| /* |
| * Cryptographic API. |
| * |
| * Glue code for the SHA1 Secure Hash Algorithm assembler implementation using |
| * Supplemental SSE3 instructions. |
| * |
| * This file is based on sha1_generic.c |
| * |
| * Copyright (c) Alan Smithee. |
| * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> |
| * Copyright (c) Jean-Francois Dive <jef@linuxbe.org> |
| * Copyright (c) Mathias Krause <minipli@googlemail.com> |
| * Copyright (c) Chandramouli Narayanan <mouli@linux.intel.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <crypto/internal/hash.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/cryptohash.h> |
| #include <linux/types.h> |
| #include <crypto/sha.h> |
| #include <asm/byteorder.h> |
| #include <asm/i387.h> |
| #include <asm/xcr.h> |
| #include <asm/xsave.h> |
| |
| |
| asmlinkage void sha1_transform_ssse3(u32 *digest, const char *data, |
| unsigned int rounds); |
| #ifdef CONFIG_AS_AVX |
| asmlinkage void sha1_transform_avx(u32 *digest, const char *data, |
| unsigned int rounds); |
| #endif |
| #ifdef CONFIG_AS_AVX2 |
| #define SHA1_AVX2_BLOCK_OPTSIZE 4 /* optimal 4*64 bytes of SHA1 blocks */ |
| |
| asmlinkage void sha1_transform_avx2(u32 *digest, const char *data, |
| unsigned int rounds); |
| #endif |
| |
| static asmlinkage void (*sha1_transform_asm)(u32 *, const char *, unsigned int); |
| |
| |
| static int sha1_ssse3_init(struct shash_desc *desc) |
| { |
| struct sha1_state *sctx = shash_desc_ctx(desc); |
| |
| *sctx = (struct sha1_state){ |
| .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 }, |
| }; |
| |
| return 0; |
| } |
| |
| static int __sha1_ssse3_update(struct shash_desc *desc, const u8 *data, |
| unsigned int len, unsigned int partial) |
| { |
| struct sha1_state *sctx = shash_desc_ctx(desc); |
| unsigned int done = 0; |
| |
| sctx->count += len; |
| |
| if (partial) { |
| done = SHA1_BLOCK_SIZE - partial; |
| memcpy(sctx->buffer + partial, data, done); |
| sha1_transform_asm(sctx->state, sctx->buffer, 1); |
| } |
| |
| if (len - done >= SHA1_BLOCK_SIZE) { |
| const unsigned int rounds = (len - done) / SHA1_BLOCK_SIZE; |
| |
| sha1_transform_asm(sctx->state, data + done, rounds); |
| done += rounds * SHA1_BLOCK_SIZE; |
| } |
| |
| memcpy(sctx->buffer, data + done, len - done); |
| |
| return 0; |
| } |
| |
| static int sha1_ssse3_update(struct shash_desc *desc, const u8 *data, |
| unsigned int len) |
| { |
| struct sha1_state *sctx = shash_desc_ctx(desc); |
| unsigned int partial = sctx->count % SHA1_BLOCK_SIZE; |
| int res; |
| |
| /* Handle the fast case right here */ |
| if (partial + len < SHA1_BLOCK_SIZE) { |
| sctx->count += len; |
| memcpy(sctx->buffer + partial, data, len); |
| |
| return 0; |
| } |
| |
| if (!irq_fpu_usable()) { |
| res = crypto_sha1_update(desc, data, len); |
| } else { |
| kernel_fpu_begin(); |
| res = __sha1_ssse3_update(desc, data, len, partial); |
| kernel_fpu_end(); |
| } |
| |
| return res; |
| } |
| |
| |
| /* Add padding and return the message digest. */ |
| static int sha1_ssse3_final(struct shash_desc *desc, u8 *out) |
| { |
| struct sha1_state *sctx = shash_desc_ctx(desc); |
| unsigned int i, index, padlen; |
| __be32 *dst = (__be32 *)out; |
| __be64 bits; |
| static const u8 padding[SHA1_BLOCK_SIZE] = { 0x80, }; |
| |
| bits = cpu_to_be64(sctx->count << 3); |
| |
| /* Pad out to 56 mod 64 and append length */ |
| index = sctx->count % SHA1_BLOCK_SIZE; |
| padlen = (index < 56) ? (56 - index) : ((SHA1_BLOCK_SIZE+56) - index); |
| if (!irq_fpu_usable()) { |
| crypto_sha1_update(desc, padding, padlen); |
| crypto_sha1_update(desc, (const u8 *)&bits, sizeof(bits)); |
| } else { |
| kernel_fpu_begin(); |
| /* We need to fill a whole block for __sha1_ssse3_update() */ |
| if (padlen <= 56) { |
| sctx->count += padlen; |
| memcpy(sctx->buffer + index, padding, padlen); |
| } else { |
| __sha1_ssse3_update(desc, padding, padlen, index); |
| } |
| __sha1_ssse3_update(desc, (const u8 *)&bits, sizeof(bits), 56); |
| kernel_fpu_end(); |
| } |
| |
| /* Store state in digest */ |
| for (i = 0; i < 5; i++) |
| dst[i] = cpu_to_be32(sctx->state[i]); |
| |
| /* Wipe context */ |
| memset(sctx, 0, sizeof(*sctx)); |
| |
| return 0; |
| } |
| |
| static int sha1_ssse3_export(struct shash_desc *desc, void *out) |
| { |
| struct sha1_state *sctx = shash_desc_ctx(desc); |
| |
| memcpy(out, sctx, sizeof(*sctx)); |
| |
| return 0; |
| } |
| |
| static int sha1_ssse3_import(struct shash_desc *desc, const void *in) |
| { |
| struct sha1_state *sctx = shash_desc_ctx(desc); |
| |
| memcpy(sctx, in, sizeof(*sctx)); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_AS_AVX2 |
| static void sha1_apply_transform_avx2(u32 *digest, const char *data, |
| unsigned int rounds) |
| { |
| /* Select the optimal transform based on data block size */ |
| if (rounds >= SHA1_AVX2_BLOCK_OPTSIZE) |
| sha1_transform_avx2(digest, data, rounds); |
| else |
| sha1_transform_avx(digest, data, rounds); |
| } |
| #endif |
| |
| static struct shash_alg alg = { |
| .digestsize = SHA1_DIGEST_SIZE, |
| .init = sha1_ssse3_init, |
| .update = sha1_ssse3_update, |
| .final = sha1_ssse3_final, |
| .export = sha1_ssse3_export, |
| .import = sha1_ssse3_import, |
| .descsize = sizeof(struct sha1_state), |
| .statesize = sizeof(struct sha1_state), |
| .base = { |
| .cra_name = "sha1", |
| .cra_driver_name= "sha1-ssse3", |
| .cra_priority = 150, |
| .cra_flags = CRYPTO_ALG_TYPE_SHASH, |
| .cra_blocksize = SHA1_BLOCK_SIZE, |
| .cra_module = THIS_MODULE, |
| } |
| }; |
| |
| #ifdef CONFIG_AS_AVX |
| static bool __init avx_usable(void) |
| { |
| u64 xcr0; |
| |
| if (!cpu_has_avx || !cpu_has_osxsave) |
| return false; |
| |
| xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
| if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) { |
| pr_info("AVX detected but unusable.\n"); |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| #ifdef CONFIG_AS_AVX2 |
| static bool __init avx2_usable(void) |
| { |
| if (avx_usable() && cpu_has_avx2 && boot_cpu_has(X86_FEATURE_BMI1) && |
| boot_cpu_has(X86_FEATURE_BMI2)) |
| return true; |
| |
| return false; |
| } |
| #endif |
| #endif |
| |
| static int __init sha1_ssse3_mod_init(void) |
| { |
| char *algo_name; |
| |
| /* test for SSSE3 first */ |
| if (cpu_has_ssse3) { |
| sha1_transform_asm = sha1_transform_ssse3; |
| algo_name = "SSSE3"; |
| } |
| |
| #ifdef CONFIG_AS_AVX |
| /* allow AVX to override SSSE3, it's a little faster */ |
| if (avx_usable()) { |
| sha1_transform_asm = sha1_transform_avx; |
| algo_name = "AVX"; |
| #ifdef CONFIG_AS_AVX2 |
| /* allow AVX2 to override AVX, it's a little faster */ |
| if (avx2_usable()) { |
| sha1_transform_asm = sha1_apply_transform_avx2; |
| algo_name = "AVX2"; |
| } |
| #endif |
| } |
| #endif |
| |
| if (sha1_transform_asm) { |
| pr_info("Using %s optimized SHA-1 implementation\n", algo_name); |
| return crypto_register_shash(&alg); |
| } |
| pr_info("Neither AVX nor AVX2 nor SSSE3 is available/usable.\n"); |
| |
| return -ENODEV; |
| } |
| |
| static void __exit sha1_ssse3_mod_fini(void) |
| { |
| crypto_unregister_shash(&alg); |
| } |
| |
| module_init(sha1_ssse3_mod_init); |
| module_exit(sha1_ssse3_mod_fini); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, Supplemental SSE3 accelerated"); |
| |
| MODULE_ALIAS_CRYPTO("sha1"); |