| /* |
| * Handles the M-Systems DiskOnChip G3 chip |
| * |
| * Copyright (C) 2011 Robert Jarzmik |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/errno.h> |
| #include <linux/platform_device.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/bitmap.h> |
| #include <linux/bitrev.h> |
| #include <linux/bch.h> |
| |
| #include <linux/debugfs.h> |
| #include <linux/seq_file.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include "docg3.h" |
| |
| /* |
| * This driver handles the DiskOnChip G3 flash memory. |
| * |
| * As no specification is available from M-Systems/Sandisk, this drivers lacks |
| * several functions available on the chip, as : |
| * - IPL write |
| * |
| * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and |
| * the driver assumes a 16bits data bus. |
| * |
| * DocG3 relies on 2 ECC algorithms, which are handled in hardware : |
| * - a 1 byte Hamming code stored in the OOB for each page |
| * - a 7 bytes BCH code stored in the OOB for each page |
| * The BCH ECC is : |
| * - BCH is in GF(2^14) |
| * - BCH is over data of 520 bytes (512 page + 7 page_info bytes |
| * + 1 hamming byte) |
| * - BCH can correct up to 4 bits (t = 4) |
| * - BCH syndroms are calculated in hardware, and checked in hardware as well |
| * |
| */ |
| |
| static unsigned int reliable_mode; |
| module_param(reliable_mode, uint, 0); |
| MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, " |
| "2=reliable) : MLC normal operations are in normal mode"); |
| |
| /** |
| * struct docg3_oobinfo - DiskOnChip G3 OOB layout |
| * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC) |
| * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC) |
| * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15 |
| * @oobavail: 8 available bytes remaining after ECC toll |
| */ |
| static struct nand_ecclayout docg3_oobinfo = { |
| .eccbytes = 8, |
| .eccpos = {7, 8, 9, 10, 11, 12, 13, 14}, |
| .oobfree = {{0, 7}, {15, 1} }, |
| .oobavail = 8, |
| }; |
| |
| static inline u8 doc_readb(struct docg3 *docg3, u16 reg) |
| { |
| u8 val = readb(docg3->cascade->base + reg); |
| |
| trace_docg3_io(0, 8, reg, (int)val); |
| return val; |
| } |
| |
| static inline u16 doc_readw(struct docg3 *docg3, u16 reg) |
| { |
| u16 val = readw(docg3->cascade->base + reg); |
| |
| trace_docg3_io(0, 16, reg, (int)val); |
| return val; |
| } |
| |
| static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg) |
| { |
| writeb(val, docg3->cascade->base + reg); |
| trace_docg3_io(1, 8, reg, val); |
| } |
| |
| static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg) |
| { |
| writew(val, docg3->cascade->base + reg); |
| trace_docg3_io(1, 16, reg, val); |
| } |
| |
| static inline void doc_flash_command(struct docg3 *docg3, u8 cmd) |
| { |
| doc_writeb(docg3, cmd, DOC_FLASHCOMMAND); |
| } |
| |
| static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq) |
| { |
| doc_writeb(docg3, seq, DOC_FLASHSEQUENCE); |
| } |
| |
| static inline void doc_flash_address(struct docg3 *docg3, u8 addr) |
| { |
| doc_writeb(docg3, addr, DOC_FLASHADDRESS); |
| } |
| |
| static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL }; |
| |
| static int doc_register_readb(struct docg3 *docg3, int reg) |
| { |
| u8 val; |
| |
| doc_writew(docg3, reg, DOC_READADDRESS); |
| val = doc_readb(docg3, reg); |
| doc_vdbg("Read register %04x : %02x\n", reg, val); |
| return val; |
| } |
| |
| static int doc_register_readw(struct docg3 *docg3, int reg) |
| { |
| u16 val; |
| |
| doc_writew(docg3, reg, DOC_READADDRESS); |
| val = doc_readw(docg3, reg); |
| doc_vdbg("Read register %04x : %04x\n", reg, val); |
| return val; |
| } |
| |
| /** |
| * doc_delay - delay docg3 operations |
| * @docg3: the device |
| * @nbNOPs: the number of NOPs to issue |
| * |
| * As no specification is available, the right timings between chip commands are |
| * unknown. The only available piece of information are the observed nops on a |
| * working docg3 chip. |
| * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler |
| * friendlier msleep() functions or blocking mdelay(). |
| */ |
| static void doc_delay(struct docg3 *docg3, int nbNOPs) |
| { |
| int i; |
| |
| doc_vdbg("NOP x %d\n", nbNOPs); |
| for (i = 0; i < nbNOPs; i++) |
| doc_writeb(docg3, 0, DOC_NOP); |
| } |
| |
| static int is_prot_seq_error(struct docg3 *docg3) |
| { |
| int ctrl; |
| |
| ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); |
| return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR); |
| } |
| |
| static int doc_is_ready(struct docg3 *docg3) |
| { |
| int ctrl; |
| |
| ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); |
| return ctrl & DOC_CTRL_FLASHREADY; |
| } |
| |
| static int doc_wait_ready(struct docg3 *docg3) |
| { |
| int maxWaitCycles = 100; |
| |
| do { |
| doc_delay(docg3, 4); |
| cpu_relax(); |
| } while (!doc_is_ready(docg3) && maxWaitCycles--); |
| doc_delay(docg3, 2); |
| if (maxWaitCycles > 0) |
| return 0; |
| else |
| return -EIO; |
| } |
| |
| static int doc_reset_seq(struct docg3 *docg3) |
| { |
| int ret; |
| |
| doc_writeb(docg3, 0x10, DOC_FLASHCONTROL); |
| doc_flash_sequence(docg3, DOC_SEQ_RESET); |
| doc_flash_command(docg3, DOC_CMD_RESET); |
| doc_delay(docg3, 2); |
| ret = doc_wait_ready(docg3); |
| |
| doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true"); |
| return ret; |
| } |
| |
| /** |
| * doc_read_data_area - Read data from data area |
| * @docg3: the device |
| * @buf: the buffer to fill in (might be NULL is dummy reads) |
| * @len: the length to read |
| * @first: first time read, DOC_READADDRESS should be set |
| * |
| * Reads bytes from flash data. Handles the single byte / even bytes reads. |
| */ |
| static void doc_read_data_area(struct docg3 *docg3, void *buf, int len, |
| int first) |
| { |
| int i, cdr, len4; |
| u16 data16, *dst16; |
| u8 data8, *dst8; |
| |
| doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len); |
| cdr = len & 0x1; |
| len4 = len - cdr; |
| |
| if (first) |
| doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); |
| dst16 = buf; |
| for (i = 0; i < len4; i += 2) { |
| data16 = doc_readw(docg3, DOC_IOSPACE_DATA); |
| if (dst16) { |
| *dst16 = data16; |
| dst16++; |
| } |
| } |
| |
| if (cdr) { |
| doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, |
| DOC_READADDRESS); |
| doc_delay(docg3, 1); |
| dst8 = (u8 *)dst16; |
| for (i = 0; i < cdr; i++) { |
| data8 = doc_readb(docg3, DOC_IOSPACE_DATA); |
| if (dst8) { |
| *dst8 = data8; |
| dst8++; |
| } |
| } |
| } |
| } |
| |
| /** |
| * doc_write_data_area - Write data into data area |
| * @docg3: the device |
| * @buf: the buffer to get input bytes from |
| * @len: the length to write |
| * |
| * Writes bytes into flash data. Handles the single byte / even bytes writes. |
| */ |
| static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len) |
| { |
| int i, cdr, len4; |
| u16 *src16; |
| u8 *src8; |
| |
| doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len); |
| cdr = len & 0x3; |
| len4 = len - cdr; |
| |
| doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); |
| src16 = (u16 *)buf; |
| for (i = 0; i < len4; i += 2) { |
| doc_writew(docg3, *src16, DOC_IOSPACE_DATA); |
| src16++; |
| } |
| |
| src8 = (u8 *)src16; |
| for (i = 0; i < cdr; i++) { |
| doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, |
| DOC_READADDRESS); |
| doc_writeb(docg3, *src8, DOC_IOSPACE_DATA); |
| src8++; |
| } |
| } |
| |
| /** |
| * doc_set_data_mode - Sets the flash to normal or reliable data mode |
| * @docg3: the device |
| * |
| * The reliable data mode is a bit slower than the fast mode, but less errors |
| * occur. Entering the reliable mode cannot be done without entering the fast |
| * mode first. |
| * |
| * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks |
| * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading |
| * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same |
| * result, which is a logical and between bytes from page 0 and page 1 (which is |
| * consistent with the fact that writing to a page is _clearing_ bits of that |
| * page). |
| */ |
| static void doc_set_reliable_mode(struct docg3 *docg3) |
| { |
| static char *strmode[] = { "normal", "fast", "reliable", "invalid" }; |
| |
| doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]); |
| switch (docg3->reliable) { |
| case 0: |
| break; |
| case 1: |
| doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE); |
| doc_flash_command(docg3, DOC_CMD_FAST_MODE); |
| break; |
| case 2: |
| doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE); |
| doc_flash_command(docg3, DOC_CMD_FAST_MODE); |
| doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE); |
| break; |
| default: |
| doc_err("doc_set_reliable_mode(): invalid mode\n"); |
| break; |
| } |
| doc_delay(docg3, 2); |
| } |
| |
| /** |
| * doc_set_asic_mode - Set the ASIC mode |
| * @docg3: the device |
| * @mode: the mode |
| * |
| * The ASIC can work in 3 modes : |
| * - RESET: all registers are zeroed |
| * - NORMAL: receives and handles commands |
| * - POWERDOWN: minimal poweruse, flash parts shut off |
| */ |
| static void doc_set_asic_mode(struct docg3 *docg3, u8 mode) |
| { |
| int i; |
| |
| for (i = 0; i < 12; i++) |
| doc_readb(docg3, DOC_IOSPACE_IPL); |
| |
| mode |= DOC_ASICMODE_MDWREN; |
| doc_dbg("doc_set_asic_mode(%02x)\n", mode); |
| doc_writeb(docg3, mode, DOC_ASICMODE); |
| doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM); |
| doc_delay(docg3, 1); |
| } |
| |
| /** |
| * doc_set_device_id - Sets the devices id for cascaded G3 chips |
| * @docg3: the device |
| * @id: the chip to select (amongst 0, 1, 2, 3) |
| * |
| * There can be 4 cascaded G3 chips. This function selects the one which will |
| * should be the active one. |
| */ |
| static void doc_set_device_id(struct docg3 *docg3, int id) |
| { |
| u8 ctrl; |
| |
| doc_dbg("doc_set_device_id(%d)\n", id); |
| doc_writeb(docg3, id, DOC_DEVICESELECT); |
| ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); |
| |
| ctrl &= ~DOC_CTRL_VIOLATION; |
| ctrl |= DOC_CTRL_CE; |
| doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); |
| } |
| |
| /** |
| * doc_set_extra_page_mode - Change flash page layout |
| * @docg3: the device |
| * |
| * Normally, the flash page is split into the data (512 bytes) and the out of |
| * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear |
| * leveling counters are stored. To access this last area of 4 bytes, a special |
| * mode must be input to the flash ASIC. |
| * |
| * Returns 0 if no error occurred, -EIO else. |
| */ |
| static int doc_set_extra_page_mode(struct docg3 *docg3) |
| { |
| int fctrl; |
| |
| doc_dbg("doc_set_extra_page_mode()\n"); |
| doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532); |
| doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532); |
| doc_delay(docg3, 2); |
| |
| fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); |
| if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR)) |
| return -EIO; |
| else |
| return 0; |
| } |
| |
| /** |
| * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane |
| * @docg3: the device |
| * @sector: the sector |
| */ |
| static void doc_setup_addr_sector(struct docg3 *docg3, int sector) |
| { |
| doc_delay(docg3, 1); |
| doc_flash_address(docg3, sector & 0xff); |
| doc_flash_address(docg3, (sector >> 8) & 0xff); |
| doc_flash_address(docg3, (sector >> 16) & 0xff); |
| doc_delay(docg3, 1); |
| } |
| |
| /** |
| * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane |
| * @docg3: the device |
| * @sector: the sector |
| * @ofs: the offset in the page, between 0 and (512 + 16 + 512) |
| */ |
| static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs) |
| { |
| ofs = ofs >> 2; |
| doc_delay(docg3, 1); |
| doc_flash_address(docg3, ofs & 0xff); |
| doc_flash_address(docg3, sector & 0xff); |
| doc_flash_address(docg3, (sector >> 8) & 0xff); |
| doc_flash_address(docg3, (sector >> 16) & 0xff); |
| doc_delay(docg3, 1); |
| } |
| |
| /** |
| * doc_seek - Set both flash planes to the specified block, page for reading |
| * @docg3: the device |
| * @block0: the first plane block index |
| * @block1: the second plane block index |
| * @page: the page index within the block |
| * @wear: if true, read will occur on the 4 extra bytes of the wear area |
| * @ofs: offset in page to read |
| * |
| * Programs the flash even and odd planes to the specific block and page. |
| * Alternatively, programs the flash to the wear area of the specified page. |
| */ |
| static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page, |
| int wear, int ofs) |
| { |
| int sector, ret = 0; |
| |
| doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n", |
| block0, block1, page, ofs, wear); |
| |
| if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) { |
| doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); |
| doc_flash_command(docg3, DOC_CMD_READ_PLANE1); |
| doc_delay(docg3, 2); |
| } else { |
| doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); |
| doc_flash_command(docg3, DOC_CMD_READ_PLANE2); |
| doc_delay(docg3, 2); |
| } |
| |
| doc_set_reliable_mode(docg3); |
| if (wear) |
| ret = doc_set_extra_page_mode(docg3); |
| if (ret) |
| goto out; |
| |
| doc_flash_sequence(docg3, DOC_SEQ_READ); |
| sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); |
| doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); |
| doc_setup_addr_sector(docg3, sector); |
| |
| sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); |
| doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); |
| doc_setup_addr_sector(docg3, sector); |
| doc_delay(docg3, 1); |
| |
| out: |
| return ret; |
| } |
| |
| /** |
| * doc_write_seek - Set both flash planes to the specified block, page for writing |
| * @docg3: the device |
| * @block0: the first plane block index |
| * @block1: the second plane block index |
| * @page: the page index within the block |
| * @ofs: offset in page to write |
| * |
| * Programs the flash even and odd planes to the specific block and page. |
| * Alternatively, programs the flash to the wear area of the specified page. |
| */ |
| static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page, |
| int ofs) |
| { |
| int ret = 0, sector; |
| |
| doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n", |
| block0, block1, page, ofs); |
| |
| doc_set_reliable_mode(docg3); |
| |
| if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) { |
| doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); |
| doc_flash_command(docg3, DOC_CMD_READ_PLANE1); |
| doc_delay(docg3, 2); |
| } else { |
| doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); |
| doc_flash_command(docg3, DOC_CMD_READ_PLANE2); |
| doc_delay(docg3, 2); |
| } |
| |
| doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP); |
| doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); |
| |
| sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); |
| doc_setup_writeaddr_sector(docg3, sector, ofs); |
| |
| doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3); |
| doc_delay(docg3, 2); |
| ret = doc_wait_ready(docg3); |
| if (ret) |
| goto out; |
| |
| doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); |
| sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); |
| doc_setup_writeaddr_sector(docg3, sector, ofs); |
| doc_delay(docg3, 1); |
| |
| out: |
| return ret; |
| } |
| |
| |
| /** |
| * doc_read_page_ecc_init - Initialize hardware ECC engine |
| * @docg3: the device |
| * @len: the number of bytes covered by the ECC (BCH covered) |
| * |
| * The function does initialize the hardware ECC engine to compute the Hamming |
| * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). |
| * |
| * Return 0 if succeeded, -EIO on error |
| */ |
| static int doc_read_page_ecc_init(struct docg3 *docg3, int len) |
| { |
| doc_writew(docg3, DOC_ECCCONF0_READ_MODE |
| | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE |
| | (len & DOC_ECCCONF0_DATA_BYTES_MASK), |
| DOC_ECCCONF0); |
| doc_delay(docg3, 4); |
| doc_register_readb(docg3, DOC_FLASHCONTROL); |
| return doc_wait_ready(docg3); |
| } |
| |
| /** |
| * doc_write_page_ecc_init - Initialize hardware BCH ECC engine |
| * @docg3: the device |
| * @len: the number of bytes covered by the ECC (BCH covered) |
| * |
| * The function does initialize the hardware ECC engine to compute the Hamming |
| * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). |
| * |
| * Return 0 if succeeded, -EIO on error |
| */ |
| static int doc_write_page_ecc_init(struct docg3 *docg3, int len) |
| { |
| doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE |
| | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE |
| | (len & DOC_ECCCONF0_DATA_BYTES_MASK), |
| DOC_ECCCONF0); |
| doc_delay(docg3, 4); |
| doc_register_readb(docg3, DOC_FLASHCONTROL); |
| return doc_wait_ready(docg3); |
| } |
| |
| /** |
| * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator |
| * @docg3: the device |
| * |
| * Disables the hardware ECC generator and checker, for unchecked reads (as when |
| * reading OOB only or write status byte). |
| */ |
| static void doc_ecc_disable(struct docg3 *docg3) |
| { |
| doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0); |
| doc_delay(docg3, 4); |
| } |
| |
| /** |
| * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine |
| * @docg3: the device |
| * @nb_bytes: the number of bytes covered by the ECC (Hamming covered) |
| * |
| * This function programs the ECC hardware to compute the hamming code on the |
| * last provided N bytes to the hardware generator. |
| */ |
| static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes) |
| { |
| u8 ecc_conf1; |
| |
| ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1); |
| ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK; |
| ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK); |
| doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1); |
| } |
| |
| /** |
| * doc_ecc_bch_fix_data - Fix if need be read data from flash |
| * @docg3: the device |
| * @buf: the buffer of read data (512 + 7 + 1 bytes) |
| * @hwecc: the hardware calculated ECC. |
| * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB |
| * area data, and calc_ecc the ECC calculated by the hardware generator. |
| * |
| * Checks if the received data matches the ECC, and if an error is detected, |
| * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3 |
| * understands the (data, ecc, syndroms) in an inverted order in comparison to |
| * the BCH library, the function reverses the order of bits (ie. bit7 and bit0, |
| * bit6 and bit 1, ...) for all ECC data. |
| * |
| * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch |
| * algorithm is used to decode this. However the hw operates on page |
| * data in a bit order that is the reverse of that of the bch alg, |
| * requiring that the bits be reversed on the result. Thanks to Ivan |
| * Djelic for his analysis. |
| * |
| * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit |
| * errors were detected and cannot be fixed. |
| */ |
| static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc) |
| { |
| u8 ecc[DOC_ECC_BCH_SIZE]; |
| int errorpos[DOC_ECC_BCH_T], i, numerrs; |
| |
| for (i = 0; i < DOC_ECC_BCH_SIZE; i++) |
| ecc[i] = bitrev8(hwecc[i]); |
| numerrs = decode_bch(docg3->cascade->bch, NULL, |
| DOC_ECC_BCH_COVERED_BYTES, |
| NULL, ecc, NULL, errorpos); |
| BUG_ON(numerrs == -EINVAL); |
| if (numerrs < 0) |
| goto out; |
| |
| for (i = 0; i < numerrs; i++) |
| errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7)); |
| for (i = 0; i < numerrs; i++) |
| if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8) |
| /* error is located in data, correct it */ |
| change_bit(errorpos[i], buf); |
| out: |
| doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs); |
| return numerrs; |
| } |
| |
| |
| /** |
| * doc_read_page_prepare - Prepares reading data from a flash page |
| * @docg3: the device |
| * @block0: the first plane block index on flash memory |
| * @block1: the second plane block index on flash memory |
| * @page: the page index in the block |
| * @offset: the offset in the page (must be a multiple of 4) |
| * |
| * Prepares the page to be read in the flash memory : |
| * - tell ASIC to map the flash pages |
| * - tell ASIC to be in read mode |
| * |
| * After a call to this method, a call to doc_read_page_finish is mandatory, |
| * to end the read cycle of the flash. |
| * |
| * Read data from a flash page. The length to be read must be between 0 and |
| * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because |
| * the extra bytes reading is not implemented). |
| * |
| * As pages are grouped by 2 (in 2 planes), reading from a page must be done |
| * in two steps: |
| * - one read of 512 bytes at offset 0 |
| * - one read of 512 bytes at offset 512 + 16 |
| * |
| * Returns 0 if successful, -EIO if a read error occurred. |
| */ |
| static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1, |
| int page, int offset) |
| { |
| int wear_area = 0, ret = 0; |
| |
| doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n", |
| block0, block1, page, offset); |
| if (offset >= DOC_LAYOUT_WEAR_OFFSET) |
| wear_area = 1; |
| if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2)) |
| return -EINVAL; |
| |
| doc_set_device_id(docg3, docg3->device_id); |
| ret = doc_reset_seq(docg3); |
| if (ret) |
| goto err; |
| |
| /* Program the flash address block and page */ |
| ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset); |
| if (ret) |
| goto err; |
| |
| doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES); |
| doc_delay(docg3, 2); |
| doc_wait_ready(docg3); |
| |
| doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ); |
| doc_delay(docg3, 1); |
| if (offset >= DOC_LAYOUT_PAGE_SIZE * 2) |
| offset -= 2 * DOC_LAYOUT_PAGE_SIZE; |
| doc_flash_address(docg3, offset >> 2); |
| doc_delay(docg3, 1); |
| doc_wait_ready(docg3); |
| |
| doc_flash_command(docg3, DOC_CMD_READ_FLASH); |
| |
| return 0; |
| err: |
| doc_writeb(docg3, 0, DOC_DATAEND); |
| doc_delay(docg3, 2); |
| return -EIO; |
| } |
| |
| /** |
| * doc_read_page_getbytes - Reads bytes from a prepared page |
| * @docg3: the device |
| * @len: the number of bytes to be read (must be a multiple of 4) |
| * @buf: the buffer to be filled in (or NULL is forget bytes) |
| * @first: 1 if first time read, DOC_READADDRESS should be set |
| * @last_odd: 1 if last read ended up on an odd byte |
| * |
| * Reads bytes from a prepared page. There is a trickery here : if the last read |
| * ended up on an odd offset in the 1024 bytes double page, ie. between the 2 |
| * planes, the first byte must be read apart. If a word (16bit) read was used, |
| * the read would return the byte of plane 2 as low *and* high endian, which |
| * will mess the read. |
| * |
| */ |
| static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf, |
| int first, int last_odd) |
| { |
| if (last_odd && len > 0) { |
| doc_read_data_area(docg3, buf, 1, first); |
| doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0); |
| } else { |
| doc_read_data_area(docg3, buf, len, first); |
| } |
| doc_delay(docg3, 2); |
| return len; |
| } |
| |
| /** |
| * doc_write_page_putbytes - Writes bytes into a prepared page |
| * @docg3: the device |
| * @len: the number of bytes to be written |
| * @buf: the buffer of input bytes |
| * |
| */ |
| static void doc_write_page_putbytes(struct docg3 *docg3, int len, |
| const u_char *buf) |
| { |
| doc_write_data_area(docg3, buf, len); |
| doc_delay(docg3, 2); |
| } |
| |
| /** |
| * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC |
| * @docg3: the device |
| * @hwecc: the array of 7 integers where the hardware ecc will be stored |
| */ |
| static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc) |
| { |
| int i; |
| |
| for (i = 0; i < DOC_ECC_BCH_SIZE; i++) |
| hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i)); |
| } |
| |
| /** |
| * doc_page_finish - Ends reading/writing of a flash page |
| * @docg3: the device |
| */ |
| static void doc_page_finish(struct docg3 *docg3) |
| { |
| doc_writeb(docg3, 0, DOC_DATAEND); |
| doc_delay(docg3, 2); |
| } |
| |
| /** |
| * doc_read_page_finish - Ends reading of a flash page |
| * @docg3: the device |
| * |
| * As a side effect, resets the chip selector to 0. This ensures that after each |
| * read operation, the floor 0 is selected. Therefore, if the systems halts, the |
| * reboot will boot on floor 0, where the IPL is. |
| */ |
| static void doc_read_page_finish(struct docg3 *docg3) |
| { |
| doc_page_finish(docg3); |
| doc_set_device_id(docg3, 0); |
| } |
| |
| /** |
| * calc_block_sector - Calculate blocks, pages and ofs. |
| |
| * @from: offset in flash |
| * @block0: first plane block index calculated |
| * @block1: second plane block index calculated |
| * @page: page calculated |
| * @ofs: offset in page |
| * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in |
| * reliable mode. |
| * |
| * The calculation is based on the reliable/normal mode. In normal mode, the 64 |
| * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are |
| * clones, only 32 pages per block are available. |
| */ |
| static void calc_block_sector(loff_t from, int *block0, int *block1, int *page, |
| int *ofs, int reliable) |
| { |
| uint sector, pages_biblock; |
| |
| pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES; |
| if (reliable == 1 || reliable == 2) |
| pages_biblock /= 2; |
| |
| sector = from / DOC_LAYOUT_PAGE_SIZE; |
| *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES; |
| *block1 = *block0 + 1; |
| *page = sector % pages_biblock; |
| *page /= DOC_LAYOUT_NBPLANES; |
| if (reliable == 1 || reliable == 2) |
| *page *= 2; |
| if (sector % 2) |
| *ofs = DOC_LAYOUT_PAGE_OOB_SIZE; |
| else |
| *ofs = 0; |
| } |
| |
| /** |
| * doc_read_oob - Read out of band bytes from flash |
| * @mtd: the device |
| * @from: the offset from first block and first page, in bytes, aligned on page |
| * size |
| * @ops: the mtd oob structure |
| * |
| * Reads flash memory OOB area of pages. |
| * |
| * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred |
| */ |
| static int doc_read_oob(struct mtd_info *mtd, loff_t from, |
| struct mtd_oob_ops *ops) |
| { |
| struct docg3 *docg3 = mtd->priv; |
| int block0, block1, page, ret, skip, ofs = 0; |
| u8 *oobbuf = ops->oobbuf; |
| u8 *buf = ops->datbuf; |
| size_t len, ooblen, nbdata, nboob; |
| u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1; |
| int max_bitflips = 0; |
| |
| if (buf) |
| len = ops->len; |
| else |
| len = 0; |
| if (oobbuf) |
| ooblen = ops->ooblen; |
| else |
| ooblen = 0; |
| |
| if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) |
| oobbuf += ops->ooboffs; |
| |
| doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", |
| from, ops->mode, buf, len, oobbuf, ooblen); |
| if (ooblen % DOC_LAYOUT_OOB_SIZE) |
| return -EINVAL; |
| |
| if (from + len > mtd->size) |
| return -EINVAL; |
| |
| ops->oobretlen = 0; |
| ops->retlen = 0; |
| ret = 0; |
| skip = from % DOC_LAYOUT_PAGE_SIZE; |
| mutex_lock(&docg3->cascade->lock); |
| while (ret >= 0 && (len > 0 || ooblen > 0)) { |
| calc_block_sector(from - skip, &block0, &block1, &page, &ofs, |
| docg3->reliable); |
| nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip); |
| nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE); |
| ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); |
| if (ret < 0) |
| goto out; |
| ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); |
| if (ret < 0) |
| goto err_in_read; |
| ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0); |
| if (ret < skip) |
| goto err_in_read; |
| ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2); |
| if (ret < nbdata) |
| goto err_in_read; |
| doc_read_page_getbytes(docg3, |
| DOC_LAYOUT_PAGE_SIZE - nbdata - skip, |
| NULL, 0, (skip + nbdata) % 2); |
| ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0); |
| if (ret < nboob) |
| goto err_in_read; |
| doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob, |
| NULL, 0, nboob % 2); |
| |
| doc_get_bch_hw_ecc(docg3, hwecc); |
| eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); |
| |
| if (nboob >= DOC_LAYOUT_OOB_SIZE) { |
| doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf); |
| doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); |
| doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8); |
| doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); |
| } |
| doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); |
| doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc); |
| |
| ret = -EIO; |
| if (is_prot_seq_error(docg3)) |
| goto err_in_read; |
| ret = 0; |
| if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) && |
| (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) && |
| (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) && |
| (ops->mode != MTD_OPS_RAW) && |
| (nbdata == DOC_LAYOUT_PAGE_SIZE)) { |
| ret = doc_ecc_bch_fix_data(docg3, buf, hwecc); |
| if (ret < 0) { |
| mtd->ecc_stats.failed++; |
| ret = -EBADMSG; |
| } |
| if (ret > 0) { |
| mtd->ecc_stats.corrected += ret; |
| max_bitflips = max(max_bitflips, ret); |
| ret = max_bitflips; |
| } |
| } |
| |
| doc_read_page_finish(docg3); |
| ops->retlen += nbdata; |
| ops->oobretlen += nboob; |
| buf += nbdata; |
| oobbuf += nboob; |
| len -= nbdata; |
| ooblen -= nboob; |
| from += DOC_LAYOUT_PAGE_SIZE; |
| skip = 0; |
| } |
| |
| out: |
| mutex_unlock(&docg3->cascade->lock); |
| return ret; |
| err_in_read: |
| doc_read_page_finish(docg3); |
| goto out; |
| } |
| |
| /** |
| * doc_read - Read bytes from flash |
| * @mtd: the device |
| * @from: the offset from first block and first page, in bytes, aligned on page |
| * size |
| * @len: the number of bytes to read (must be a multiple of 4) |
| * @retlen: the number of bytes actually read |
| * @buf: the filled in buffer |
| * |
| * Reads flash memory pages. This function does not read the OOB chunk, but only |
| * the page data. |
| * |
| * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred |
| */ |
| static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct mtd_oob_ops ops; |
| size_t ret; |
| |
| memset(&ops, 0, sizeof(ops)); |
| ops.datbuf = buf; |
| ops.len = len; |
| ops.mode = MTD_OPS_AUTO_OOB; |
| |
| ret = doc_read_oob(mtd, from, &ops); |
| *retlen = ops.retlen; |
| return ret; |
| } |
| |
| static int doc_reload_bbt(struct docg3 *docg3) |
| { |
| int block = DOC_LAYOUT_BLOCK_BBT; |
| int ret = 0, nbpages, page; |
| u_char *buf = docg3->bbt; |
| |
| nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE); |
| for (page = 0; !ret && (page < nbpages); page++) { |
| ret = doc_read_page_prepare(docg3, block, block + 1, |
| page + DOC_LAYOUT_PAGE_BBT, 0); |
| if (!ret) |
| ret = doc_read_page_ecc_init(docg3, |
| DOC_LAYOUT_PAGE_SIZE); |
| if (!ret) |
| doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE, |
| buf, 1, 0); |
| buf += DOC_LAYOUT_PAGE_SIZE; |
| } |
| doc_read_page_finish(docg3); |
| return ret; |
| } |
| |
| /** |
| * doc_block_isbad - Checks whether a block is good or not |
| * @mtd: the device |
| * @from: the offset to find the correct block |
| * |
| * Returns 1 if block is bad, 0 if block is good |
| */ |
| static int doc_block_isbad(struct mtd_info *mtd, loff_t from) |
| { |
| struct docg3 *docg3 = mtd->priv; |
| int block0, block1, page, ofs, is_good; |
| |
| calc_block_sector(from, &block0, &block1, &page, &ofs, |
| docg3->reliable); |
| doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n", |
| from, block0, block1, page, ofs); |
| |
| if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA) |
| return 0; |
| if (block1 > docg3->max_block) |
| return -EINVAL; |
| |
| is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7)); |
| return !is_good; |
| } |
| |
| #if 0 |
| /** |
| * doc_get_erase_count - Get block erase count |
| * @docg3: the device |
| * @from: the offset in which the block is. |
| * |
| * Get the number of times a block was erased. The number is the maximum of |
| * erase times between first and second plane (which should be equal normally). |
| * |
| * Returns The number of erases, or -EINVAL or -EIO on error. |
| */ |
| static int doc_get_erase_count(struct docg3 *docg3, loff_t from) |
| { |
| u8 buf[DOC_LAYOUT_WEAR_SIZE]; |
| int ret, plane1_erase_count, plane2_erase_count; |
| int block0, block1, page, ofs; |
| |
| doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf); |
| if (from % DOC_LAYOUT_PAGE_SIZE) |
| return -EINVAL; |
| calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable); |
| if (block1 > docg3->max_block) |
| return -EINVAL; |
| |
| ret = doc_reset_seq(docg3); |
| if (!ret) |
| ret = doc_read_page_prepare(docg3, block0, block1, page, |
| ofs + DOC_LAYOUT_WEAR_OFFSET, 0); |
| if (!ret) |
| ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE, |
| buf, 1, 0); |
| doc_read_page_finish(docg3); |
| |
| if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK)) |
| return -EIO; |
| plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8) |
| | ((u8)(~buf[5]) << 16); |
| plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8) |
| | ((u8)(~buf[7]) << 16); |
| |
| return max(plane1_erase_count, plane2_erase_count); |
| } |
| #endif |
| |
| /** |
| * doc_get_op_status - get erase/write operation status |
| * @docg3: the device |
| * |
| * Queries the status from the chip, and returns it |
| * |
| * Returns the status (bits DOC_PLANES_STATUS_*) |
| */ |
| static int doc_get_op_status(struct docg3 *docg3) |
| { |
| u8 status; |
| |
| doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS); |
| doc_flash_command(docg3, DOC_CMD_PLANES_STATUS); |
| doc_delay(docg3, 5); |
| |
| doc_ecc_disable(docg3); |
| doc_read_data_area(docg3, &status, 1, 1); |
| return status; |
| } |
| |
| /** |
| * doc_write_erase_wait_status - wait for write or erase completion |
| * @docg3: the device |
| * |
| * Wait for the chip to be ready again after erase or write operation, and check |
| * erase/write status. |
| * |
| * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if |
| * timeout |
| */ |
| static int doc_write_erase_wait_status(struct docg3 *docg3) |
| { |
| int i, status, ret = 0; |
| |
| for (i = 0; !doc_is_ready(docg3) && i < 5; i++) |
| msleep(20); |
| if (!doc_is_ready(docg3)) { |
| doc_dbg("Timeout reached and the chip is still not ready\n"); |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| status = doc_get_op_status(docg3); |
| if (status & DOC_PLANES_STATUS_FAIL) { |
| doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n", |
| status); |
| ret = -EIO; |
| } |
| |
| out: |
| doc_page_finish(docg3); |
| return ret; |
| } |
| |
| /** |
| * doc_erase_block - Erase a couple of blocks |
| * @docg3: the device |
| * @block0: the first block to erase (leftmost plane) |
| * @block1: the second block to erase (rightmost plane) |
| * |
| * Erase both blocks, and return operation status |
| * |
| * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not |
| * ready for too long |
| */ |
| static int doc_erase_block(struct docg3 *docg3, int block0, int block1) |
| { |
| int ret, sector; |
| |
| doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1); |
| ret = doc_reset_seq(docg3); |
| if (ret) |
| return -EIO; |
| |
| doc_set_reliable_mode(docg3); |
| doc_flash_sequence(docg3, DOC_SEQ_ERASE); |
| |
| sector = block0 << DOC_ADDR_BLOCK_SHIFT; |
| doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); |
| doc_setup_addr_sector(docg3, sector); |
| sector = block1 << DOC_ADDR_BLOCK_SHIFT; |
| doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); |
| doc_setup_addr_sector(docg3, sector); |
| doc_delay(docg3, 1); |
| |
| doc_flash_command(docg3, DOC_CMD_ERASECYCLE2); |
| doc_delay(docg3, 2); |
| |
| if (is_prot_seq_error(docg3)) { |
| doc_err("Erase blocks %d,%d error\n", block0, block1); |
| return -EIO; |
| } |
| |
| return doc_write_erase_wait_status(docg3); |
| } |
| |
| /** |
| * doc_erase - Erase a portion of the chip |
| * @mtd: the device |
| * @info: the erase info |
| * |
| * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is |
| * split into 2 pages of 512 bytes on 2 contiguous blocks. |
| * |
| * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase |
| * issue |
| */ |
| static int doc_erase(struct mtd_info *mtd, struct erase_info *info) |
| { |
| struct docg3 *docg3 = mtd->priv; |
| uint64_t len; |
| int block0, block1, page, ret, ofs = 0; |
| |
| doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len); |
| |
| info->state = MTD_ERASE_PENDING; |
| calc_block_sector(info->addr + info->len, &block0, &block1, &page, |
| &ofs, docg3->reliable); |
| ret = -EINVAL; |
| if (info->addr + info->len > mtd->size || page || ofs) |
| goto reset_err; |
| |
| ret = 0; |
| calc_block_sector(info->addr, &block0, &block1, &page, &ofs, |
| docg3->reliable); |
| mutex_lock(&docg3->cascade->lock); |
| doc_set_device_id(docg3, docg3->device_id); |
| doc_set_reliable_mode(docg3); |
| for (len = info->len; !ret && len > 0; len -= mtd->erasesize) { |
| info->state = MTD_ERASING; |
| ret = doc_erase_block(docg3, block0, block1); |
| block0 += 2; |
| block1 += 2; |
| } |
| mutex_unlock(&docg3->cascade->lock); |
| |
| if (ret) |
| goto reset_err; |
| |
| info->state = MTD_ERASE_DONE; |
| return 0; |
| |
| reset_err: |
| info->state = MTD_ERASE_FAILED; |
| return ret; |
| } |
| |
| /** |
| * doc_write_page - Write a single page to the chip |
| * @docg3: the device |
| * @to: the offset from first block and first page, in bytes, aligned on page |
| * size |
| * @buf: buffer to get bytes from |
| * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be |
| * written) |
| * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or |
| * BCH computations. If 1, only bytes 0-7 and byte 15 are taken, |
| * remaining ones are filled with hardware Hamming and BCH |
| * computations. Its value is not meaningfull is oob == NULL. |
| * |
| * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the |
| * OOB data. The OOB ECC is automatically computed by the hardware Hamming and |
| * BCH generator if autoecc is not null. |
| * |
| * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout |
| */ |
| static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf, |
| const u_char *oob, int autoecc) |
| { |
| int block0, block1, page, ret, ofs = 0; |
| u8 hwecc[DOC_ECC_BCH_SIZE], hamming; |
| |
| doc_dbg("doc_write_page(to=%lld)\n", to); |
| calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable); |
| |
| doc_set_device_id(docg3, docg3->device_id); |
| ret = doc_reset_seq(docg3); |
| if (ret) |
| goto err; |
| |
| /* Program the flash address block and page */ |
| ret = doc_write_seek(docg3, block0, block1, page, ofs); |
| if (ret) |
| goto err; |
| |
| doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); |
| doc_delay(docg3, 2); |
| doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf); |
| |
| if (oob && autoecc) { |
| doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob); |
| doc_delay(docg3, 2); |
| oob += DOC_LAYOUT_OOB_UNUSED_OFS; |
| |
| hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY); |
| doc_delay(docg3, 2); |
| doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ, |
| &hamming); |
| doc_delay(docg3, 2); |
| |
| doc_get_bch_hw_ecc(docg3, hwecc); |
| doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc); |
| doc_delay(docg3, 2); |
| |
| doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob); |
| } |
| if (oob && !autoecc) |
| doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob); |
| |
| doc_delay(docg3, 2); |
| doc_page_finish(docg3); |
| doc_delay(docg3, 2); |
| doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2); |
| doc_delay(docg3, 2); |
| |
| /* |
| * The wait status will perform another doc_page_finish() call, but that |
| * seems to please the docg3, so leave it. |
| */ |
| ret = doc_write_erase_wait_status(docg3); |
| return ret; |
| err: |
| doc_read_page_finish(docg3); |
| return ret; |
| } |
| |
| /** |
| * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops |
| * @ops: the oob operations |
| * |
| * Returns 0 or 1 if success, -EINVAL if invalid oob mode |
| */ |
| static int doc_guess_autoecc(struct mtd_oob_ops *ops) |
| { |
| int autoecc; |
| |
| switch (ops->mode) { |
| case MTD_OPS_PLACE_OOB: |
| case MTD_OPS_AUTO_OOB: |
| autoecc = 1; |
| break; |
| case MTD_OPS_RAW: |
| autoecc = 0; |
| break; |
| default: |
| autoecc = -EINVAL; |
| } |
| return autoecc; |
| } |
| |
| /** |
| * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes |
| * @dst: the target 16 bytes OOB buffer |
| * @oobsrc: the source 8 bytes non-ECC OOB buffer |
| * |
| */ |
| static void doc_fill_autooob(u8 *dst, u8 *oobsrc) |
| { |
| memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ); |
| dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ]; |
| } |
| |
| /** |
| * doc_backup_oob - Backup OOB into docg3 structure |
| * @docg3: the device |
| * @to: the page offset in the chip |
| * @ops: the OOB size and buffer |
| * |
| * As the docg3 should write a page with its OOB in one pass, and some userland |
| * applications do write_oob() to setup the OOB and then write(), store the OOB |
| * into a temporary storage. This is very dangerous, as 2 concurrent |
| * applications could store an OOB, and then write their pages (which will |
| * result into one having its OOB corrupted). |
| * |
| * The only reliable way would be for userland to call doc_write_oob() with both |
| * the page data _and_ the OOB area. |
| * |
| * Returns 0 if success, -EINVAL if ops content invalid |
| */ |
| static int doc_backup_oob(struct docg3 *docg3, loff_t to, |
| struct mtd_oob_ops *ops) |
| { |
| int ooblen = ops->ooblen, autoecc; |
| |
| if (ooblen != DOC_LAYOUT_OOB_SIZE) |
| return -EINVAL; |
| autoecc = doc_guess_autoecc(ops); |
| if (autoecc < 0) |
| return autoecc; |
| |
| docg3->oob_write_ofs = to; |
| docg3->oob_autoecc = autoecc; |
| if (ops->mode == MTD_OPS_AUTO_OOB) { |
| doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf); |
| ops->oobretlen = 8; |
| } else { |
| memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE); |
| ops->oobretlen = DOC_LAYOUT_OOB_SIZE; |
| } |
| return 0; |
| } |
| |
| /** |
| * doc_write_oob - Write out of band bytes to flash |
| * @mtd: the device |
| * @ofs: the offset from first block and first page, in bytes, aligned on page |
| * size |
| * @ops: the mtd oob structure |
| * |
| * Either write OOB data into a temporary buffer, for the subsequent write |
| * page. The provided OOB should be 16 bytes long. If a data buffer is provided |
| * as well, issue the page write. |
| * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will |
| * still be filled in if asked for). |
| * |
| * Returns 0 is successful, EINVAL if length is not 14 bytes |
| */ |
| static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, |
| struct mtd_oob_ops *ops) |
| { |
| struct docg3 *docg3 = mtd->priv; |
| int ret, autoecc, oobdelta; |
| u8 *oobbuf = ops->oobbuf; |
| u8 *buf = ops->datbuf; |
| size_t len, ooblen; |
| u8 oob[DOC_LAYOUT_OOB_SIZE]; |
| |
| if (buf) |
| len = ops->len; |
| else |
| len = 0; |
| if (oobbuf) |
| ooblen = ops->ooblen; |
| else |
| ooblen = 0; |
| |
| if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) |
| oobbuf += ops->ooboffs; |
| |
| doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", |
| ofs, ops->mode, buf, len, oobbuf, ooblen); |
| switch (ops->mode) { |
| case MTD_OPS_PLACE_OOB: |
| case MTD_OPS_RAW: |
| oobdelta = mtd->oobsize; |
| break; |
| case MTD_OPS_AUTO_OOB: |
| oobdelta = mtd->ecclayout->oobavail; |
| break; |
| default: |
| return -EINVAL; |
| } |
| if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) || |
| (ofs % DOC_LAYOUT_PAGE_SIZE)) |
| return -EINVAL; |
| if (len && ooblen && |
| (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta)) |
| return -EINVAL; |
| if (ofs + len > mtd->size) |
| return -EINVAL; |
| |
| ops->oobretlen = 0; |
| ops->retlen = 0; |
| ret = 0; |
| if (len == 0 && ooblen == 0) |
| return -EINVAL; |
| if (len == 0 && ooblen > 0) |
| return doc_backup_oob(docg3, ofs, ops); |
| |
| autoecc = doc_guess_autoecc(ops); |
| if (autoecc < 0) |
| return autoecc; |
| |
| mutex_lock(&docg3->cascade->lock); |
| while (!ret && len > 0) { |
| memset(oob, 0, sizeof(oob)); |
| if (ofs == docg3->oob_write_ofs) |
| memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE); |
| else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB) |
| doc_fill_autooob(oob, oobbuf); |
| else if (ooblen > 0) |
| memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE); |
| ret = doc_write_page(docg3, ofs, buf, oob, autoecc); |
| |
| ofs += DOC_LAYOUT_PAGE_SIZE; |
| len -= DOC_LAYOUT_PAGE_SIZE; |
| buf += DOC_LAYOUT_PAGE_SIZE; |
| if (ooblen) { |
| oobbuf += oobdelta; |
| ooblen -= oobdelta; |
| ops->oobretlen += oobdelta; |
| } |
| ops->retlen += DOC_LAYOUT_PAGE_SIZE; |
| } |
| |
| doc_set_device_id(docg3, 0); |
| mutex_unlock(&docg3->cascade->lock); |
| return ret; |
| } |
| |
| /** |
| * doc_write - Write a buffer to the chip |
| * @mtd: the device |
| * @to: the offset from first block and first page, in bytes, aligned on page |
| * size |
| * @len: the number of bytes to write (must be a full page size, ie. 512) |
| * @retlen: the number of bytes actually written (0 or 512) |
| * @buf: the buffer to get bytes from |
| * |
| * Writes data to the chip. |
| * |
| * Returns 0 if write successful, -EIO if write error |
| */ |
| static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct docg3 *docg3 = mtd->priv; |
| int ret; |
| struct mtd_oob_ops ops; |
| |
| doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len); |
| ops.datbuf = (char *)buf; |
| ops.len = len; |
| ops.mode = MTD_OPS_PLACE_OOB; |
| ops.oobbuf = NULL; |
| ops.ooblen = 0; |
| ops.ooboffs = 0; |
| |
| ret = doc_write_oob(mtd, to, &ops); |
| *retlen = ops.retlen; |
| return ret; |
| } |
| |
| static struct docg3 *sysfs_dev2docg3(struct device *dev, |
| struct device_attribute *attr) |
| { |
| int floor; |
| struct platform_device *pdev = to_platform_device(dev); |
| struct mtd_info **docg3_floors = platform_get_drvdata(pdev); |
| |
| floor = attr->attr.name[1] - '0'; |
| if (floor < 0 || floor >= DOC_MAX_NBFLOORS) |
| return NULL; |
| else |
| return docg3_floors[floor]->priv; |
| } |
| |
| static ssize_t dps0_is_key_locked(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); |
| int dps0; |
| |
| mutex_lock(&docg3->cascade->lock); |
| doc_set_device_id(docg3, docg3->device_id); |
| dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); |
| doc_set_device_id(docg3, 0); |
| mutex_unlock(&docg3->cascade->lock); |
| |
| return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK)); |
| } |
| |
| static ssize_t dps1_is_key_locked(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); |
| int dps1; |
| |
| mutex_lock(&docg3->cascade->lock); |
| doc_set_device_id(docg3, docg3->device_id); |
| dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); |
| doc_set_device_id(docg3, 0); |
| mutex_unlock(&docg3->cascade->lock); |
| |
| return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK)); |
| } |
| |
| static ssize_t dps0_insert_key(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); |
| int i; |
| |
| if (count != DOC_LAYOUT_DPS_KEY_LENGTH) |
| return -EINVAL; |
| |
| mutex_lock(&docg3->cascade->lock); |
| doc_set_device_id(docg3, docg3->device_id); |
| for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) |
| doc_writeb(docg3, buf[i], DOC_DPS0_KEY); |
| doc_set_device_id(docg3, 0); |
| mutex_unlock(&docg3->cascade->lock); |
| return count; |
| } |
| |
| static ssize_t dps1_insert_key(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); |
| int i; |
| |
| if (count != DOC_LAYOUT_DPS_KEY_LENGTH) |
| return -EINVAL; |
| |
| mutex_lock(&docg3->cascade->lock); |
| doc_set_device_id(docg3, docg3->device_id); |
| for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) |
| doc_writeb(docg3, buf[i], DOC_DPS1_KEY); |
| doc_set_device_id(docg3, 0); |
| mutex_unlock(&docg3->cascade->lock); |
| return count; |
| } |
| |
| #define FLOOR_SYSFS(id) { \ |
| __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \ |
| __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \ |
| __ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \ |
| __ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \ |
| } |
| |
| static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = { |
| FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3) |
| }; |
| |
| static int doc_register_sysfs(struct platform_device *pdev, |
| struct docg3_cascade *cascade) |
| { |
| int ret = 0, floor, i = 0; |
| struct device *dev = &pdev->dev; |
| |
| for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS && |
| cascade->floors[floor]; floor++) |
| for (i = 0; !ret && i < 4; i++) |
| ret = device_create_file(dev, &doc_sys_attrs[floor][i]); |
| if (!ret) |
| return 0; |
| do { |
| while (--i >= 0) |
| device_remove_file(dev, &doc_sys_attrs[floor][i]); |
| i = 4; |
| } while (--floor >= 0); |
| return ret; |
| } |
| |
| static void doc_unregister_sysfs(struct platform_device *pdev, |
| struct docg3_cascade *cascade) |
| { |
| struct device *dev = &pdev->dev; |
| int floor, i; |
| |
| for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; |
| floor++) |
| for (i = 0; i < 4; i++) |
| device_remove_file(dev, &doc_sys_attrs[floor][i]); |
| } |
| |
| /* |
| * Debug sysfs entries |
| */ |
| static int dbg_flashctrl_show(struct seq_file *s, void *p) |
| { |
| struct docg3 *docg3 = (struct docg3 *)s->private; |
| |
| int pos = 0; |
| u8 fctrl; |
| |
| mutex_lock(&docg3->cascade->lock); |
| fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); |
| mutex_unlock(&docg3->cascade->lock); |
| |
| pos += seq_printf(s, |
| "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", |
| fctrl, |
| fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-", |
| fctrl & DOC_CTRL_CE ? "active" : "inactive", |
| fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-", |
| fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-", |
| fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready"); |
| return pos; |
| } |
| DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show); |
| |
| static int dbg_asicmode_show(struct seq_file *s, void *p) |
| { |
| struct docg3 *docg3 = (struct docg3 *)s->private; |
| |
| int pos = 0, pctrl, mode; |
| |
| mutex_lock(&docg3->cascade->lock); |
| pctrl = doc_register_readb(docg3, DOC_ASICMODE); |
| mode = pctrl & 0x03; |
| mutex_unlock(&docg3->cascade->lock); |
| |
| pos += seq_printf(s, |
| "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", |
| pctrl, |
| pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0, |
| pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0, |
| pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0, |
| pctrl & DOC_ASICMODE_MDWREN ? 1 : 0, |
| pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0, |
| mode >> 1, mode & 0x1); |
| |
| switch (mode) { |
| case DOC_ASICMODE_RESET: |
| pos += seq_printf(s, "reset"); |
| break; |
| case DOC_ASICMODE_NORMAL: |
| pos += seq_printf(s, "normal"); |
| break; |
| case DOC_ASICMODE_POWERDOWN: |
| pos += seq_printf(s, "powerdown"); |
| break; |
| } |
| pos += seq_printf(s, ")\n"); |
| return pos; |
| } |
| DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show); |
| |
| static int dbg_device_id_show(struct seq_file *s, void *p) |
| { |
| struct docg3 *docg3 = (struct docg3 *)s->private; |
| int pos = 0; |
| int id; |
| |
| mutex_lock(&docg3->cascade->lock); |
| id = doc_register_readb(docg3, DOC_DEVICESELECT); |
| mutex_unlock(&docg3->cascade->lock); |
| |
| pos += seq_printf(s, "DeviceId = %d\n", id); |
| return pos; |
| } |
| DEBUGFS_RO_ATTR(device_id, dbg_device_id_show); |
| |
| static int dbg_protection_show(struct seq_file *s, void *p) |
| { |
| struct docg3 *docg3 = (struct docg3 *)s->private; |
| int pos = 0; |
| int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high; |
| |
| mutex_lock(&docg3->cascade->lock); |
| protect = doc_register_readb(docg3, DOC_PROTECTION); |
| dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); |
| dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW); |
| dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH); |
| dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); |
| dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW); |
| dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH); |
| mutex_unlock(&docg3->cascade->lock); |
| |
| pos += seq_printf(s, "Protection = 0x%02x (", |
| protect); |
| if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK) |
| pos += seq_printf(s, "FOUNDRY_OTP_LOCK,"); |
| if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK) |
| pos += seq_printf(s, "CUSTOMER_OTP_LOCK,"); |
| if (protect & DOC_PROTECT_LOCK_INPUT) |
| pos += seq_printf(s, "LOCK_INPUT,"); |
| if (protect & DOC_PROTECT_STICKY_LOCK) |
| pos += seq_printf(s, "STICKY_LOCK,"); |
| if (protect & DOC_PROTECT_PROTECTION_ENABLED) |
| pos += seq_printf(s, "PROTECTION ON,"); |
| if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK) |
| pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,"); |
| if (protect & DOC_PROTECT_PROTECTION_ERROR) |
| pos += seq_printf(s, "PROTECT_ERR,"); |
| else |
| pos += seq_printf(s, "NO_PROTECT_ERR"); |
| pos += seq_printf(s, ")\n"); |
| |
| pos += seq_printf(s, "DPS0 = 0x%02x : " |
| "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, " |
| "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", |
| dps0, dps0_low, dps0_high, |
| !!(dps0 & DOC_DPS_OTP_PROTECTED), |
| !!(dps0 & DOC_DPS_READ_PROTECTED), |
| !!(dps0 & DOC_DPS_WRITE_PROTECTED), |
| !!(dps0 & DOC_DPS_HW_LOCK_ENABLED), |
| !!(dps0 & DOC_DPS_KEY_OK)); |
| pos += seq_printf(s, "DPS1 = 0x%02x : " |
| "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, " |
| "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", |
| dps1, dps1_low, dps1_high, |
| !!(dps1 & DOC_DPS_OTP_PROTECTED), |
| !!(dps1 & DOC_DPS_READ_PROTECTED), |
| !!(dps1 & DOC_DPS_WRITE_PROTECTED), |
| !!(dps1 & DOC_DPS_HW_LOCK_ENABLED), |
| !!(dps1 & DOC_DPS_KEY_OK)); |
| return pos; |
| } |
| DEBUGFS_RO_ATTR(protection, dbg_protection_show); |
| |
| static int __init doc_dbg_register(struct docg3 *docg3) |
| { |
| struct dentry *root, *entry; |
| |
| root = debugfs_create_dir("docg3", NULL); |
| if (!root) |
| return -ENOMEM; |
| |
| entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3, |
| &flashcontrol_fops); |
| if (entry) |
| entry = debugfs_create_file("asic_mode", S_IRUSR, root, |
| docg3, &asic_mode_fops); |
| if (entry) |
| entry = debugfs_create_file("device_id", S_IRUSR, root, |
| docg3, &device_id_fops); |
| if (entry) |
| entry = debugfs_create_file("protection", S_IRUSR, root, |
| docg3, &protection_fops); |
| if (entry) { |
| docg3->debugfs_root = root; |
| return 0; |
| } else { |
| debugfs_remove_recursive(root); |
| return -ENOMEM; |
| } |
| } |
| |
| static void __exit doc_dbg_unregister(struct docg3 *docg3) |
| { |
| debugfs_remove_recursive(docg3->debugfs_root); |
| } |
| |
| /** |
| * doc_set_driver_info - Fill the mtd_info structure and docg3 structure |
| * @chip_id: The chip ID of the supported chip |
| * @mtd: The structure to fill |
| */ |
| static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd) |
| { |
| struct docg3 *docg3 = mtd->priv; |
| int cfg; |
| |
| cfg = doc_register_readb(docg3, DOC_CONFIGURATION); |
| docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0); |
| docg3->reliable = reliable_mode; |
| |
| switch (chip_id) { |
| case DOC_CHIPID_G3: |
| mtd->name = kasprintf(GFP_KERNEL, "docg3.%d", |
| docg3->device_id); |
| docg3->max_block = 2047; |
| break; |
| } |
| mtd->type = MTD_NANDFLASH; |
| mtd->flags = MTD_CAP_NANDFLASH; |
| mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE; |
| if (docg3->reliable == 2) |
| mtd->size /= 2; |
| mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES; |
| if (docg3->reliable == 2) |
| mtd->erasesize /= 2; |
| mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE; |
| mtd->oobsize = DOC_LAYOUT_OOB_SIZE; |
| mtd->owner = THIS_MODULE; |
| mtd->_erase = doc_erase; |
| mtd->_read = doc_read; |
| mtd->_write = doc_write; |
| mtd->_read_oob = doc_read_oob; |
| mtd->_write_oob = doc_write_oob; |
| mtd->_block_isbad = doc_block_isbad; |
| mtd->ecclayout = &docg3_oobinfo; |
| mtd->ecc_strength = DOC_ECC_BCH_T; |
| } |
| |
| /** |
| * doc_probe_device - Check if a device is available |
| * @base: the io space where the device is probed |
| * @floor: the floor of the probed device |
| * @dev: the device |
| * @cascade: the cascade of chips this devices will belong to |
| * |
| * Checks whether a device at the specified IO range, and floor is available. |
| * |
| * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM |
| * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is |
| * launched. |
| */ |
| static struct mtd_info * __init |
| doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev) |
| { |
| int ret, bbt_nbpages; |
| u16 chip_id, chip_id_inv; |
| struct docg3 *docg3; |
| struct mtd_info *mtd; |
| |
| ret = -ENOMEM; |
| docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL); |
| if (!docg3) |
| goto nomem1; |
| mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); |
| if (!mtd) |
| goto nomem2; |
| mtd->priv = docg3; |
| bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1, |
| 8 * DOC_LAYOUT_PAGE_SIZE); |
| docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL); |
| if (!docg3->bbt) |
| goto nomem3; |
| |
| docg3->dev = dev; |
| docg3->device_id = floor; |
| docg3->cascade = cascade; |
| doc_set_device_id(docg3, docg3->device_id); |
| if (!floor) |
| doc_set_asic_mode(docg3, DOC_ASICMODE_RESET); |
| doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL); |
| |
| chip_id = doc_register_readw(docg3, DOC_CHIPID); |
| chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV); |
| |
| ret = 0; |
| if (chip_id != (u16)(~chip_id_inv)) { |
| goto nomem3; |
| } |
| |
| switch (chip_id) { |
| case DOC_CHIPID_G3: |
| doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n", |
| docg3->cascade->base, floor); |
| break; |
| default: |
| doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id); |
| goto nomem3; |
| } |
| |
| doc_set_driver_info(chip_id, mtd); |
| |
| doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ); |
| doc_reload_bbt(docg3); |
| return mtd; |
| |
| nomem3: |
| kfree(mtd); |
| nomem2: |
| kfree(docg3); |
| nomem1: |
| return ERR_PTR(ret); |
| } |
| |
| /** |
| * doc_release_device - Release a docg3 floor |
| * @mtd: the device |
| */ |
| static void doc_release_device(struct mtd_info *mtd) |
| { |
| struct docg3 *docg3 = mtd->priv; |
| |
| mtd_device_unregister(mtd); |
| kfree(docg3->bbt); |
| kfree(docg3); |
| kfree(mtd->name); |
| kfree(mtd); |
| } |
| |
| /** |
| * docg3_resume - Awakens docg3 floor |
| * @pdev: platfrom device |
| * |
| * Returns 0 (always successful) |
| */ |
| static int docg3_resume(struct platform_device *pdev) |
| { |
| int i; |
| struct docg3_cascade *cascade; |
| struct mtd_info **docg3_floors, *mtd; |
| struct docg3 *docg3; |
| |
| cascade = platform_get_drvdata(pdev); |
| docg3_floors = cascade->floors; |
| mtd = docg3_floors[0]; |
| docg3 = mtd->priv; |
| |
| doc_dbg("docg3_resume()\n"); |
| for (i = 0; i < 12; i++) |
| doc_readb(docg3, DOC_IOSPACE_IPL); |
| return 0; |
| } |
| |
| /** |
| * docg3_suspend - Put in low power mode the docg3 floor |
| * @pdev: platform device |
| * @state: power state |
| * |
| * Shuts off most of docg3 circuitery to lower power consumption. |
| * |
| * Returns 0 if suspend succeeded, -EIO if chip refused suspend |
| */ |
| static int docg3_suspend(struct platform_device *pdev, pm_message_t state) |
| { |
| int floor, i; |
| struct docg3_cascade *cascade; |
| struct mtd_info **docg3_floors, *mtd; |
| struct docg3 *docg3; |
| u8 ctrl, pwr_down; |
| |
| cascade = platform_get_drvdata(pdev); |
| docg3_floors = cascade->floors; |
| for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { |
| mtd = docg3_floors[floor]; |
| if (!mtd) |
| continue; |
| docg3 = mtd->priv; |
| |
| doc_writeb(docg3, floor, DOC_DEVICESELECT); |
| ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); |
| ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE; |
| doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); |
| |
| for (i = 0; i < 10; i++) { |
| usleep_range(3000, 4000); |
| pwr_down = doc_register_readb(docg3, DOC_POWERMODE); |
| if (pwr_down & DOC_POWERDOWN_READY) |
| break; |
| } |
| if (pwr_down & DOC_POWERDOWN_READY) { |
| doc_dbg("docg3_suspend(): floor %d powerdown ok\n", |
| floor); |
| } else { |
| doc_err("docg3_suspend(): floor %d powerdown failed\n", |
| floor); |
| return -EIO; |
| } |
| } |
| |
| mtd = docg3_floors[0]; |
| docg3 = mtd->priv; |
| doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN); |
| return 0; |
| } |
| |
| /** |
| * doc_probe - Probe the IO space for a DiskOnChip G3 chip |
| * @pdev: platform device |
| * |
| * Probes for a G3 chip at the specified IO space in the platform data |
| * ressources. The floor 0 must be available. |
| * |
| * Returns 0 on success, -ENOMEM, -ENXIO on error |
| */ |
| static int __init docg3_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct mtd_info *mtd; |
| struct resource *ress; |
| void __iomem *base; |
| int ret, floor, found = 0; |
| struct docg3_cascade *cascade; |
| |
| ret = -ENXIO; |
| ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!ress) { |
| dev_err(dev, "No I/O memory resource defined\n"); |
| goto noress; |
| } |
| base = ioremap(ress->start, DOC_IOSPACE_SIZE); |
| |
| ret = -ENOMEM; |
| cascade = kzalloc(sizeof(*cascade) * DOC_MAX_NBFLOORS, |
| GFP_KERNEL); |
| if (!cascade) |
| goto nomem1; |
| cascade->base = base; |
| mutex_init(&cascade->lock); |
| cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T, |
| DOC_ECC_BCH_PRIMPOLY); |
| if (!cascade->bch) |
| goto nomem2; |
| |
| for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { |
| mtd = doc_probe_device(cascade, floor, dev); |
| if (IS_ERR(mtd)) { |
| ret = PTR_ERR(mtd); |
| goto err_probe; |
| } |
| if (!mtd) { |
| if (floor == 0) |
| goto notfound; |
| else |
| continue; |
| } |
| cascade->floors[floor] = mtd; |
| ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL, |
| 0); |
| if (ret) |
| goto err_probe; |
| found++; |
| } |
| |
| ret = doc_register_sysfs(pdev, cascade); |
| if (ret) |
| goto err_probe; |
| if (!found) |
| goto notfound; |
| |
| platform_set_drvdata(pdev, cascade); |
| doc_dbg_register(cascade->floors[0]->priv); |
| return 0; |
| |
| notfound: |
| ret = -ENODEV; |
| dev_info(dev, "No supported DiskOnChip found\n"); |
| err_probe: |
| kfree(cascade->bch); |
| for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) |
| if (cascade->floors[floor]) |
| doc_release_device(cascade->floors[floor]); |
| nomem2: |
| kfree(cascade); |
| nomem1: |
| iounmap(base); |
| noress: |
| return ret; |
| } |
| |
| /** |
| * docg3_release - Release the driver |
| * @pdev: the platform device |
| * |
| * Returns 0 |
| */ |
| static int __exit docg3_release(struct platform_device *pdev) |
| { |
| struct docg3_cascade *cascade = platform_get_drvdata(pdev); |
| struct docg3 *docg3 = cascade->floors[0]->priv; |
| void __iomem *base = cascade->base; |
| int floor; |
| |
| doc_unregister_sysfs(pdev, cascade); |
| doc_dbg_unregister(docg3); |
| for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) |
| if (cascade->floors[floor]) |
| doc_release_device(cascade->floors[floor]); |
| |
| free_bch(docg3->cascade->bch); |
| kfree(cascade); |
| iounmap(base); |
| return 0; |
| } |
| |
| static struct platform_driver g3_driver = { |
| .driver = { |
| .name = "docg3", |
| .owner = THIS_MODULE, |
| }, |
| .suspend = docg3_suspend, |
| .resume = docg3_resume, |
| .remove = __exit_p(docg3_release), |
| }; |
| |
| static int __init docg3_init(void) |
| { |
| return platform_driver_probe(&g3_driver, docg3_probe); |
| } |
| module_init(docg3_init); |
| |
| |
| static void __exit docg3_exit(void) |
| { |
| platform_driver_unregister(&g3_driver); |
| } |
| module_exit(docg3_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); |
| MODULE_DESCRIPTION("MTD driver for DiskOnChip G3"); |