blob: f890d4345b0cb63f9faa88e70d466a3cec3e6b3f [file] [log] [blame]
/*
* Functions related to mapping data to requests
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <scsi/sg.h> /* for struct sg_iovec */
#include "blk.h"
int blk_rq_append_bio(struct request_queue *q, struct request *rq,
struct bio *bio)
{
if (!rq->bio)
blk_rq_bio_prep(q, rq, bio);
else if (!ll_back_merge_fn(q, rq, bio))
return -EINVAL;
else {
rq->biotail->bi_next = bio;
rq->biotail = bio;
rq->__data_len += bio->bi_iter.bi_size;
}
return 0;
}
static int __blk_rq_unmap_user(struct bio *bio)
{
int ret = 0;
if (bio) {
if (bio_flagged(bio, BIO_USER_MAPPED))
bio_unmap_user(bio);
else
ret = bio_uncopy_user(bio);
}
return ret;
}
static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
struct rq_map_data *map_data, void __user *ubuf,
unsigned int len, gfp_t gfp_mask)
{
unsigned long uaddr;
struct bio *bio, *orig_bio;
int reading, ret;
reading = rq_data_dir(rq) == READ;
/*
* if alignment requirement is satisfied, map in user pages for
* direct dma. else, set up kernel bounce buffers
*/
uaddr = (unsigned long) ubuf;
if (blk_rq_aligned(q, uaddr, len) && !map_data)
bio = bio_map_user(q, NULL, uaddr, len, reading, gfp_mask);
else
bio = bio_copy_user(q, map_data, uaddr, len, reading, gfp_mask);
if (IS_ERR(bio))
return PTR_ERR(bio);
if (map_data && map_data->null_mapped)
bio->bi_flags |= (1 << BIO_NULL_MAPPED);
orig_bio = bio;
blk_queue_bounce(q, &bio);
/*
* We link the bounce buffer in and could have to traverse it
* later so we have to get a ref to prevent it from being freed
*/
bio_get(bio);
ret = blk_rq_append_bio(q, rq, bio);
if (!ret)
return bio->bi_iter.bi_size;
/* if it was boucned we must call the end io function */
bio_endio(bio, 0);
__blk_rq_unmap_user(orig_bio);
bio_put(bio);
return ret;
}
/**
* blk_rq_map_user - map user data to a request, for REQ_TYPE_BLOCK_PC usage
* @q: request queue where request should be inserted
* @rq: request structure to fill
* @map_data: pointer to the rq_map_data holding pages (if necessary)
* @ubuf: the user buffer
* @len: length of user data
* @gfp_mask: memory allocation flags
*
* Description:
* Data will be mapped directly for zero copy I/O, if possible. Otherwise
* a kernel bounce buffer is used.
*
* A matching blk_rq_unmap_user() must be issued at the end of I/O, while
* still in process context.
*
* Note: The mapped bio may need to be bounced through blk_queue_bounce()
* before being submitted to the device, as pages mapped may be out of
* reach. It's the callers responsibility to make sure this happens. The
* original bio must be passed back in to blk_rq_unmap_user() for proper
* unmapping.
*/
int blk_rq_map_user(struct request_queue *q, struct request *rq,
struct rq_map_data *map_data, void __user *ubuf,
unsigned long len, gfp_t gfp_mask)
{
unsigned long bytes_read = 0;
struct bio *bio = NULL;
int ret;
if (len > (queue_max_hw_sectors(q) << 9))
return -EINVAL;
if (!len)
return -EINVAL;
if (!ubuf && (!map_data || !map_data->null_mapped))
return -EINVAL;
while (bytes_read != len) {
unsigned long map_len, end, start;
map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
>> PAGE_SHIFT;
start = (unsigned long)ubuf >> PAGE_SHIFT;
/*
* A bad offset could cause us to require BIO_MAX_PAGES + 1
* pages. If this happens we just lower the requested
* mapping len by a page so that we can fit
*/
if (end - start > BIO_MAX_PAGES)
map_len -= PAGE_SIZE;
ret = __blk_rq_map_user(q, rq, map_data, ubuf, map_len,
gfp_mask);
if (ret < 0)
goto unmap_rq;
if (!bio)
bio = rq->bio;
bytes_read += ret;
ubuf += ret;
if (map_data)
map_data->offset += ret;
}
if (!bio_flagged(bio, BIO_USER_MAPPED))
rq->cmd_flags |= REQ_COPY_USER;
return 0;
unmap_rq:
blk_rq_unmap_user(bio);
rq->bio = NULL;
return ret;
}
EXPORT_SYMBOL(blk_rq_map_user);
/**
* blk_rq_map_user_iov - map user data to a request, for REQ_TYPE_BLOCK_PC usage
* @q: request queue where request should be inserted
* @rq: request to map data to
* @map_data: pointer to the rq_map_data holding pages (if necessary)
* @iov: pointer to the iovec
* @iov_count: number of elements in the iovec
* @len: I/O byte count
* @gfp_mask: memory allocation flags
*
* Description:
* Data will be mapped directly for zero copy I/O, if possible. Otherwise
* a kernel bounce buffer is used.
*
* A matching blk_rq_unmap_user() must be issued at the end of I/O, while
* still in process context.
*
* Note: The mapped bio may need to be bounced through blk_queue_bounce()
* before being submitted to the device, as pages mapped may be out of
* reach. It's the callers responsibility to make sure this happens. The
* original bio must be passed back in to blk_rq_unmap_user() for proper
* unmapping.
*/
int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
struct rq_map_data *map_data, const struct sg_iovec *iov,
int iov_count, unsigned int len, gfp_t gfp_mask)
{
struct bio *bio;
int i, read = rq_data_dir(rq) == READ;
int unaligned = 0;
if (!iov || iov_count <= 0)
return -EINVAL;
for (i = 0; i < iov_count; i++) {
unsigned long uaddr = (unsigned long)iov[i].iov_base;
if (!iov[i].iov_len)
return -EINVAL;
/*
* Keep going so we check length of all segments
*/
if (uaddr & queue_dma_alignment(q))
unaligned = 1;
}
if (unaligned || (q->dma_pad_mask & len) || map_data)
bio = bio_copy_user_iov(q, map_data, iov, iov_count, read,
gfp_mask);
else
bio = bio_map_user_iov(q, NULL, iov, iov_count, read, gfp_mask);
if (IS_ERR(bio))
return PTR_ERR(bio);
if (bio->bi_iter.bi_size != len) {
/*
* Grab an extra reference to this bio, as bio_unmap_user()
* expects to be able to drop it twice as it happens on the
* normal IO completion path
*/
bio_get(bio);
bio_endio(bio, 0);
__blk_rq_unmap_user(bio);
return -EINVAL;
}
if (!bio_flagged(bio, BIO_USER_MAPPED))
rq->cmd_flags |= REQ_COPY_USER;
blk_queue_bounce(q, &bio);
bio_get(bio);
blk_rq_bio_prep(q, rq, bio);
return 0;
}
EXPORT_SYMBOL(blk_rq_map_user_iov);
/**
* blk_rq_unmap_user - unmap a request with user data
* @bio: start of bio list
*
* Description:
* Unmap a rq previously mapped by blk_rq_map_user(). The caller must
* supply the original rq->bio from the blk_rq_map_user() return, since
* the I/O completion may have changed rq->bio.
*/
int blk_rq_unmap_user(struct bio *bio)
{
struct bio *mapped_bio;
int ret = 0, ret2;
while (bio) {
mapped_bio = bio;
if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
mapped_bio = bio->bi_private;
ret2 = __blk_rq_unmap_user(mapped_bio);
if (ret2 && !ret)
ret = ret2;
mapped_bio = bio;
bio = bio->bi_next;
bio_put(mapped_bio);
}
return ret;
}
EXPORT_SYMBOL(blk_rq_unmap_user);
/**
* blk_rq_map_kern - map kernel data to a request, for REQ_TYPE_BLOCK_PC usage
* @q: request queue where request should be inserted
* @rq: request to fill
* @kbuf: the kernel buffer
* @len: length of user data
* @gfp_mask: memory allocation flags
*
* Description:
* Data will be mapped directly if possible. Otherwise a bounce
* buffer is used. Can be called multiple times to append multiple
* buffers.
*/
int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
unsigned int len, gfp_t gfp_mask)
{
int reading = rq_data_dir(rq) == READ;
unsigned long addr = (unsigned long) kbuf;
int do_copy = 0;
struct bio *bio;
int ret;
if (len > (queue_max_hw_sectors(q) << 9))
return -EINVAL;
if (!len || !kbuf)
return -EINVAL;
do_copy = !blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf);
if (do_copy)
bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
else
bio = bio_map_kern(q, kbuf, len, gfp_mask);
if (IS_ERR(bio))
return PTR_ERR(bio);
if (!reading)
bio->bi_rw |= REQ_WRITE;
if (do_copy)
rq->cmd_flags |= REQ_COPY_USER;
ret = blk_rq_append_bio(q, rq, bio);
if (unlikely(ret)) {
/* request is too big */
bio_put(bio);
return ret;
}
blk_queue_bounce(q, &rq->bio);
return 0;
}
EXPORT_SYMBOL(blk_rq_map_kern);