| /* |
| * Copyright © 2010 Daniel Vetter |
| * Copyright © 2011-2014 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| */ |
| |
| #include <linux/seq_file.h> |
| #include <drm/drmP.h> |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| #include "i915_trace.h" |
| #include "intel_drv.h" |
| |
| static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv); |
| static void chv_setup_private_ppat(struct drm_i915_private *dev_priv); |
| |
| bool intel_enable_ppgtt(struct drm_device *dev, bool full) |
| { |
| if (i915.enable_ppgtt == 0) |
| return false; |
| |
| if (i915.enable_ppgtt == 1 && full) |
| return false; |
| |
| return true; |
| } |
| |
| static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt) |
| { |
| if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev)) |
| return 0; |
| |
| if (enable_ppgtt == 1) |
| return 1; |
| |
| if (enable_ppgtt == 2 && HAS_PPGTT(dev)) |
| return 2; |
| |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Disable ppgtt on SNB if VT-d is on. */ |
| if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) { |
| DRM_INFO("Disabling PPGTT because VT-d is on\n"); |
| return 0; |
| } |
| #endif |
| |
| /* Early VLV doesn't have this */ |
| if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) { |
| DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); |
| return 0; |
| } |
| |
| return HAS_ALIASING_PPGTT(dev) ? 1 : 0; |
| } |
| |
| |
| static void ppgtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags); |
| static void ppgtt_unbind_vma(struct i915_vma *vma); |
| static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt); |
| |
| static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid) |
| { |
| gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0; |
| pte |= addr; |
| |
| switch (level) { |
| case I915_CACHE_NONE: |
| pte |= PPAT_UNCACHED_INDEX; |
| break; |
| case I915_CACHE_WT: |
| pte |= PPAT_DISPLAY_ELLC_INDEX; |
| break; |
| default: |
| pte |= PPAT_CACHED_INDEX; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev, |
| dma_addr_t addr, |
| enum i915_cache_level level) |
| { |
| gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW; |
| pde |= addr; |
| if (level != I915_CACHE_NONE) |
| pde |= PPAT_CACHED_PDE_INDEX; |
| else |
| pde |= PPAT_UNCACHED_INDEX; |
| return pde; |
| } |
| |
| static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| return pte; |
| } |
| |
| static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_L3_LLC: |
| pte |= GEN7_PTE_CACHE_L3_LLC; |
| break; |
| case I915_CACHE_LLC: |
| pte |= GEN6_PTE_CACHE_LLC; |
| break; |
| case I915_CACHE_NONE: |
| pte |= GEN6_PTE_UNCACHED; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| return pte; |
| } |
| |
| static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 flags) |
| { |
| gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= GEN6_PTE_ADDR_ENCODE(addr); |
| |
| /* Mark the page as writeable. Other platforms don't have a |
| * setting for read-only/writable, so this matches that behavior. |
| */ |
| if (!(flags & PTE_READ_ONLY)) |
| pte |= BYT_PTE_WRITEABLE; |
| |
| if (level != I915_CACHE_NONE) |
| pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; |
| |
| return pte; |
| } |
| |
| static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| if (level != I915_CACHE_NONE) |
| pte |= HSW_WB_LLC_AGE3; |
| |
| return pte; |
| } |
| |
| static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr, |
| enum i915_cache_level level, |
| bool valid, u32 unused) |
| { |
| gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; |
| pte |= HSW_PTE_ADDR_ENCODE(addr); |
| |
| switch (level) { |
| case I915_CACHE_NONE: |
| break; |
| case I915_CACHE_WT: |
| pte |= HSW_WT_ELLC_LLC_AGE3; |
| break; |
| default: |
| pte |= HSW_WB_ELLC_LLC_AGE3; |
| break; |
| } |
| |
| return pte; |
| } |
| |
| /* Broadwell Page Directory Pointer Descriptors */ |
| static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry, |
| uint64_t val, bool synchronous) |
| { |
| struct drm_i915_private *dev_priv = ring->dev->dev_private; |
| int ret; |
| |
| BUG_ON(entry >= 4); |
| |
| if (synchronous) { |
| I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32); |
| I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val); |
| return 0; |
| } |
| |
| ret = intel_ring_begin(ring, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry)); |
| intel_ring_emit(ring, (u32)(val >> 32)); |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); |
| intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry)); |
| intel_ring_emit(ring, (u32)(val)); |
| intel_ring_advance(ring); |
| |
| return 0; |
| } |
| |
| static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct intel_engine_cs *ring, |
| bool synchronous) |
| { |
| int i, ret; |
| |
| /* bit of a hack to find the actual last used pd */ |
| int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE; |
| |
| for (i = used_pd - 1; i >= 0; i--) { |
| dma_addr_t addr = ppgtt->pd_dma_addr[i]; |
| ret = gen8_write_pdp(ring, i, addr, synchronous); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void gen8_ppgtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen8_gtt_pte_t *pt_vaddr, scratch_pte; |
| unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK; |
| unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK; |
| unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| unsigned last_pte, i; |
| |
| scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr, |
| I915_CACHE_LLC, use_scratch); |
| |
| while (num_entries) { |
| struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde]; |
| |
| last_pte = pte + num_entries; |
| if (last_pte > GEN8_PTES_PER_PAGE) |
| last_pte = GEN8_PTES_PER_PAGE; |
| |
| pt_vaddr = kmap_atomic(page_table); |
| |
| for (i = pte; i < last_pte; i++) { |
| pt_vaddr[i] = scratch_pte; |
| num_entries--; |
| } |
| |
| if (!HAS_LLC(ppgtt->base.dev)) |
| drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); |
| kunmap_atomic(pt_vaddr); |
| |
| pte = 0; |
| if (++pde == GEN8_PDES_PER_PAGE) { |
| pdpe++; |
| pde = 0; |
| } |
| } |
| } |
| |
| static void gen8_ppgtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| uint64_t start, |
| enum i915_cache_level cache_level, u32 unused) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen8_gtt_pte_t *pt_vaddr; |
| unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK; |
| unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK; |
| unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK; |
| struct sg_page_iter sg_iter; |
| |
| pt_vaddr = NULL; |
| |
| for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { |
| if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS)) |
| break; |
| |
| if (pt_vaddr == NULL) |
| pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]); |
| |
| pt_vaddr[pte] = |
| gen8_pte_encode(sg_page_iter_dma_address(&sg_iter), |
| cache_level, true); |
| if (++pte == GEN8_PTES_PER_PAGE) { |
| if (!HAS_LLC(ppgtt->base.dev)) |
| drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); |
| kunmap_atomic(pt_vaddr); |
| pt_vaddr = NULL; |
| if (++pde == GEN8_PDES_PER_PAGE) { |
| pdpe++; |
| pde = 0; |
| } |
| pte = 0; |
| } |
| } |
| if (pt_vaddr) { |
| if (!HAS_LLC(ppgtt->base.dev)) |
| drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); |
| kunmap_atomic(pt_vaddr); |
| } |
| } |
| |
| static void gen8_free_page_tables(struct page **pt_pages) |
| { |
| int i; |
| |
| if (pt_pages == NULL) |
| return; |
| |
| for (i = 0; i < GEN8_PDES_PER_PAGE; i++) |
| if (pt_pages[i]) |
| __free_pages(pt_pages[i], 0); |
| } |
| |
| static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt) |
| { |
| int i; |
| |
| for (i = 0; i < ppgtt->num_pd_pages; i++) { |
| gen8_free_page_tables(ppgtt->gen8_pt_pages[i]); |
| kfree(ppgtt->gen8_pt_pages[i]); |
| kfree(ppgtt->gen8_pt_dma_addr[i]); |
| } |
| |
| __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT)); |
| } |
| |
| static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct pci_dev *hwdev = ppgtt->base.dev->pdev; |
| int i, j; |
| |
| for (i = 0; i < ppgtt->num_pd_pages; i++) { |
| /* TODO: In the future we'll support sparse mappings, so this |
| * will have to change. */ |
| if (!ppgtt->pd_dma_addr[i]) |
| continue; |
| |
| pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { |
| dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j]; |
| if (addr) |
| pci_unmap_page(hwdev, addr, PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL); |
| } |
| } |
| } |
| |
| static void gen8_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| |
| list_del(&vm->global_link); |
| drm_mm_takedown(&vm->mm); |
| |
| gen8_ppgtt_unmap_pages(ppgtt); |
| gen8_ppgtt_free(ppgtt); |
| } |
| |
| static struct page **__gen8_alloc_page_tables(void) |
| { |
| struct page **pt_pages; |
| int i; |
| |
| pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL); |
| if (!pt_pages) |
| return ERR_PTR(-ENOMEM); |
| |
| for (i = 0; i < GEN8_PDES_PER_PAGE; i++) { |
| pt_pages[i] = alloc_page(GFP_KERNEL); |
| if (!pt_pages[i]) |
| goto bail; |
| } |
| |
| return pt_pages; |
| |
| bail: |
| gen8_free_page_tables(pt_pages); |
| kfree(pt_pages); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt, |
| const int max_pdp) |
| { |
| struct page **pt_pages[GEN8_LEGACY_PDPS]; |
| int i, ret; |
| |
| for (i = 0; i < max_pdp; i++) { |
| pt_pages[i] = __gen8_alloc_page_tables(); |
| if (IS_ERR(pt_pages[i])) { |
| ret = PTR_ERR(pt_pages[i]); |
| goto unwind_out; |
| } |
| } |
| |
| /* NB: Avoid touching gen8_pt_pages until last to keep the allocation, |
| * "atomic" - for cleanup purposes. |
| */ |
| for (i = 0; i < max_pdp; i++) |
| ppgtt->gen8_pt_pages[i] = pt_pages[i]; |
| |
| return 0; |
| |
| unwind_out: |
| while (i--) { |
| gen8_free_page_tables(pt_pages[i]); |
| kfree(pt_pages[i]); |
| } |
| |
| return ret; |
| } |
| |
| static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt) |
| { |
| int i; |
| |
| for (i = 0; i < ppgtt->num_pd_pages; i++) { |
| ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE, |
| sizeof(dma_addr_t), |
| GFP_KERNEL); |
| if (!ppgtt->gen8_pt_dma_addr[i]) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt, |
| const int max_pdp) |
| { |
| ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT)); |
| if (!ppgtt->pd_pages) |
| return -ENOMEM; |
| |
| ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT); |
| BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS); |
| |
| return 0; |
| } |
| |
| static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt, |
| const int max_pdp) |
| { |
| int ret; |
| |
| ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp); |
| if (ret) |
| return ret; |
| |
| ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp); |
| if (ret) { |
| __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT)); |
| return ret; |
| } |
| |
| ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE; |
| |
| ret = gen8_ppgtt_allocate_dma(ppgtt); |
| if (ret) |
| gen8_ppgtt_free(ppgtt); |
| |
| return ret; |
| } |
| |
| static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt, |
| const int pd) |
| { |
| dma_addr_t pd_addr; |
| int ret; |
| |
| pd_addr = pci_map_page(ppgtt->base.dev->pdev, |
| &ppgtt->pd_pages[pd], 0, |
| PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| |
| ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr); |
| if (ret) |
| return ret; |
| |
| ppgtt->pd_dma_addr[pd] = pd_addr; |
| |
| return 0; |
| } |
| |
| static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt, |
| const int pd, |
| const int pt) |
| { |
| dma_addr_t pt_addr; |
| struct page *p; |
| int ret; |
| |
| p = ppgtt->gen8_pt_pages[pd][pt]; |
| pt_addr = pci_map_page(ppgtt->base.dev->pdev, |
| p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr); |
| if (ret) |
| return ret; |
| |
| ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr; |
| |
| return 0; |
| } |
| |
| /** |
| * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers |
| * with a net effect resembling a 2-level page table in normal x86 terms. Each |
| * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address |
| * space. |
| * |
| * FIXME: split allocation into smaller pieces. For now we only ever do this |
| * once, but with full PPGTT, the multiple contiguous allocations will be bad. |
| * TODO: Do something with the size parameter |
| */ |
| static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size) |
| { |
| const int max_pdp = DIV_ROUND_UP(size, 1 << 30); |
| const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp; |
| int i, j, ret; |
| |
| if (size % (1<<30)) |
| DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size); |
| |
| /* 1. Do all our allocations for page directories and page tables. */ |
| ret = gen8_ppgtt_alloc(ppgtt, max_pdp); |
| if (ret) |
| return ret; |
| |
| /* |
| * 2. Create DMA mappings for the page directories and page tables. |
| */ |
| for (i = 0; i < max_pdp; i++) { |
| ret = gen8_ppgtt_setup_page_directories(ppgtt, i); |
| if (ret) |
| goto bail; |
| |
| for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { |
| ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j); |
| if (ret) |
| goto bail; |
| } |
| } |
| |
| /* |
| * 3. Map all the page directory entires to point to the page tables |
| * we've allocated. |
| * |
| * For now, the PPGTT helper functions all require that the PDEs are |
| * plugged in correctly. So we do that now/here. For aliasing PPGTT, we |
| * will never need to touch the PDEs again. |
| */ |
| for (i = 0; i < max_pdp; i++) { |
| gen8_ppgtt_pde_t *pd_vaddr; |
| pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]); |
| for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { |
| dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j]; |
| pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr, |
| I915_CACHE_LLC); |
| } |
| if (!HAS_LLC(ppgtt->base.dev)) |
| drm_clflush_virt_range(pd_vaddr, PAGE_SIZE); |
| kunmap_atomic(pd_vaddr); |
| } |
| |
| ppgtt->enable = gen8_ppgtt_enable; |
| ppgtt->switch_mm = gen8_mm_switch; |
| ppgtt->base.clear_range = gen8_ppgtt_clear_range; |
| ppgtt->base.insert_entries = gen8_ppgtt_insert_entries; |
| ppgtt->base.cleanup = gen8_ppgtt_cleanup; |
| ppgtt->base.start = 0; |
| ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE; |
| |
| ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true); |
| |
| DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n", |
| ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp); |
| DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n", |
| ppgtt->num_pd_entries, |
| (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30)); |
| return 0; |
| |
| bail: |
| gen8_ppgtt_unmap_pages(ppgtt); |
| gen8_ppgtt_free(ppgtt); |
| return ret; |
| } |
| |
| static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) |
| { |
| struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private; |
| struct i915_address_space *vm = &ppgtt->base; |
| gen6_gtt_pte_t __iomem *pd_addr; |
| gen6_gtt_pte_t scratch_pte; |
| uint32_t pd_entry; |
| int pte, pde; |
| |
| scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0); |
| |
| pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + |
| ppgtt->pd_offset / sizeof(gen6_gtt_pte_t); |
| |
| seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm, |
| ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries); |
| for (pde = 0; pde < ppgtt->num_pd_entries; pde++) { |
| u32 expected; |
| gen6_gtt_pte_t *pt_vaddr; |
| dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde]; |
| pd_entry = readl(pd_addr + pde); |
| expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); |
| |
| if (pd_entry != expected) |
| seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", |
| pde, |
| pd_entry, |
| expected); |
| seq_printf(m, "\tPDE: %x\n", pd_entry); |
| |
| pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]); |
| for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) { |
| unsigned long va = |
| (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) + |
| (pte * PAGE_SIZE); |
| int i; |
| bool found = false; |
| for (i = 0; i < 4; i++) |
| if (pt_vaddr[pte + i] != scratch_pte) |
| found = true; |
| if (!found) |
| continue; |
| |
| seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); |
| for (i = 0; i < 4; i++) { |
| if (pt_vaddr[pte + i] != scratch_pte) |
| seq_printf(m, " %08x", pt_vaddr[pte + i]); |
| else |
| seq_puts(m, " SCRATCH "); |
| } |
| seq_puts(m, "\n"); |
| } |
| kunmap_atomic(pt_vaddr); |
| } |
| } |
| |
| static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private; |
| gen6_gtt_pte_t __iomem *pd_addr; |
| uint32_t pd_entry; |
| int i; |
| |
| WARN_ON(ppgtt->pd_offset & 0x3f); |
| pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm + |
| ppgtt->pd_offset / sizeof(gen6_gtt_pte_t); |
| for (i = 0; i < ppgtt->num_pd_entries; i++) { |
| dma_addr_t pt_addr; |
| |
| pt_addr = ppgtt->pt_dma_addr[i]; |
| pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr); |
| pd_entry |= GEN6_PDE_VALID; |
| |
| writel(pd_entry, pd_addr + i); |
| } |
| readl(pd_addr); |
| } |
| |
| static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt) |
| { |
| BUG_ON(ppgtt->pd_offset & 0x3f); |
| |
| return (ppgtt->pd_offset / 64) << 16; |
| } |
| |
| static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct intel_engine_cs *ring, |
| bool synchronous) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| /* If we're in reset, we can assume the GPU is sufficiently idle to |
| * manually frob these bits. Ideally we could use the ring functions, |
| * except our error handling makes it quite difficult (can't use |
| * intel_ring_begin, ring->flush, or intel_ring_advance) |
| * |
| * FIXME: We should try not to special case reset |
| */ |
| if (synchronous || |
| i915_reset_in_progress(&dev_priv->gpu_error)) { |
| WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt); |
| I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); |
| I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); |
| POSTING_READ(RING_PP_DIR_BASE(ring)); |
| return 0; |
| } |
| |
| /* NB: TLBs must be flushed and invalidated before a switch */ |
| ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); |
| if (ret) |
| return ret; |
| |
| ret = intel_ring_begin(ring, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); |
| intel_ring_emit(ring, RING_PP_DIR_DCLV(ring)); |
| intel_ring_emit(ring, PP_DIR_DCLV_2G); |
| intel_ring_emit(ring, RING_PP_DIR_BASE(ring)); |
| intel_ring_emit(ring, get_pd_offset(ppgtt)); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_advance(ring); |
| |
| return 0; |
| } |
| |
| static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct intel_engine_cs *ring, |
| bool synchronous) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| /* If we're in reset, we can assume the GPU is sufficiently idle to |
| * manually frob these bits. Ideally we could use the ring functions, |
| * except our error handling makes it quite difficult (can't use |
| * intel_ring_begin, ring->flush, or intel_ring_advance) |
| * |
| * FIXME: We should try not to special case reset |
| */ |
| if (synchronous || |
| i915_reset_in_progress(&dev_priv->gpu_error)) { |
| WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt); |
| I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); |
| I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); |
| POSTING_READ(RING_PP_DIR_BASE(ring)); |
| return 0; |
| } |
| |
| /* NB: TLBs must be flushed and invalidated before a switch */ |
| ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); |
| if (ret) |
| return ret; |
| |
| ret = intel_ring_begin(ring, 6); |
| if (ret) |
| return ret; |
| |
| intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); |
| intel_ring_emit(ring, RING_PP_DIR_DCLV(ring)); |
| intel_ring_emit(ring, PP_DIR_DCLV_2G); |
| intel_ring_emit(ring, RING_PP_DIR_BASE(ring)); |
| intel_ring_emit(ring, get_pd_offset(ppgtt)); |
| intel_ring_emit(ring, MI_NOOP); |
| intel_ring_advance(ring); |
| |
| /* XXX: RCS is the only one to auto invalidate the TLBs? */ |
| if (ring->id != RCS) { |
| ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, |
| struct intel_engine_cs *ring, |
| bool synchronous) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!synchronous) |
| return 0; |
| |
| I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); |
| I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); |
| |
| POSTING_READ(RING_PP_DIR_DCLV(ring)); |
| |
| return 0; |
| } |
| |
| static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| int j, ret; |
| |
| for_each_ring(ring, dev_priv, j) { |
| I915_WRITE(RING_MODE_GEN7(ring), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| |
| /* We promise to do a switch later with FULL PPGTT. If this is |
| * aliasing, this is the one and only switch we'll do */ |
| if (USES_FULL_PPGTT(dev)) |
| continue; |
| |
| ret = ppgtt->switch_mm(ppgtt, ring, true); |
| if (ret) |
| goto err_out; |
| } |
| |
| return 0; |
| |
| err_out: |
| for_each_ring(ring, dev_priv, j) |
| I915_WRITE(RING_MODE_GEN7(ring), |
| _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE)); |
| return ret; |
| } |
| |
| static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| uint32_t ecochk, ecobits; |
| int i; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| if (IS_HASWELL(dev)) { |
| ecochk |= ECOCHK_PPGTT_WB_HSW; |
| } else { |
| ecochk |= ECOCHK_PPGTT_LLC_IVB; |
| ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; |
| } |
| I915_WRITE(GAM_ECOCHK, ecochk); |
| |
| for_each_ring(ring, dev_priv, i) { |
| int ret; |
| /* GFX_MODE is per-ring on gen7+ */ |
| I915_WRITE(RING_MODE_GEN7(ring), |
| _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| |
| /* We promise to do a switch later with FULL PPGTT. If this is |
| * aliasing, this is the one and only switch we'll do */ |
| if (USES_FULL_PPGTT(dev)) |
| continue; |
| |
| ret = ppgtt->switch_mm(ppgtt, ring, true); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| uint32_t ecochk, gab_ctl, ecobits; |
| int i; |
| |
| ecobits = I915_READ(GAC_ECO_BITS); |
| I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | |
| ECOBITS_PPGTT_CACHE64B); |
| |
| gab_ctl = I915_READ(GAB_CTL); |
| I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); |
| |
| ecochk = I915_READ(GAM_ECOCHK); |
| I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); |
| |
| I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); |
| |
| for_each_ring(ring, dev_priv, i) { |
| int ret = ppgtt->switch_mm(ppgtt, ring, true); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* PPGTT support for Sandybdrige/Gen6 and later */ |
| static void gen6_ppgtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen6_gtt_pte_t *pt_vaddr, scratch_pte; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES; |
| unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES; |
| unsigned last_pte, i; |
| |
| scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0); |
| |
| while (num_entries) { |
| last_pte = first_pte + num_entries; |
| if (last_pte > I915_PPGTT_PT_ENTRIES) |
| last_pte = I915_PPGTT_PT_ENTRIES; |
| |
| pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); |
| |
| for (i = first_pte; i < last_pte; i++) |
| pt_vaddr[i] = scratch_pte; |
| |
| kunmap_atomic(pt_vaddr); |
| |
| num_entries -= last_pte - first_pte; |
| first_pte = 0; |
| act_pt++; |
| } |
| } |
| |
| static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *pages, |
| uint64_t start, |
| enum i915_cache_level cache_level, u32 flags) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| gen6_gtt_pte_t *pt_vaddr; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES; |
| unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES; |
| struct sg_page_iter sg_iter; |
| |
| pt_vaddr = NULL; |
| for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { |
| if (pt_vaddr == NULL) |
| pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); |
| |
| pt_vaddr[act_pte] = |
| vm->pte_encode(sg_page_iter_dma_address(&sg_iter), |
| cache_level, true, flags); |
| |
| if (++act_pte == I915_PPGTT_PT_ENTRIES) { |
| kunmap_atomic(pt_vaddr); |
| pt_vaddr = NULL; |
| act_pt++; |
| act_pte = 0; |
| } |
| } |
| if (pt_vaddr) |
| kunmap_atomic(pt_vaddr); |
| } |
| |
| static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt) |
| { |
| int i; |
| |
| if (ppgtt->pt_dma_addr) { |
| for (i = 0; i < ppgtt->num_pd_entries; i++) |
| pci_unmap_page(ppgtt->base.dev->pdev, |
| ppgtt->pt_dma_addr[i], |
| 4096, PCI_DMA_BIDIRECTIONAL); |
| } |
| } |
| |
| static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt) |
| { |
| int i; |
| |
| kfree(ppgtt->pt_dma_addr); |
| for (i = 0; i < ppgtt->num_pd_entries; i++) |
| __free_page(ppgtt->pt_pages[i]); |
| kfree(ppgtt->pt_pages); |
| } |
| |
| static void gen6_ppgtt_cleanup(struct i915_address_space *vm) |
| { |
| struct i915_hw_ppgtt *ppgtt = |
| container_of(vm, struct i915_hw_ppgtt, base); |
| |
| list_del(&vm->global_link); |
| drm_mm_takedown(&ppgtt->base.mm); |
| drm_mm_remove_node(&ppgtt->node); |
| |
| gen6_ppgtt_unmap_pages(ppgtt); |
| gen6_ppgtt_free(ppgtt); |
| } |
| |
| static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| bool retried = false; |
| int ret; |
| |
| /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The |
| * allocator works in address space sizes, so it's multiplied by page |
| * size. We allocate at the top of the GTT to avoid fragmentation. |
| */ |
| BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm)); |
| alloc: |
| ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm, |
| &ppgtt->node, GEN6_PD_SIZE, |
| GEN6_PD_ALIGN, 0, |
| 0, dev_priv->gtt.base.total, |
| DRM_MM_TOPDOWN); |
| if (ret == -ENOSPC && !retried) { |
| ret = i915_gem_evict_something(dev, &dev_priv->gtt.base, |
| GEN6_PD_SIZE, GEN6_PD_ALIGN, |
| I915_CACHE_NONE, |
| 0, dev_priv->gtt.base.total, |
| 0); |
| if (ret) |
| return ret; |
| |
| retried = true; |
| goto alloc; |
| } |
| |
| if (ppgtt->node.start < dev_priv->gtt.mappable_end) |
| DRM_DEBUG("Forced to use aperture for PDEs\n"); |
| |
| ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES; |
| return ret; |
| } |
| |
| static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt) |
| { |
| int i; |
| |
| ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *), |
| GFP_KERNEL); |
| |
| if (!ppgtt->pt_pages) |
| return -ENOMEM; |
| |
| for (i = 0; i < ppgtt->num_pd_entries; i++) { |
| ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL); |
| if (!ppgtt->pt_pages[i]) { |
| gen6_ppgtt_free(ppgtt); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) |
| { |
| int ret; |
| |
| ret = gen6_ppgtt_allocate_page_directories(ppgtt); |
| if (ret) |
| return ret; |
| |
| ret = gen6_ppgtt_allocate_page_tables(ppgtt); |
| if (ret) { |
| drm_mm_remove_node(&ppgtt->node); |
| return ret; |
| } |
| |
| ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t), |
| GFP_KERNEL); |
| if (!ppgtt->pt_dma_addr) { |
| drm_mm_remove_node(&ppgtt->node); |
| gen6_ppgtt_free(ppgtt); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| int i; |
| |
| for (i = 0; i < ppgtt->num_pd_entries; i++) { |
| dma_addr_t pt_addr; |
| |
| pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| if (pci_dma_mapping_error(dev->pdev, pt_addr)) { |
| gen6_ppgtt_unmap_pages(ppgtt); |
| return -EIO; |
| } |
| |
| ppgtt->pt_dma_addr[i] = pt_addr; |
| } |
| |
| return 0; |
| } |
| |
| static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_device *dev = ppgtt->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode; |
| if (IS_GEN6(dev)) { |
| ppgtt->enable = gen6_ppgtt_enable; |
| ppgtt->switch_mm = gen6_mm_switch; |
| } else if (IS_HASWELL(dev)) { |
| ppgtt->enable = gen7_ppgtt_enable; |
| ppgtt->switch_mm = hsw_mm_switch; |
| } else if (IS_GEN7(dev)) { |
| ppgtt->enable = gen7_ppgtt_enable; |
| ppgtt->switch_mm = gen7_mm_switch; |
| } else |
| BUG(); |
| |
| ret = gen6_ppgtt_alloc(ppgtt); |
| if (ret) |
| return ret; |
| |
| ret = gen6_ppgtt_setup_page_tables(ppgtt); |
| if (ret) { |
| gen6_ppgtt_free(ppgtt); |
| return ret; |
| } |
| |
| ppgtt->base.clear_range = gen6_ppgtt_clear_range; |
| ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; |
| ppgtt->base.cleanup = gen6_ppgtt_cleanup; |
| ppgtt->base.start = 0; |
| ppgtt->base.total = ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE; |
| ppgtt->debug_dump = gen6_dump_ppgtt; |
| |
| ppgtt->pd_offset = |
| ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t); |
| |
| ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true); |
| |
| DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n", |
| ppgtt->node.size >> 20, |
| ppgtt->node.start / PAGE_SIZE); |
| |
| return 0; |
| } |
| |
| int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret = 0; |
| |
| ppgtt->base.dev = dev; |
| ppgtt->base.scratch = dev_priv->gtt.base.scratch; |
| |
| if (INTEL_INFO(dev)->gen < 8) |
| ret = gen6_ppgtt_init(ppgtt); |
| else if (IS_GEN8(dev)) |
| ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total); |
| else |
| BUG(); |
| |
| if (!ret) { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| kref_init(&ppgtt->ref); |
| drm_mm_init(&ppgtt->base.mm, ppgtt->base.start, |
| ppgtt->base.total); |
| i915_init_vm(dev_priv, &ppgtt->base); |
| if (INTEL_INFO(dev)->gen < 8) { |
| gen6_write_pdes(ppgtt); |
| DRM_DEBUG("Adding PPGTT at offset %x\n", |
| ppgtt->pd_offset << 10); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void |
| ppgtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| /* Currently applicable only to VLV */ |
| if (vma->obj->gt_ro) |
| flags |= PTE_READ_ONLY; |
| |
| vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start, |
| cache_level, flags); |
| } |
| |
| static void ppgtt_unbind_vma(struct i915_vma *vma) |
| { |
| vma->vm->clear_range(vma->vm, |
| vma->node.start, |
| vma->obj->base.size, |
| true); |
| } |
| |
| extern int intel_iommu_gfx_mapped; |
| /* Certain Gen5 chipsets require require idling the GPU before |
| * unmapping anything from the GTT when VT-d is enabled. |
| */ |
| static inline bool needs_idle_maps(struct drm_device *dev) |
| { |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Query intel_iommu to see if we need the workaround. Presumably that |
| * was loaded first. |
| */ |
| if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped) |
| return true; |
| #endif |
| return false; |
| } |
| |
| static bool do_idling(struct drm_i915_private *dev_priv) |
| { |
| bool ret = dev_priv->mm.interruptible; |
| |
| if (unlikely(dev_priv->gtt.do_idle_maps)) { |
| dev_priv->mm.interruptible = false; |
| if (i915_gpu_idle(dev_priv->dev)) { |
| DRM_ERROR("Couldn't idle GPU\n"); |
| /* Wait a bit, in hopes it avoids the hang */ |
| udelay(10); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible) |
| { |
| if (unlikely(dev_priv->gtt.do_idle_maps)) |
| dev_priv->mm.interruptible = interruptible; |
| } |
| |
| void i915_check_and_clear_faults(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_engine_cs *ring; |
| int i; |
| |
| if (INTEL_INFO(dev)->gen < 6) |
| return; |
| |
| for_each_ring(ring, dev_priv, i) { |
| u32 fault_reg; |
| fault_reg = I915_READ(RING_FAULT_REG(ring)); |
| if (fault_reg & RING_FAULT_VALID) { |
| DRM_DEBUG_DRIVER("Unexpected fault\n" |
| "\tAddr: 0x%08lx\\n" |
| "\tAddress space: %s\n" |
| "\tSource ID: %d\n" |
| "\tType: %d\n", |
| fault_reg & PAGE_MASK, |
| fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", |
| RING_FAULT_SRCID(fault_reg), |
| RING_FAULT_FAULT_TYPE(fault_reg)); |
| I915_WRITE(RING_FAULT_REG(ring), |
| fault_reg & ~RING_FAULT_VALID); |
| } |
| } |
| POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS])); |
| } |
| |
| void i915_gem_suspend_gtt_mappings(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| /* Don't bother messing with faults pre GEN6 as we have little |
| * documentation supporting that it's a good idea. |
| */ |
| if (INTEL_INFO(dev)->gen < 6) |
| return; |
| |
| i915_check_and_clear_faults(dev); |
| |
| dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, |
| dev_priv->gtt.base.start, |
| dev_priv->gtt.base.total, |
| true); |
| } |
| |
| void i915_gem_restore_gtt_mappings(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj; |
| struct i915_address_space *vm; |
| |
| i915_check_and_clear_faults(dev); |
| |
| /* First fill our portion of the GTT with scratch pages */ |
| dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, |
| dev_priv->gtt.base.start, |
| dev_priv->gtt.base.total, |
| true); |
| |
| list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { |
| struct i915_vma *vma = i915_gem_obj_to_vma(obj, |
| &dev_priv->gtt.base); |
| if (!vma) |
| continue; |
| |
| i915_gem_clflush_object(obj, obj->pin_display); |
| /* The bind_vma code tries to be smart about tracking mappings. |
| * Unfortunately above, we've just wiped out the mappings |
| * without telling our object about it. So we need to fake it. |
| */ |
| obj->has_global_gtt_mapping = 0; |
| vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND); |
| } |
| |
| |
| if (INTEL_INFO(dev)->gen >= 8) { |
| if (IS_CHERRYVIEW(dev)) |
| chv_setup_private_ppat(dev_priv); |
| else |
| bdw_setup_private_ppat(dev_priv); |
| |
| return; |
| } |
| |
| list_for_each_entry(vm, &dev_priv->vm_list, global_link) { |
| /* TODO: Perhaps it shouldn't be gen6 specific */ |
| if (i915_is_ggtt(vm)) { |
| if (dev_priv->mm.aliasing_ppgtt) |
| gen6_write_pdes(dev_priv->mm.aliasing_ppgtt); |
| continue; |
| } |
| |
| gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base)); |
| } |
| |
| i915_gem_chipset_flush(dev); |
| } |
| |
| int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj) |
| { |
| if (obj->has_dma_mapping) |
| return 0; |
| |
| if (!dma_map_sg(&obj->base.dev->pdev->dev, |
| obj->pages->sgl, obj->pages->nents, |
| PCI_DMA_BIDIRECTIONAL)) |
| return -ENOSPC; |
| |
| return 0; |
| } |
| |
| static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte) |
| { |
| #ifdef writeq |
| writeq(pte, addr); |
| #else |
| iowrite32((u32)pte, addr); |
| iowrite32(pte >> 32, addr + 4); |
| #endif |
| } |
| |
| static void gen8_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *st, |
| uint64_t start, |
| enum i915_cache_level level, u32 unused) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| gen8_gtt_pte_t __iomem *gtt_entries = |
| (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; |
| int i = 0; |
| struct sg_page_iter sg_iter; |
| dma_addr_t addr = 0; |
| |
| for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { |
| addr = sg_dma_address(sg_iter.sg) + |
| (sg_iter.sg_pgoffset << PAGE_SHIFT); |
| gen8_set_pte(>t_entries[i], |
| gen8_pte_encode(addr, level, true)); |
| i++; |
| } |
| |
| /* |
| * XXX: This serves as a posting read to make sure that the PTE has |
| * actually been updated. There is some concern that even though |
| * registers and PTEs are within the same BAR that they are potentially |
| * of NUMA access patterns. Therefore, even with the way we assume |
| * hardware should work, we must keep this posting read for paranoia. |
| */ |
| if (i != 0) |
| WARN_ON(readq(>t_entries[i-1]) |
| != gen8_pte_encode(addr, level, true)); |
| |
| /* This next bit makes the above posting read even more important. We |
| * want to flush the TLBs only after we're certain all the PTE updates |
| * have finished. |
| */ |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| } |
| |
| /* |
| * Binds an object into the global gtt with the specified cache level. The object |
| * will be accessible to the GPU via commands whose operands reference offsets |
| * within the global GTT as well as accessible by the GPU through the GMADR |
| * mapped BAR (dev_priv->mm.gtt->gtt). |
| */ |
| static void gen6_ggtt_insert_entries(struct i915_address_space *vm, |
| struct sg_table *st, |
| uint64_t start, |
| enum i915_cache_level level, u32 flags) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| gen6_gtt_pte_t __iomem *gtt_entries = |
| (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; |
| int i = 0; |
| struct sg_page_iter sg_iter; |
| dma_addr_t addr; |
| |
| for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { |
| addr = sg_page_iter_dma_address(&sg_iter); |
| iowrite32(vm->pte_encode(addr, level, true, flags), >t_entries[i]); |
| i++; |
| } |
| |
| /* XXX: This serves as a posting read to make sure that the PTE has |
| * actually been updated. There is some concern that even though |
| * registers and PTEs are within the same BAR that they are potentially |
| * of NUMA access patterns. Therefore, even with the way we assume |
| * hardware should work, we must keep this posting read for paranoia. |
| */ |
| if (i != 0) |
| WARN_ON(readl(>t_entries[i-1]) != |
| vm->pte_encode(addr, level, true, flags)); |
| |
| /* This next bit makes the above posting read even more important. We |
| * want to flush the TLBs only after we're certain all the PTE updates |
| * have finished. |
| */ |
| I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); |
| POSTING_READ(GFX_FLSH_CNTL_GEN6); |
| } |
| |
| static void gen8_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| gen8_gtt_pte_t scratch_pte, __iomem *gtt_base = |
| (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; |
| const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = gen8_pte_encode(vm->scratch.addr, |
| I915_CACHE_LLC, |
| use_scratch); |
| for (i = 0; i < num_entries; i++) |
| gen8_set_pte(>t_base[i], scratch_pte); |
| readl(gtt_base); |
| } |
| |
| static void gen6_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool use_scratch) |
| { |
| struct drm_i915_private *dev_priv = vm->dev->dev_private; |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| gen6_gtt_pte_t scratch_pte, __iomem *gtt_base = |
| (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; |
| const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; |
| int i; |
| |
| if (WARN(num_entries > max_entries, |
| "First entry = %d; Num entries = %d (max=%d)\n", |
| first_entry, num_entries, max_entries)) |
| num_entries = max_entries; |
| |
| scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0); |
| |
| for (i = 0; i < num_entries; i++) |
| iowrite32(scratch_pte, >t_base[i]); |
| readl(gtt_base); |
| } |
| |
| |
| static void i915_ggtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 unused) |
| { |
| const unsigned long entry = vma->node.start >> PAGE_SHIFT; |
| unsigned int flags = (cache_level == I915_CACHE_NONE) ? |
| AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; |
| |
| BUG_ON(!i915_is_ggtt(vma->vm)); |
| intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags); |
| vma->obj->has_global_gtt_mapping = 1; |
| } |
| |
| static void i915_ggtt_clear_range(struct i915_address_space *vm, |
| uint64_t start, |
| uint64_t length, |
| bool unused) |
| { |
| unsigned first_entry = start >> PAGE_SHIFT; |
| unsigned num_entries = length >> PAGE_SHIFT; |
| intel_gtt_clear_range(first_entry, num_entries); |
| } |
| |
| static void i915_ggtt_unbind_vma(struct i915_vma *vma) |
| { |
| const unsigned int first = vma->node.start >> PAGE_SHIFT; |
| const unsigned int size = vma->obj->base.size >> PAGE_SHIFT; |
| |
| BUG_ON(!i915_is_ggtt(vma->vm)); |
| vma->obj->has_global_gtt_mapping = 0; |
| intel_gtt_clear_range(first, size); |
| } |
| |
| static void ggtt_bind_vma(struct i915_vma *vma, |
| enum i915_cache_level cache_level, |
| u32 flags) |
| { |
| struct drm_device *dev = vma->vm->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj = vma->obj; |
| |
| /* Currently applicable only to VLV */ |
| if (obj->gt_ro) |
| flags |= PTE_READ_ONLY; |
| |
| /* If there is no aliasing PPGTT, or the caller needs a global mapping, |
| * or we have a global mapping already but the cacheability flags have |
| * changed, set the global PTEs. |
| * |
| * If there is an aliasing PPGTT it is anecdotally faster, so use that |
| * instead if none of the above hold true. |
| * |
| * NB: A global mapping should only be needed for special regions like |
| * "gtt mappable", SNB errata, or if specified via special execbuf |
| * flags. At all other times, the GPU will use the aliasing PPGTT. |
| */ |
| if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) { |
| if (!obj->has_global_gtt_mapping || |
| (cache_level != obj->cache_level)) { |
| vma->vm->insert_entries(vma->vm, obj->pages, |
| vma->node.start, |
| cache_level, flags); |
| obj->has_global_gtt_mapping = 1; |
| } |
| } |
| |
| if (dev_priv->mm.aliasing_ppgtt && |
| (!obj->has_aliasing_ppgtt_mapping || |
| (cache_level != obj->cache_level))) { |
| struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt; |
| appgtt->base.insert_entries(&appgtt->base, |
| vma->obj->pages, |
| vma->node.start, |
| cache_level, flags); |
| vma->obj->has_aliasing_ppgtt_mapping = 1; |
| } |
| } |
| |
| static void ggtt_unbind_vma(struct i915_vma *vma) |
| { |
| struct drm_device *dev = vma->vm->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_i915_gem_object *obj = vma->obj; |
| |
| if (obj->has_global_gtt_mapping) { |
| vma->vm->clear_range(vma->vm, |
| vma->node.start, |
| obj->base.size, |
| true); |
| obj->has_global_gtt_mapping = 0; |
| } |
| |
| if (obj->has_aliasing_ppgtt_mapping) { |
| struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt; |
| appgtt->base.clear_range(&appgtt->base, |
| vma->node.start, |
| obj->base.size, |
| true); |
| obj->has_aliasing_ppgtt_mapping = 0; |
| } |
| } |
| |
| void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj) |
| { |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| bool interruptible; |
| |
| interruptible = do_idling(dev_priv); |
| |
| if (!obj->has_dma_mapping) |
| dma_unmap_sg(&dev->pdev->dev, |
| obj->pages->sgl, obj->pages->nents, |
| PCI_DMA_BIDIRECTIONAL); |
| |
| undo_idling(dev_priv, interruptible); |
| } |
| |
| static void i915_gtt_color_adjust(struct drm_mm_node *node, |
| unsigned long color, |
| unsigned long *start, |
| unsigned long *end) |
| { |
| if (node->color != color) |
| *start += 4096; |
| |
| if (!list_empty(&node->node_list)) { |
| node = list_entry(node->node_list.next, |
| struct drm_mm_node, |
| node_list); |
| if (node->allocated && node->color != color) |
| *end -= 4096; |
| } |
| } |
| |
| void i915_gem_setup_global_gtt(struct drm_device *dev, |
| unsigned long start, |
| unsigned long mappable_end, |
| unsigned long end) |
| { |
| /* Let GEM Manage all of the aperture. |
| * |
| * However, leave one page at the end still bound to the scratch page. |
| * There are a number of places where the hardware apparently prefetches |
| * past the end of the object, and we've seen multiple hangs with the |
| * GPU head pointer stuck in a batchbuffer bound at the last page of the |
| * aperture. One page should be enough to keep any prefetching inside |
| * of the aperture. |
| */ |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_address_space *ggtt_vm = &dev_priv->gtt.base; |
| struct drm_mm_node *entry; |
| struct drm_i915_gem_object *obj; |
| unsigned long hole_start, hole_end; |
| |
| BUG_ON(mappable_end > end); |
| |
| /* Subtract the guard page ... */ |
| drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE); |
| if (!HAS_LLC(dev)) |
| dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust; |
| |
| /* Mark any preallocated objects as occupied */ |
| list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { |
| struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm); |
| int ret; |
| DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n", |
| i915_gem_obj_ggtt_offset(obj), obj->base.size); |
| |
| WARN_ON(i915_gem_obj_ggtt_bound(obj)); |
| ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node); |
| if (ret) |
| DRM_DEBUG_KMS("Reservation failed\n"); |
| obj->has_global_gtt_mapping = 1; |
| } |
| |
| dev_priv->gtt.base.start = start; |
| dev_priv->gtt.base.total = end - start; |
| |
| /* Clear any non-preallocated blocks */ |
| drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) { |
| DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", |
| hole_start, hole_end); |
| ggtt_vm->clear_range(ggtt_vm, hole_start, |
| hole_end - hole_start, true); |
| } |
| |
| /* And finally clear the reserved guard page */ |
| ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true); |
| } |
| |
| void i915_gem_init_global_gtt(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned long gtt_size, mappable_size; |
| |
| gtt_size = dev_priv->gtt.base.total; |
| mappable_size = dev_priv->gtt.mappable_end; |
| |
| i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size); |
| } |
| |
| static int setup_scratch_page(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct page *page; |
| dma_addr_t dma_addr; |
| |
| page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); |
| if (page == NULL) |
| return -ENOMEM; |
| get_page(page); |
| set_pages_uc(page, 1); |
| |
| #ifdef CONFIG_INTEL_IOMMU |
| dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE, |
| PCI_DMA_BIDIRECTIONAL); |
| if (pci_dma_mapping_error(dev->pdev, dma_addr)) |
| return -EINVAL; |
| #else |
| dma_addr = page_to_phys(page); |
| #endif |
| dev_priv->gtt.base.scratch.page = page; |
| dev_priv->gtt.base.scratch.addr = dma_addr; |
| |
| return 0; |
| } |
| |
| static void teardown_scratch_page(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct page *page = dev_priv->gtt.base.scratch.page; |
| |
| set_pages_wb(page, 1); |
| pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr, |
| PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); |
| put_page(page); |
| __free_page(page); |
| } |
| |
| static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; |
| return snb_gmch_ctl << 20; |
| } |
| |
| static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; |
| if (bdw_gmch_ctl) |
| bdw_gmch_ctl = 1 << bdw_gmch_ctl; |
| |
| #ifdef CONFIG_X86_32 |
| /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ |
| if (bdw_gmch_ctl > 4) |
| bdw_gmch_ctl = 4; |
| #endif |
| |
| return bdw_gmch_ctl << 20; |
| } |
| |
| static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) |
| { |
| gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; |
| gmch_ctrl &= SNB_GMCH_GGMS_MASK; |
| |
| if (gmch_ctrl) |
| return 1 << (20 + gmch_ctrl); |
| |
| return 0; |
| } |
| |
| static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl) |
| { |
| snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; |
| snb_gmch_ctl &= SNB_GMCH_GMS_MASK; |
| return snb_gmch_ctl << 25; /* 32 MB units */ |
| } |
| |
| static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) |
| { |
| bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; |
| bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; |
| return bdw_gmch_ctl << 25; /* 32 MB units */ |
| } |
| |
| static size_t chv_get_stolen_size(u16 gmch_ctrl) |
| { |
| gmch_ctrl >>= SNB_GMCH_GMS_SHIFT; |
| gmch_ctrl &= SNB_GMCH_GMS_MASK; |
| |
| /* |
| * 0x0 to 0x10: 32MB increments starting at 0MB |
| * 0x11 to 0x16: 4MB increments starting at 8MB |
| * 0x17 to 0x1d: 4MB increments start at 36MB |
| */ |
| if (gmch_ctrl < 0x11) |
| return gmch_ctrl << 25; |
| else if (gmch_ctrl < 0x17) |
| return (gmch_ctrl - 0x11 + 2) << 22; |
| else |
| return (gmch_ctrl - 0x17 + 9) << 22; |
| } |
| |
| static int ggtt_probe_common(struct drm_device *dev, |
| size_t gtt_size) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| phys_addr_t gtt_phys_addr; |
| int ret; |
| |
| /* For Modern GENs the PTEs and register space are split in the BAR */ |
| gtt_phys_addr = pci_resource_start(dev->pdev, 0) + |
| (pci_resource_len(dev->pdev, 0) / 2); |
| |
| dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size); |
| if (!dev_priv->gtt.gsm) { |
| DRM_ERROR("Failed to map the gtt page table\n"); |
| return -ENOMEM; |
| } |
| |
| ret = setup_scratch_page(dev); |
| if (ret) { |
| DRM_ERROR("Scratch setup failed\n"); |
| /* iounmap will also get called at remove, but meh */ |
| iounmap(dev_priv->gtt.gsm); |
| } |
| |
| return ret; |
| } |
| |
| /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability |
| * bits. When using advanced contexts each context stores its own PAT, but |
| * writing this data shouldn't be harmful even in those cases. */ |
| static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv) |
| { |
| uint64_t pat; |
| |
| pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ |
| GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ |
| GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ |
| GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ |
| GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | |
| GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | |
| GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | |
| GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); |
| |
| /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b |
| * write would work. */ |
| I915_WRITE(GEN8_PRIVATE_PAT, pat); |
| I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); |
| } |
| |
| static void chv_setup_private_ppat(struct drm_i915_private *dev_priv) |
| { |
| uint64_t pat; |
| |
| /* |
| * Map WB on BDW to snooped on CHV. |
| * |
| * Only the snoop bit has meaning for CHV, the rest is |
| * ignored. |
| * |
| * Note that the harware enforces snooping for all page |
| * table accesses. The snoop bit is actually ignored for |
| * PDEs. |
| */ |
| pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(1, 0) | |
| GEN8_PPAT(2, 0) | |
| GEN8_PPAT(3, 0) | |
| GEN8_PPAT(4, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(5, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(6, CHV_PPAT_SNOOP) | |
| GEN8_PPAT(7, CHV_PPAT_SNOOP); |
| |
| I915_WRITE(GEN8_PRIVATE_PAT, pat); |
| I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); |
| } |
| |
| static int gen8_gmch_probe(struct drm_device *dev, |
| size_t *gtt_total, |
| size_t *stolen, |
| phys_addr_t *mappable_base, |
| unsigned long *mappable_end) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned int gtt_size; |
| u16 snb_gmch_ctl; |
| int ret; |
| |
| /* TODO: We're not aware of mappable constraints on gen8 yet */ |
| *mappable_base = pci_resource_start(dev->pdev, 2); |
| *mappable_end = pci_resource_len(dev->pdev, 2); |
| |
| if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39))) |
| pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39)); |
| |
| pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| if (IS_CHERRYVIEW(dev)) { |
| *stolen = chv_get_stolen_size(snb_gmch_ctl); |
| gtt_size = chv_get_total_gtt_size(snb_gmch_ctl); |
| } else { |
| *stolen = gen8_get_stolen_size(snb_gmch_ctl); |
| gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl); |
| } |
| |
| *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT; |
| |
| if (IS_CHERRYVIEW(dev)) |
| chv_setup_private_ppat(dev_priv); |
| else |
| bdw_setup_private_ppat(dev_priv); |
| |
| ret = ggtt_probe_common(dev, gtt_size); |
| |
| dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range; |
| dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries; |
| |
| return ret; |
| } |
| |
| static int gen6_gmch_probe(struct drm_device *dev, |
| size_t *gtt_total, |
| size_t *stolen, |
| phys_addr_t *mappable_base, |
| unsigned long *mappable_end) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| unsigned int gtt_size; |
| u16 snb_gmch_ctl; |
| int ret; |
| |
| *mappable_base = pci_resource_start(dev->pdev, 2); |
| *mappable_end = pci_resource_len(dev->pdev, 2); |
| |
| /* 64/512MB is the current min/max we actually know of, but this is just |
| * a coarse sanity check. |
| */ |
| if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) { |
| DRM_ERROR("Unknown GMADR size (%lx)\n", |
| dev_priv->gtt.mappable_end); |
| return -ENXIO; |
| } |
| |
| if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40))) |
| pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40)); |
| pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); |
| |
| *stolen = gen6_get_stolen_size(snb_gmch_ctl); |
| |
| gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl); |
| *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT; |
| |
| ret = ggtt_probe_common(dev, gtt_size); |
| |
| dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range; |
| dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries; |
| |
| return ret; |
| } |
| |
| static void gen6_gmch_remove(struct i915_address_space *vm) |
| { |
| |
| struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base); |
| |
| if (drm_mm_initialized(&vm->mm)) { |
| drm_mm_takedown(&vm->mm); |
| list_del(&vm->global_link); |
| } |
| iounmap(gtt->gsm); |
| teardown_scratch_page(vm->dev); |
| } |
| |
| static int i915_gmch_probe(struct drm_device *dev, |
| size_t *gtt_total, |
| size_t *stolen, |
| phys_addr_t *mappable_base, |
| unsigned long *mappable_end) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL); |
| if (!ret) { |
| DRM_ERROR("failed to set up gmch\n"); |
| return -EIO; |
| } |
| |
| intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end); |
| |
| dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev); |
| dev_priv->gtt.base.clear_range = i915_ggtt_clear_range; |
| |
| if (unlikely(dev_priv->gtt.do_idle_maps)) |
| DRM_INFO("applying Ironlake quirks for intel_iommu\n"); |
| |
| return 0; |
| } |
| |
| static void i915_gmch_remove(struct i915_address_space *vm) |
| { |
| if (drm_mm_initialized(&vm->mm)) { |
| drm_mm_takedown(&vm->mm); |
| list_del(&vm->global_link); |
| } |
| intel_gmch_remove(); |
| } |
| |
| int i915_gem_gtt_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct i915_gtt *gtt = &dev_priv->gtt; |
| int ret; |
| |
| if (INTEL_INFO(dev)->gen <= 5) { |
| gtt->gtt_probe = i915_gmch_probe; |
| gtt->base.cleanup = i915_gmch_remove; |
| } else if (INTEL_INFO(dev)->gen < 8) { |
| gtt->gtt_probe = gen6_gmch_probe; |
| gtt->base.cleanup = gen6_gmch_remove; |
| if (IS_HASWELL(dev) && dev_priv->ellc_size) |
| gtt->base.pte_encode = iris_pte_encode; |
| else if (IS_HASWELL(dev)) |
| gtt->base.pte_encode = hsw_pte_encode; |
| else if (IS_VALLEYVIEW(dev)) |
| gtt->base.pte_encode = byt_pte_encode; |
| else if (INTEL_INFO(dev)->gen >= 7) |
| gtt->base.pte_encode = ivb_pte_encode; |
| else |
| gtt->base.pte_encode = snb_pte_encode; |
| } else { |
| dev_priv->gtt.gtt_probe = gen8_gmch_probe; |
| dev_priv->gtt.base.cleanup = gen6_gmch_remove; |
| } |
| |
| ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size, |
| >t->mappable_base, >t->mappable_end); |
| if (ret) |
| return ret; |
| |
| gtt->base.dev = dev; |
| |
| /* GMADR is the PCI mmio aperture into the global GTT. */ |
| DRM_INFO("Memory usable by graphics device = %zdM\n", |
| gtt->base.total >> 20); |
| DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20); |
| DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20); |
| #ifdef CONFIG_INTEL_IOMMU |
| if (intel_iommu_gfx_mapped) |
| DRM_INFO("VT-d active for gfx access\n"); |
| #endif |
| /* |
| * i915.enable_ppgtt is read-only, so do an early pass to validate the |
| * user's requested state against the hardware/driver capabilities. We |
| * do this now so that we can print out any log messages once rather |
| * than every time we check intel_enable_ppgtt(). |
| */ |
| i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt); |
| DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt); |
| |
| return 0; |
| } |
| |
| static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm) |
| { |
| struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); |
| if (vma == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&vma->vma_link); |
| INIT_LIST_HEAD(&vma->mm_list); |
| INIT_LIST_HEAD(&vma->exec_list); |
| vma->vm = vm; |
| vma->obj = obj; |
| |
| switch (INTEL_INFO(vm->dev)->gen) { |
| case 8: |
| case 7: |
| case 6: |
| if (i915_is_ggtt(vm)) { |
| vma->unbind_vma = ggtt_unbind_vma; |
| vma->bind_vma = ggtt_bind_vma; |
| } else { |
| vma->unbind_vma = ppgtt_unbind_vma; |
| vma->bind_vma = ppgtt_bind_vma; |
| } |
| break; |
| case 5: |
| case 4: |
| case 3: |
| case 2: |
| BUG_ON(!i915_is_ggtt(vm)); |
| vma->unbind_vma = i915_ggtt_unbind_vma; |
| vma->bind_vma = i915_ggtt_bind_vma; |
| break; |
| default: |
| BUG(); |
| } |
| |
| /* Keep GGTT vmas first to make debug easier */ |
| if (i915_is_ggtt(vm)) |
| list_add(&vma->vma_link, &obj->vma_list); |
| else |
| list_add_tail(&vma->vma_link, &obj->vma_list); |
| |
| return vma; |
| } |
| |
| struct i915_vma * |
| i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm) |
| { |
| struct i915_vma *vma; |
| |
| vma = i915_gem_obj_to_vma(obj, vm); |
| if (!vma) |
| vma = __i915_gem_vma_create(obj, vm); |
| |
| return vma; |
| } |