mutex); |
| } |
| |
| static void __adjust_nat_entry_set(struct nat_entry_set *nes, |
| struct list_head *head, int max) |
| { |
| struct nat_entry_set *cur; |
| |
| if (nes->entry_cnt >= max) |
| goto add_out; |
| |
| list_for_each_entry(cur, head, set_list) { |
| if (cur->entry_cnt >= nes->entry_cnt) { |
| list_add(&nes->set_list, cur->set_list.prev); |
| return; |
| } |
| } |
| add_out: |
| list_add_tail(&nes->set_list, head); |
| } |
| |
| static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, |
| struct nat_entry_set *set) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; |
| bool to_journal = true; |
| struct f2fs_nat_block *nat_blk; |
| struct nat_entry *ne, *cur; |
| struct page *page = NULL; |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| |
| /* |
| * there are two steps to flush nat entries: |
| * #1, flush nat entries to journal in current hot data summary block. |
| * #2, flush nat entries to nat page. |
| */ |
| if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL)) |
| to_journal = false; |
| |
| if (to_journal) { |
| mutex_lock(&curseg->curseg_mutex); |
| } else { |
| page = get_next_nat_page(sbi, start_nid); |
| nat_blk = page_address(page); |
| f2fs_bug_on(sbi, !nat_blk); |
| } |
| |
| /* flush dirty nats in nat entry set */ |
| list_for_each_entry_safe(ne, cur, &set->entry_list, list) { |
| struct f2fs_nat_entry *raw_ne; |
| nid_t nid = nat_get_nid(ne); |
| int offset; |
| |
| if (nat_get_blkaddr(ne) == NEW_ADDR) |
| continue; |
| |
| if (to_journal) { |
| offset = lookup_journal_in_cursum(sum, |
| NAT_JOURNAL, nid, 1); |
| f2fs_bug_on(sbi, offset < 0); |
| raw_ne = &nat_in_journal(sum, offset); |
| nid_in_journal(sum, offset) = cpu_to_le32(nid); |
| } else { |
| raw_ne = &nat_blk->entries[nid - start_nid]; |
| } |
| raw_nat_from_node_info(raw_ne, &ne->ni); |
| |
| down_write(&NM_I(sbi)->nat_tree_lock); |
| nat_reset_flag(ne); |
| __clear_nat_cache_dirty(NM_I(sbi), ne); |
| up_write(&NM_I(sbi)->nat_tree_lock); |
| |
| if (nat_get_blkaddr(ne) == NULL_ADDR) |
| add_free_nid(sbi, nid, false); |
| } |
| |
| if (to_journal) |
| mutex_unlock(&curseg->curseg_mutex); |
| else |
| f2fs_put_page(page, 1); |
| |
| f2fs_bug_on(sbi, set->entry_cnt); |
| |
| down_write(&nm_i->nat_tree_lock); |
| radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); |
| up_write(&nm_i->nat_tree_lock); |
| kmem_cache_free(nat_entry_set_slab, set); |
| } |
| |
| /* |
| * This function is called during the checkpointing process. |
| */ |
| void flush_nat_entries(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| struct nat_entry_set *setvec[SETVEC_SIZE]; |
| struct nat_entry_set *set, *tmp; |
| unsigned int found; |
| nid_t set_idx = 0; |
| LIST_HEAD(sets); |
| |
| if (!nm_i->dirty_nat_cnt) |
| return; |
| /* |
| * if there are no enough space in journal to store dirty nat |
| * entries, remove all entries from journal and merge them |
| * into nat entry set. |
| */ |
| if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL)) |
| remove_nats_in_journal(sbi); |
| |
| down_write(&nm_i->nat_tree_lock); |
| while ((found = __gang_lookup_nat_set(nm_i, |
| set_idx, SETVEC_SIZE, setvec))) { |
| unsigned idx; |
| set_idx = setvec[found - 1]->set + 1; |
| for (idx = 0; idx < found; idx++) |
| __adjust_nat_entry_set(setvec[idx], &sets, |
| MAX_NAT_JENTRIES(sum)); |
| } |
| up_write(&nm_i->nat_tree_lock); |
| |
| /* flush dirty nats in nat entry set */ |
| list_for_each_entry_safe(set, tmp, &sets, set_list) |
| __flush_nat_entry_set(sbi, set); |
| |
| f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); |
| } |
| |
| static int init_node_manager(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| unsigned char *version_bitmap; |
| unsigned int nat_segs, nat_blocks; |
| |
| nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); |
| |
| /* segment_count_nat includes pair segment so divide to 2. */ |
| nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; |
| nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); |
| |
| nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; |
| |
| /* not used nids: 0, node, meta, (and root counted as valid node) */ |
| nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM; |
| nm_i->fcnt = 0; |
| nm_i->nat_cnt = 0; |
| nm_i->ram_thresh = DEF_RAM_THRESHOLD; |
| |
| INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); |
| INIT_LIST_HEAD(&nm_i->free_nid_list); |
| INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); |
| INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); |
| INIT_LIST_HEAD(&nm_i->nat_entries); |
| |
| mutex_init(&nm_i->build_lock); |
| spin_lock_init(&nm_i->free_nid_list_lock); |
| init_rwsem(&nm_i->nat_tree_lock); |
| |
| nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); |
| nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); |
| version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); |
| if (!version_bitmap) |
| return -EFAULT; |
| |
| nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, |
| GFP_KERNEL); |
| if (!nm_i->nat_bitmap) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| int build_node_manager(struct f2fs_sb_info *sbi) |
| { |
| int err; |
| |
| sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); |
| if (!sbi->nm_info) |
| return -ENOMEM; |
| |
| err = init_node_manager(sbi); |
| if (err) |
| return err; |
| |
| build_free_nids(sbi); |
| return 0; |
| } |
| |
| void destroy_node_manager(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_nm_info *nm_i = NM_I(sbi); |
| struct free_nid *i, *next_i; |
| struct nat_entry *natvec[NATVEC_SIZE]; |
| struct nat_entry_set *setvec[SETVEC_SIZE]; |
| nid_t nid = 0; |
| unsigned int found; |
| |
| if (!nm_i) |
| return; |
| |
| /* destroy free nid list */ |
| spin_lock(&nm_i->free_nid_list_lock); |
| list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { |
| f2fs_bug_on(sbi, i->state == NID_ALLOC); |
| __del_from_free_nid_list(nm_i, i); |
| nm_i->fcnt--; |
| spin_unlock(&nm_i->free_nid_list_lock); |
| kmem_cache_free(free_nid_slab, i); |
| spin_lock(&nm_i->free_nid_list_lock); |
| } |
| f2fs_bug_on(sbi, nm_i->fcnt); |
| spin_unlock(&nm_i->free_nid_list_lock); |
| |
| /* destroy nat cache */ |
| down_write(&nm_i->nat_tree_lock); |
| while ((found = __gang_lookup_nat_cache(nm_i, |
| nid, NATVEC_SIZE, natvec))) { |
| unsigned idx; |
| |
| nid = nat_get_nid(natvec[found - 1]) + 1; |
| for (idx = 0; idx < found; idx++) |
| __del_from_nat_cache(nm_i, natvec[idx]); |
| } |
| f2fs_bug_on(sbi, nm_i->nat_cnt); |
| |
| /* destroy nat set cache */ |
| nid = 0; |
| while ((found = __gang_lookup_nat_set(nm_i, |
| nid, SETVEC_SIZE, setvec))) { |
| unsigned idx; |
| |
| nid = setvec[found - 1]->set + 1; |
| for (idx = 0; idx < found; idx++) { |
| /* entry_cnt is not zero, when cp_error was occurred */ |
| f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); |
| radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); |
| kmem_cache_free(nat_entry_set_slab, setvec[idx]); |
| } |
| } |
| up_write(&nm_i->nat_tree_lock); |
| |
| kfree(nm_i->nat_bitmap); |
| sbi->nm_info = NULL; |
| kfree(nm_i); |
| } |
| |
| int __init create_node_manager_caches(void) |
| { |
| nat_entry_slab = f2fs_kmem_cache_create("nat_entry", |
| sizeof(struct nat_entry)); |
| if (!nat_entry_slab) |
| goto fail; |
| |
| free_nid_slab = f2fs_kmem_cache_create("free_nid", |
| sizeof(struct free_nid)); |
| if (!free_nid_slab) |
| goto destroy_nat_entry; |
| |
| nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", |
| sizeof(struct nat_entry_set)); |
| if (!nat_entry_set_slab) |
| goto destroy_free_nid; |
| return 0; |
| |
| destroy_free_nid: |
| kmem_cache_destroy(free_nid_slab); |
| destroy_nat_entry: |
| kmem_cache_destroy(nat_entry_slab); |
| fail: |
| return -ENOMEM; |
| } |
| |
| void destroy_node_manager_caches(void) |
| { |
| kmem_cache_destroy(nat_entry_set_slab); |
| kmem_cache_destroy(free_nid_slab); |
| kmem_cache_destroy(nat_entry_slab); |
| } |