| /* |
| * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README |
| */ |
| |
| /** |
| ** old_item_num |
| ** old_entry_num |
| ** set_entry_sizes |
| ** create_virtual_node |
| ** check_left |
| ** check_right |
| ** directory_part_size |
| ** get_num_ver |
| ** set_parameters |
| ** is_leaf_removable |
| ** are_leaves_removable |
| ** get_empty_nodes |
| ** get_lfree |
| ** get_rfree |
| ** is_left_neighbor_in_cache |
| ** decrement_key |
| ** get_far_parent |
| ** get_parents |
| ** can_node_be_removed |
| ** ip_check_balance |
| ** dc_check_balance_internal |
| ** dc_check_balance_leaf |
| ** dc_check_balance |
| ** check_balance |
| ** get_direct_parent |
| ** get_neighbors |
| ** fix_nodes |
| ** |
| ** |
| **/ |
| |
| #include <linux/time.h> |
| #include <linux/string.h> |
| #include <linux/reiserfs_fs.h> |
| #include <linux/buffer_head.h> |
| |
| /* To make any changes in the tree we find a node, that contains item |
| to be changed/deleted or position in the node we insert a new item |
| to. We call this node S. To do balancing we need to decide what we |
| will shift to left/right neighbor, or to a new node, where new item |
| will be etc. To make this analysis simpler we build virtual |
| node. Virtual node is an array of items, that will replace items of |
| node S. (For instance if we are going to delete an item, virtual |
| node does not contain it). Virtual node keeps information about |
| item sizes and types, mergeability of first and last items, sizes |
| of all entries in directory item. We use this array of items when |
| calculating what we can shift to neighbors and how many nodes we |
| have to have if we do not any shiftings, if we shift to left/right |
| neighbor or to both. */ |
| |
| /* taking item number in virtual node, returns number of item, that it has in source buffer */ |
| static inline int old_item_num(int new_num, int affected_item_num, int mode) |
| { |
| if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) |
| return new_num; |
| |
| if (mode == M_INSERT) { |
| |
| RFALSE(new_num == 0, |
| "vs-8005: for INSERT mode and item number of inserted item"); |
| |
| return new_num - 1; |
| } |
| |
| RFALSE(mode != M_DELETE, |
| "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", |
| mode); |
| /* delete mode */ |
| return new_num + 1; |
| } |
| |
| static void create_virtual_node(struct tree_balance *tb, int h) |
| { |
| struct item_head *ih; |
| struct virtual_node *vn = tb->tb_vn; |
| int new_num; |
| struct buffer_head *Sh; /* this comes from tb->S[h] */ |
| |
| Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| |
| /* size of changed node */ |
| vn->vn_size = |
| MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h]; |
| |
| /* for internal nodes array if virtual items is not created */ |
| if (h) { |
| vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); |
| return; |
| } |
| |
| /* number of items in virtual node */ |
| vn->vn_nr_item = |
| B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) - |
| ((vn->vn_mode == M_DELETE) ? 1 : 0); |
| |
| /* first virtual item */ |
| vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); |
| memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item)); |
| vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item); |
| |
| /* first item in the node */ |
| ih = B_N_PITEM_HEAD(Sh, 0); |
| |
| /* define the mergeability for 0-th item (if it is not being deleted) */ |
| if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size) |
| && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) |
| vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; |
| |
| /* go through all items those remain in the virtual node (except for the new (inserted) one) */ |
| for (new_num = 0; new_num < vn->vn_nr_item; new_num++) { |
| int j; |
| struct virtual_item *vi = vn->vn_vi + new_num; |
| int is_affected = |
| ((new_num != vn->vn_affected_item_num) ? 0 : 1); |
| |
| if (is_affected && vn->vn_mode == M_INSERT) |
| continue; |
| |
| /* get item number in source node */ |
| j = old_item_num(new_num, vn->vn_affected_item_num, |
| vn->vn_mode); |
| |
| vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; |
| vi->vi_ih = ih + j; |
| vi->vi_item = B_I_PITEM(Sh, ih + j); |
| vi->vi_uarea = vn->vn_free_ptr; |
| |
| // FIXME: there is no check, that item operation did not |
| // consume too much memory |
| vn->vn_free_ptr += |
| op_create_vi(vn, vi, is_affected, tb->insert_size[0]); |
| if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) |
| reiserfs_panic(tb->tb_sb, |
| "vs-8030: create_virtual_node: " |
| "virtual node space consumed"); |
| |
| if (!is_affected) |
| /* this is not being changed */ |
| continue; |
| |
| if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { |
| vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; |
| vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted |
| } |
| } |
| |
| /* virtual inserted item is not defined yet */ |
| if (vn->vn_mode == M_INSERT) { |
| struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num; |
| |
| RFALSE(vn->vn_ins_ih == 0, |
| "vs-8040: item header of inserted item is not specified"); |
| vi->vi_item_len = tb->insert_size[0]; |
| vi->vi_ih = vn->vn_ins_ih; |
| vi->vi_item = vn->vn_data; |
| vi->vi_uarea = vn->vn_free_ptr; |
| |
| op_create_vi(vn, vi, 0 /*not pasted or cut */ , |
| tb->insert_size[0]); |
| } |
| |
| /* set right merge flag we take right delimiting key and check whether it is a mergeable item */ |
| if (tb->CFR[0]) { |
| struct reiserfs_key *key; |
| |
| key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]); |
| if (op_is_left_mergeable(key, Sh->b_size) |
| && (vn->vn_mode != M_DELETE |
| || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) |
| vn->vn_vi[vn->vn_nr_item - 1].vi_type |= |
| VI_TYPE_RIGHT_MERGEABLE; |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| if (op_is_left_mergeable(key, Sh->b_size) && |
| !(vn->vn_mode != M_DELETE |
| || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) { |
| /* we delete last item and it could be merged with right neighbor's first item */ |
| if (! |
| (B_NR_ITEMS(Sh) == 1 |
| && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0)) |
| && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) { |
| /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */ |
| print_block(Sh, 0, -1, -1); |
| reiserfs_panic(tb->tb_sb, |
| "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c", |
| key, vn->vn_affected_item_num, |
| vn->vn_mode, M_DELETE); |
| } |
| } |
| #endif |
| |
| } |
| } |
| |
| /* using virtual node check, how many items can be shifted to left |
| neighbor */ |
| static void check_left(struct tree_balance *tb, int h, int cur_free) |
| { |
| int i; |
| struct virtual_node *vn = tb->tb_vn; |
| struct virtual_item *vi; |
| int d_size, ih_size; |
| |
| RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); |
| |
| /* internal level */ |
| if (h > 0) { |
| tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); |
| return; |
| } |
| |
| /* leaf level */ |
| |
| if (!cur_free || !vn->vn_nr_item) { |
| /* no free space or nothing to move */ |
| tb->lnum[h] = 0; |
| tb->lbytes = -1; |
| return; |
| } |
| |
| RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), |
| "vs-8055: parent does not exist or invalid"); |
| |
| vi = vn->vn_vi; |
| if ((unsigned int)cur_free >= |
| (vn->vn_size - |
| ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { |
| /* all contents of S[0] fits into L[0] */ |
| |
| RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, |
| "vs-8055: invalid mode or balance condition failed"); |
| |
| tb->lnum[0] = vn->vn_nr_item; |
| tb->lbytes = -1; |
| return; |
| } |
| |
| d_size = 0, ih_size = IH_SIZE; |
| |
| /* first item may be merge with last item in left neighbor */ |
| if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) |
| d_size = -((int)IH_SIZE), ih_size = 0; |
| |
| tb->lnum[0] = 0; |
| for (i = 0; i < vn->vn_nr_item; |
| i++, ih_size = IH_SIZE, d_size = 0, vi++) { |
| d_size += vi->vi_item_len; |
| if (cur_free >= d_size) { |
| /* the item can be shifted entirely */ |
| cur_free -= d_size; |
| tb->lnum[0]++; |
| continue; |
| } |
| |
| /* the item cannot be shifted entirely, try to split it */ |
| /* check whether L[0] can hold ih and at least one byte of the item body */ |
| if (cur_free <= ih_size) { |
| /* cannot shift even a part of the current item */ |
| tb->lbytes = -1; |
| return; |
| } |
| cur_free -= ih_size; |
| |
| tb->lbytes = op_check_left(vi, cur_free, 0, 0); |
| if (tb->lbytes != -1) |
| /* count partially shifted item */ |
| tb->lnum[0]++; |
| |
| break; |
| } |
| |
| return; |
| } |
| |
| /* using virtual node check, how many items can be shifted to right |
| neighbor */ |
| static void check_right(struct tree_balance *tb, int h, int cur_free) |
| { |
| int i; |
| struct virtual_node *vn = tb->tb_vn; |
| struct virtual_item *vi; |
| int d_size, ih_size; |
| |
| RFALSE(cur_free < 0, "vs-8070: cur_free < 0"); |
| |
| /* internal level */ |
| if (h > 0) { |
| tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); |
| return; |
| } |
| |
| /* leaf level */ |
| |
| if (!cur_free || !vn->vn_nr_item) { |
| /* no free space */ |
| tb->rnum[h] = 0; |
| tb->rbytes = -1; |
| return; |
| } |
| |
| RFALSE(!PATH_H_PPARENT(tb->tb_path, 0), |
| "vs-8075: parent does not exist or invalid"); |
| |
| vi = vn->vn_vi + vn->vn_nr_item - 1; |
| if ((unsigned int)cur_free >= |
| (vn->vn_size - |
| ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { |
| /* all contents of S[0] fits into R[0] */ |
| |
| RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, |
| "vs-8080: invalid mode or balance condition failed"); |
| |
| tb->rnum[h] = vn->vn_nr_item; |
| tb->rbytes = -1; |
| return; |
| } |
| |
| d_size = 0, ih_size = IH_SIZE; |
| |
| /* last item may be merge with first item in right neighbor */ |
| if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) |
| d_size = -(int)IH_SIZE, ih_size = 0; |
| |
| tb->rnum[0] = 0; |
| for (i = vn->vn_nr_item - 1; i >= 0; |
| i--, d_size = 0, ih_size = IH_SIZE, vi--) { |
| d_size += vi->vi_item_len; |
| if (cur_free >= d_size) { |
| /* the item can be shifted entirely */ |
| cur_free -= d_size; |
| tb->rnum[0]++; |
| continue; |
| } |
| |
| /* check whether R[0] can hold ih and at least one byte of the item body */ |
| if (cur_free <= ih_size) { /* cannot shift even a part of the current item */ |
| tb->rbytes = -1; |
| return; |
| } |
| |
| /* R[0] can hold the header of the item and at least one byte of its body */ |
| cur_free -= ih_size; /* cur_free is still > 0 */ |
| |
| tb->rbytes = op_check_right(vi, cur_free); |
| if (tb->rbytes != -1) |
| /* count partially shifted item */ |
| tb->rnum[0]++; |
| |
| break; |
| } |
| |
| return; |
| } |
| |
| /* |
| * from - number of items, which are shifted to left neighbor entirely |
| * to - number of item, which are shifted to right neighbor entirely |
| * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor |
| * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */ |
| static int get_num_ver(int mode, struct tree_balance *tb, int h, |
| int from, int from_bytes, |
| int to, int to_bytes, short *snum012, int flow) |
| { |
| int i; |
| int cur_free; |
| // int bytes; |
| int units; |
| struct virtual_node *vn = tb->tb_vn; |
| // struct virtual_item * vi; |
| |
| int total_node_size, max_node_size, current_item_size; |
| int needed_nodes; |
| int start_item, /* position of item we start filling node from */ |
| end_item, /* position of item we finish filling node by */ |
| start_bytes, /* number of first bytes (entries for directory) of start_item-th item |
| we do not include into node that is being filled */ |
| end_bytes; /* number of last bytes (entries for directory) of end_item-th item |
| we do node include into node that is being filled */ |
| int split_item_positions[2]; /* these are positions in virtual item of |
| items, that are split between S[0] and |
| S1new and S1new and S2new */ |
| |
| split_item_positions[0] = -1; |
| split_item_positions[1] = -1; |
| |
| /* We only create additional nodes if we are in insert or paste mode |
| or we are in replace mode at the internal level. If h is 0 and |
| the mode is M_REPLACE then in fix_nodes we change the mode to |
| paste or insert before we get here in the code. */ |
| RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE), |
| "vs-8100: insert_size < 0 in overflow"); |
| |
| max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h)); |
| |
| /* snum012 [0-2] - number of items, that lay |
| to S[0], first new node and second new node */ |
| snum012[3] = -1; /* s1bytes */ |
| snum012[4] = -1; /* s2bytes */ |
| |
| /* internal level */ |
| if (h > 0) { |
| i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); |
| if (i == max_node_size) |
| return 1; |
| return (i / max_node_size + 1); |
| } |
| |
| /* leaf level */ |
| needed_nodes = 1; |
| total_node_size = 0; |
| cur_free = max_node_size; |
| |
| // start from 'from'-th item |
| start_item = from; |
| // skip its first 'start_bytes' units |
| start_bytes = ((from_bytes != -1) ? from_bytes : 0); |
| |
| // last included item is the 'end_item'-th one |
| end_item = vn->vn_nr_item - to - 1; |
| // do not count last 'end_bytes' units of 'end_item'-th item |
| end_bytes = (to_bytes != -1) ? to_bytes : 0; |
| |
| /* go through all item beginning from the start_item-th item and ending by |
| the end_item-th item. Do not count first 'start_bytes' units of |
| 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */ |
| |
| for (i = start_item; i <= end_item; i++) { |
| struct virtual_item *vi = vn->vn_vi + i; |
| int skip_from_end = ((i == end_item) ? end_bytes : 0); |
| |
| RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed"); |
| |
| /* get size of current item */ |
| current_item_size = vi->vi_item_len; |
| |
| /* do not take in calculation head part (from_bytes) of from-th item */ |
| current_item_size -= |
| op_part_size(vi, 0 /*from start */ , start_bytes); |
| |
| /* do not take in calculation tail part of last item */ |
| current_item_size -= |
| op_part_size(vi, 1 /*from end */ , skip_from_end); |
| |
| /* if item fits into current node entierly */ |
| if (total_node_size + current_item_size <= max_node_size) { |
| snum012[needed_nodes - 1]++; |
| total_node_size += current_item_size; |
| start_bytes = 0; |
| continue; |
| } |
| |
| if (current_item_size > max_node_size) { |
| /* virtual item length is longer, than max size of item in |
| a node. It is impossible for direct item */ |
| RFALSE(is_direct_le_ih(vi->vi_ih), |
| "vs-8110: " |
| "direct item length is %d. It can not be longer than %d", |
| current_item_size, max_node_size); |
| /* we will try to split it */ |
| flow = 1; |
| } |
| |
| if (!flow) { |
| /* as we do not split items, take new node and continue */ |
| needed_nodes++; |
| i--; |
| total_node_size = 0; |
| continue; |
| } |
| // calculate number of item units which fit into node being |
| // filled |
| { |
| int free_space; |
| |
| free_space = max_node_size - total_node_size - IH_SIZE; |
| units = |
| op_check_left(vi, free_space, start_bytes, |
| skip_from_end); |
| if (units == -1) { |
| /* nothing fits into current node, take new node and continue */ |
| needed_nodes++, i--, total_node_size = 0; |
| continue; |
| } |
| } |
| |
| /* something fits into the current node */ |
| //if (snum012[3] != -1 || needed_nodes != 1) |
| // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required"); |
| //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units; |
| start_bytes += units; |
| snum012[needed_nodes - 1 + 3] = units; |
| |
| if (needed_nodes > 2) |
| reiserfs_warning(tb->tb_sb, "vs-8111: get_num_ver: " |
| "split_item_position is out of boundary"); |
| snum012[needed_nodes - 1]++; |
| split_item_positions[needed_nodes - 1] = i; |
| needed_nodes++; |
| /* continue from the same item with start_bytes != -1 */ |
| start_item = i; |
| i--; |
| total_node_size = 0; |
| } |
| |
| // sum012[4] (if it is not -1) contains number of units of which |
| // are to be in S1new, snum012[3] - to be in S0. They are supposed |
| // to be S1bytes and S2bytes correspondingly, so recalculate |
| if (snum012[4] > 0) { |
| int split_item_num; |
| int bytes_to_r, bytes_to_l; |
| int bytes_to_S1new; |
| |
| split_item_num = split_item_positions[1]; |
| bytes_to_l = |
| ((from == split_item_num |
| && from_bytes != -1) ? from_bytes : 0); |
| bytes_to_r = |
| ((end_item == split_item_num |
| && end_bytes != -1) ? end_bytes : 0); |
| bytes_to_S1new = |
| ((split_item_positions[0] == |
| split_item_positions[1]) ? snum012[3] : 0); |
| |
| // s2bytes |
| snum012[4] = |
| op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] - |
| bytes_to_r - bytes_to_l - bytes_to_S1new; |
| |
| if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && |
| vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) |
| reiserfs_warning(tb->tb_sb, "vs-8115: get_num_ver: not " |
| "directory or indirect item"); |
| } |
| |
| /* now we know S2bytes, calculate S1bytes */ |
| if (snum012[3] > 0) { |
| int split_item_num; |
| int bytes_to_r, bytes_to_l; |
| int bytes_to_S2new; |
| |
| split_item_num = split_item_positions[0]; |
| bytes_to_l = |
| ((from == split_item_num |
| && from_bytes != -1) ? from_bytes : 0); |
| bytes_to_r = |
| ((end_item == split_item_num |
| && end_bytes != -1) ? end_bytes : 0); |
| bytes_to_S2new = |
| ((split_item_positions[0] == split_item_positions[1] |
| && snum012[4] != -1) ? snum012[4] : 0); |
| |
| // s1bytes |
| snum012[3] = |
| op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] - |
| bytes_to_r - bytes_to_l - bytes_to_S2new; |
| } |
| |
| return needed_nodes; |
| } |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| extern struct tree_balance *cur_tb; |
| #endif |
| |
| /* Set parameters for balancing. |
| * Performs write of results of analysis of balancing into structure tb, |
| * where it will later be used by the functions that actually do the balancing. |
| * Parameters: |
| * tb tree_balance structure; |
| * h current level of the node; |
| * lnum number of items from S[h] that must be shifted to L[h]; |
| * rnum number of items from S[h] that must be shifted to R[h]; |
| * blk_num number of blocks that S[h] will be splitted into; |
| * s012 number of items that fall into splitted nodes. |
| * lbytes number of bytes which flow to the left neighbor from the item that is not |
| * not shifted entirely |
| * rbytes number of bytes which flow to the right neighbor from the item that is not |
| * not shifted entirely |
| * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array) |
| */ |
| |
| static void set_parameters(struct tree_balance *tb, int h, int lnum, |
| int rnum, int blk_num, short *s012, int lb, int rb) |
| { |
| |
| tb->lnum[h] = lnum; |
| tb->rnum[h] = rnum; |
| tb->blknum[h] = blk_num; |
| |
| if (h == 0) { /* only for leaf level */ |
| if (s012 != NULL) { |
| tb->s0num = *s012++, |
| tb->s1num = *s012++, tb->s2num = *s012++; |
| tb->s1bytes = *s012++; |
| tb->s2bytes = *s012; |
| } |
| tb->lbytes = lb; |
| tb->rbytes = rb; |
| } |
| PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum); |
| PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum); |
| |
| PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb); |
| PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb); |
| } |
| |
| /* check, does node disappear if we shift tb->lnum[0] items to left |
| neighbor and tb->rnum[0] to the right one. */ |
| static int is_leaf_removable(struct tree_balance *tb) |
| { |
| struct virtual_node *vn = tb->tb_vn; |
| int to_left, to_right; |
| int size; |
| int remain_items; |
| |
| /* number of items, that will be shifted to left (right) neighbor |
| entirely */ |
| to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); |
| to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); |
| remain_items = vn->vn_nr_item; |
| |
| /* how many items remain in S[0] after shiftings to neighbors */ |
| remain_items -= (to_left + to_right); |
| |
| if (remain_items < 1) { |
| /* all content of node can be shifted to neighbors */ |
| set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0, |
| NULL, -1, -1); |
| return 1; |
| } |
| |
| if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) |
| /* S[0] is not removable */ |
| return 0; |
| |
| /* check, whether we can divide 1 remaining item between neighbors */ |
| |
| /* get size of remaining item (in item units) */ |
| size = op_unit_num(&(vn->vn_vi[to_left])); |
| |
| if (tb->lbytes + tb->rbytes >= size) { |
| set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL, |
| tb->lbytes, -1); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* check whether L, S, R can be joined in one node */ |
| static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree) |
| { |
| struct virtual_node *vn = tb->tb_vn; |
| int ih_size; |
| struct buffer_head *S0; |
| |
| S0 = PATH_H_PBUFFER(tb->tb_path, 0); |
| |
| ih_size = 0; |
| if (vn->vn_nr_item) { |
| if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) |
| ih_size += IH_SIZE; |
| |
| if (vn->vn_vi[vn->vn_nr_item - 1]. |
| vi_type & VI_TYPE_RIGHT_MERGEABLE) |
| ih_size += IH_SIZE; |
| } else { |
| /* there was only one item and it will be deleted */ |
| struct item_head *ih; |
| |
| RFALSE(B_NR_ITEMS(S0) != 1, |
| "vs-8125: item number must be 1: it is %d", |
| B_NR_ITEMS(S0)); |
| |
| ih = B_N_PITEM_HEAD(S0, 0); |
| if (tb->CFR[0] |
| && !comp_short_le_keys(&(ih->ih_key), |
| B_N_PDELIM_KEY(tb->CFR[0], |
| tb->rkey[0]))) |
| if (is_direntry_le_ih(ih)) { |
| /* Directory must be in correct state here: that is |
| somewhere at the left side should exist first directory |
| item. But the item being deleted can not be that first |
| one because its right neighbor is item of the same |
| directory. (But first item always gets deleted in last |
| turn). So, neighbors of deleted item can be merged, so |
| we can save ih_size */ |
| ih_size = IH_SIZE; |
| |
| /* we might check that left neighbor exists and is of the |
| same directory */ |
| RFALSE(le_ih_k_offset(ih) == DOT_OFFSET, |
| "vs-8130: first directory item can not be removed until directory is not empty"); |
| } |
| |
| } |
| |
| if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) { |
| set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1); |
| PROC_INFO_INC(tb->tb_sb, leaves_removable); |
| return 1; |
| } |
| return 0; |
| |
| } |
| |
| /* when we do not split item, lnum and rnum are numbers of entire items */ |
| #define SET_PAR_SHIFT_LEFT \ |
| if (h)\ |
| {\ |
| int to_l;\ |
| \ |
| to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\ |
| (MAX_NR_KEY(Sh) + 1 - lpar);\ |
| \ |
| set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\ |
| }\ |
| else \ |
| {\ |
| if (lset==LEFT_SHIFT_FLOW)\ |
| set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\ |
| tb->lbytes, -1);\ |
| else\ |
| set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\ |
| -1, -1);\ |
| } |
| |
| #define SET_PAR_SHIFT_RIGHT \ |
| if (h)\ |
| {\ |
| int to_r;\ |
| \ |
| to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\ |
| \ |
| set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\ |
| }\ |
| else \ |
| {\ |
| if (rset==RIGHT_SHIFT_FLOW)\ |
| set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\ |
| -1, tb->rbytes);\ |
| else\ |
| set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\ |
| -1, -1);\ |
| } |
| |
| static void free_buffers_in_tb(struct tree_balance *p_s_tb) |
| { |
| int n_counter; |
| |
| decrement_counters_in_path(p_s_tb->tb_path); |
| |
| for (n_counter = 0; n_counter < MAX_HEIGHT; n_counter++) { |
| decrement_bcount(p_s_tb->L[n_counter]); |
| p_s_tb->L[n_counter] = NULL; |
| decrement_bcount(p_s_tb->R[n_counter]); |
| p_s_tb->R[n_counter] = NULL; |
| decrement_bcount(p_s_tb->FL[n_counter]); |
| p_s_tb->FL[n_counter] = NULL; |
| decrement_bcount(p_s_tb->FR[n_counter]); |
| p_s_tb->FR[n_counter] = NULL; |
| decrement_bcount(p_s_tb->CFL[n_counter]); |
| p_s_tb->CFL[n_counter] = NULL; |
| decrement_bcount(p_s_tb->CFR[n_counter]); |
| p_s_tb->CFR[n_counter] = NULL; |
| } |
| } |
| |
| /* Get new buffers for storing new nodes that are created while balancing. |
| * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| * CARRY_ON - schedule didn't occur while the function worked; |
| * NO_DISK_SPACE - no disk space. |
| */ |
| /* The function is NOT SCHEDULE-SAFE! */ |
| static int get_empty_nodes(struct tree_balance *p_s_tb, int n_h) |
| { |
| struct buffer_head *p_s_new_bh, |
| *p_s_Sh = PATH_H_PBUFFER(p_s_tb->tb_path, n_h); |
| b_blocknr_t *p_n_blocknr, a_n_blocknrs[MAX_AMOUNT_NEEDED] = { 0, }; |
| int n_counter, n_number_of_freeblk, n_amount_needed, /* number of needed empty blocks */ |
| n_retval = CARRY_ON; |
| struct super_block *p_s_sb = p_s_tb->tb_sb; |
| |
| /* number_of_freeblk is the number of empty blocks which have been |
| acquired for use by the balancing algorithm minus the number of |
| empty blocks used in the previous levels of the analysis, |
| number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs |
| after empty blocks are acquired, and the balancing analysis is |
| then restarted, amount_needed is the number needed by this level |
| (n_h) of the balancing analysis. |
| |
| Note that for systems with many processes writing, it would be |
| more layout optimal to calculate the total number needed by all |
| levels and then to run reiserfs_new_blocks to get all of them at once. */ |
| |
| /* Initiate number_of_freeblk to the amount acquired prior to the restart of |
| the analysis or 0 if not restarted, then subtract the amount needed |
| by all of the levels of the tree below n_h. */ |
| /* blknum includes S[n_h], so we subtract 1 in this calculation */ |
| for (n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum; |
| n_counter < n_h; n_counter++) |
| n_number_of_freeblk -= |
| (p_s_tb->blknum[n_counter]) ? (p_s_tb->blknum[n_counter] - |
| 1) : 0; |
| |
| /* Allocate missing empty blocks. */ |
| /* if p_s_Sh == 0 then we are getting a new root */ |
| n_amount_needed = (p_s_Sh) ? (p_s_tb->blknum[n_h] - 1) : 1; |
| /* Amount_needed = the amount that we need more than the amount that we have. */ |
| if (n_amount_needed > n_number_of_freeblk) |
| n_amount_needed -= n_number_of_freeblk; |
| else /* If we have enough already then there is nothing to do. */ |
| return CARRY_ON; |
| |
| /* No need to check quota - is not allocated for blocks used for formatted nodes */ |
| if (reiserfs_new_form_blocknrs(p_s_tb, a_n_blocknrs, |
| n_amount_needed) == NO_DISK_SPACE) |
| return NO_DISK_SPACE; |
| |
| /* for each blocknumber we just got, get a buffer and stick it on FEB */ |
| for (p_n_blocknr = a_n_blocknrs, n_counter = 0; |
| n_counter < n_amount_needed; p_n_blocknr++, n_counter++) { |
| |
| RFALSE(!*p_n_blocknr, |
| "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); |
| |
| p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr); |
| RFALSE(buffer_dirty(p_s_new_bh) || |
| buffer_journaled(p_s_new_bh) || |
| buffer_journal_dirty(p_s_new_bh), |
| "PAP-8140: journlaled or dirty buffer %b for the new block", |
| p_s_new_bh); |
| |
| /* Put empty buffers into the array. */ |
| RFALSE(p_s_tb->FEB[p_s_tb->cur_blknum], |
| "PAP-8141: busy slot for new buffer"); |
| |
| set_buffer_journal_new(p_s_new_bh); |
| p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh; |
| } |
| |
| if (n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB(p_s_tb)) |
| n_retval = REPEAT_SEARCH; |
| |
| return n_retval; |
| } |
| |
| /* Get free space of the left neighbor, which is stored in the parent |
| * node of the left neighbor. */ |
| static int get_lfree(struct tree_balance *tb, int h) |
| { |
| struct buffer_head *l, *f; |
| int order; |
| |
| if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0) |
| return 0; |
| |
| if (f == l) |
| order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1; |
| else { |
| order = B_NR_ITEMS(l); |
| f = l; |
| } |
| |
| return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); |
| } |
| |
| /* Get free space of the right neighbor, |
| * which is stored in the parent node of the right neighbor. |
| */ |
| static int get_rfree(struct tree_balance *tb, int h) |
| { |
| struct buffer_head *r, *f; |
| int order; |
| |
| if ((f = PATH_H_PPARENT(tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0) |
| return 0; |
| |
| if (f == r) |
| order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1; |
| else { |
| order = 0; |
| f = r; |
| } |
| |
| return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order))); |
| |
| } |
| |
| /* Check whether left neighbor is in memory. */ |
| static int is_left_neighbor_in_cache(struct tree_balance *p_s_tb, int n_h) |
| { |
| struct buffer_head *p_s_father, *left; |
| struct super_block *p_s_sb = p_s_tb->tb_sb; |
| b_blocknr_t n_left_neighbor_blocknr; |
| int n_left_neighbor_position; |
| |
| if (!p_s_tb->FL[n_h]) /* Father of the left neighbor does not exist. */ |
| return 0; |
| |
| /* Calculate father of the node to be balanced. */ |
| p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1); |
| |
| RFALSE(!p_s_father || |
| !B_IS_IN_TREE(p_s_father) || |
| !B_IS_IN_TREE(p_s_tb->FL[n_h]) || |
| !buffer_uptodate(p_s_father) || |
| !buffer_uptodate(p_s_tb->FL[n_h]), |
| "vs-8165: F[h] (%b) or FL[h] (%b) is invalid", |
| p_s_father, p_s_tb->FL[n_h]); |
| |
| /* Get position of the pointer to the left neighbor into the left father. */ |
| n_left_neighbor_position = (p_s_father == p_s_tb->FL[n_h]) ? |
| p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb->FL[n_h]); |
| /* Get left neighbor block number. */ |
| n_left_neighbor_blocknr = |
| B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position); |
| /* Look for the left neighbor in the cache. */ |
| if ((left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr))) { |
| |
| RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left), |
| "vs-8170: left neighbor (%b %z) is not in the tree", |
| left, left); |
| put_bh(left); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| #define LEFT_PARENTS 'l' |
| #define RIGHT_PARENTS 'r' |
| |
| static void decrement_key(struct cpu_key *p_s_key) |
| { |
| // call item specific function for this key |
| item_ops[cpu_key_k_type(p_s_key)]->decrement_key(p_s_key); |
| } |
| |
| /* Calculate far left/right parent of the left/right neighbor of the current node, that |
| * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h]. |
| * Calculate left/right common parent of the current node and L[h]/R[h]. |
| * Calculate left/right delimiting key position. |
| * Returns: PATH_INCORRECT - path in the tree is not correct; |
| SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| * CARRY_ON - schedule didn't occur while the function worked; |
| */ |
| static int get_far_parent(struct tree_balance *p_s_tb, |
| int n_h, |
| struct buffer_head **pp_s_father, |
| struct buffer_head **pp_s_com_father, char c_lr_par) |
| { |
| struct buffer_head *p_s_parent; |
| INITIALIZE_PATH(s_path_to_neighbor_father); |
| struct treepath *p_s_path = p_s_tb->tb_path; |
| struct cpu_key s_lr_father_key; |
| int n_counter, |
| n_position = INT_MAX, |
| n_first_last_position = 0, |
| n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h); |
| |
| /* Starting from F[n_h] go upwards in the tree, and look for the common |
| ancestor of F[n_h], and its neighbor l/r, that should be obtained. */ |
| |
| n_counter = n_path_offset; |
| |
| RFALSE(n_counter < FIRST_PATH_ELEMENT_OFFSET, |
| "PAP-8180: invalid path length"); |
| |
| for (; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--) { |
| /* Check whether parent of the current buffer in the path is really parent in the tree. */ |
| if (!B_IS_IN_TREE |
| (p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1))) |
| return REPEAT_SEARCH; |
| /* Check whether position in the parent is correct. */ |
| if ((n_position = |
| PATH_OFFSET_POSITION(p_s_path, |
| n_counter - 1)) > |
| B_NR_ITEMS(p_s_parent)) |
| return REPEAT_SEARCH; |
| /* Check whether parent at the path really points to the child. */ |
| if (B_N_CHILD_NUM(p_s_parent, n_position) != |
| PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr) |
| return REPEAT_SEARCH; |
| /* Return delimiting key if position in the parent is not equal to first/last one. */ |
| if (c_lr_par == RIGHT_PARENTS) |
| n_first_last_position = B_NR_ITEMS(p_s_parent); |
| if (n_position != n_first_last_position) { |
| *pp_s_com_father = p_s_parent; |
| get_bh(*pp_s_com_father); |
| /*(*pp_s_com_father = p_s_parent)->b_count++; */ |
| break; |
| } |
| } |
| |
| /* if we are in the root of the tree, then there is no common father */ |
| if (n_counter == FIRST_PATH_ELEMENT_OFFSET) { |
| /* Check whether first buffer in the path is the root of the tree. */ |
| if (PATH_OFFSET_PBUFFER |
| (p_s_tb->tb_path, |
| FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == |
| SB_ROOT_BLOCK(p_s_tb->tb_sb)) { |
| *pp_s_father = *pp_s_com_father = NULL; |
| return CARRY_ON; |
| } |
| return REPEAT_SEARCH; |
| } |
| |
| RFALSE(B_LEVEL(*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL, |
| "PAP-8185: (%b %z) level too small", |
| *pp_s_com_father, *pp_s_com_father); |
| |
| /* Check whether the common parent is locked. */ |
| |
| if (buffer_locked(*pp_s_com_father)) { |
| __wait_on_buffer(*pp_s_com_father); |
| if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| decrement_bcount(*pp_s_com_father); |
| return REPEAT_SEARCH; |
| } |
| } |
| |
| /* So, we got common parent of the current node and its left/right neighbor. |
| Now we are geting the parent of the left/right neighbor. */ |
| |
| /* Form key to get parent of the left/right neighbor. */ |
| le_key2cpu_key(&s_lr_father_key, |
| B_N_PDELIM_KEY(*pp_s_com_father, |
| (c_lr_par == |
| LEFT_PARENTS) ? (p_s_tb->lkey[n_h - 1] = |
| n_position - |
| 1) : (p_s_tb->rkey[n_h - |
| 1] = |
| n_position))); |
| |
| if (c_lr_par == LEFT_PARENTS) |
| decrement_key(&s_lr_father_key); |
| |
| if (search_by_key |
| (p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, |
| n_h + 1) == IO_ERROR) |
| // path is released |
| return IO_ERROR; |
| |
| if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| decrement_counters_in_path(&s_path_to_neighbor_father); |
| decrement_bcount(*pp_s_com_father); |
| return REPEAT_SEARCH; |
| } |
| |
| *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); |
| |
| RFALSE(B_LEVEL(*pp_s_father) != n_h + 1, |
| "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father); |
| RFALSE(s_path_to_neighbor_father.path_length < |
| FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small"); |
| |
| s_path_to_neighbor_father.path_length--; |
| decrement_counters_in_path(&s_path_to_neighbor_father); |
| return CARRY_ON; |
| } |
| |
| /* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of |
| * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset], |
| * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset]. |
| * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset]. |
| * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| * CARRY_ON - schedule didn't occur while the function worked; |
| */ |
| static int get_parents(struct tree_balance *p_s_tb, int n_h) |
| { |
| struct treepath *p_s_path = p_s_tb->tb_path; |
| int n_position, |
| n_ret_value, |
| n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); |
| struct buffer_head *p_s_curf, *p_s_curcf; |
| |
| /* Current node is the root of the tree or will be root of the tree */ |
| if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) { |
| /* The root can not have parents. |
| Release nodes which previously were obtained as parents of the current node neighbors. */ |
| decrement_bcount(p_s_tb->FL[n_h]); |
| decrement_bcount(p_s_tb->CFL[n_h]); |
| decrement_bcount(p_s_tb->FR[n_h]); |
| decrement_bcount(p_s_tb->CFR[n_h]); |
| p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] = |
| p_s_tb->CFR[n_h] = NULL; |
| return CARRY_ON; |
| } |
| |
| /* Get parent FL[n_path_offset] of L[n_path_offset]. */ |
| if ((n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1))) { |
| /* Current node is not the first child of its parent. */ |
| /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */ |
| p_s_curf = p_s_curcf = |
| PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); |
| get_bh(p_s_curf); |
| get_bh(p_s_curf); |
| p_s_tb->lkey[n_h] = n_position - 1; |
| } else { |
| /* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node. |
| Calculate current common parent of L[n_path_offset] and the current node. Note that |
| CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset]. |
| Calculate lkey[n_path_offset]. */ |
| if ((n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, |
| &p_s_curcf, |
| LEFT_PARENTS)) != CARRY_ON) |
| return n_ret_value; |
| } |
| |
| decrement_bcount(p_s_tb->FL[n_h]); |
| p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */ |
| decrement_bcount(p_s_tb->CFL[n_h]); |
| p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */ |
| |
| RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) || |
| (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)), |
| "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf); |
| |
| /* Get parent FR[n_h] of R[n_h]. */ |
| |
| /* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */ |
| if (n_position == B_NR_ITEMS(PATH_H_PBUFFER(p_s_path, n_h + 1))) { |
| /* Calculate current parent of R[n_h], which is the right neighbor of F[n_h]. |
| Calculate current common parent of R[n_h] and current node. Note that CFR[n_h] |
| not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */ |
| if ((n_ret_value = |
| get_far_parent(p_s_tb, n_h + 1, &p_s_curf, &p_s_curcf, |
| RIGHT_PARENTS)) != CARRY_ON) |
| return n_ret_value; |
| } else { |
| /* Current node is not the last child of its parent F[n_h]. */ |
| /*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2; */ |
| p_s_curf = p_s_curcf = |
| PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); |
| get_bh(p_s_curf); |
| get_bh(p_s_curf); |
| p_s_tb->rkey[n_h] = n_position; |
| } |
| |
| decrement_bcount(p_s_tb->FR[n_h]); |
| p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */ |
| |
| decrement_bcount(p_s_tb->CFR[n_h]); |
| p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */ |
| |
| RFALSE((p_s_curf && !B_IS_IN_TREE(p_s_curf)) || |
| (p_s_curcf && !B_IS_IN_TREE(p_s_curcf)), |
| "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf); |
| |
| return CARRY_ON; |
| } |
| |
| /* it is possible to remove node as result of shiftings to |
| neighbors even when we insert or paste item. */ |
| static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree, |
| struct tree_balance *tb, int h) |
| { |
| struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| int levbytes = tb->insert_size[h]; |
| struct item_head *ih; |
| struct reiserfs_key *r_key = NULL; |
| |
| ih = B_N_PITEM_HEAD(Sh, 0); |
| if (tb->CFR[h]) |
| r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]); |
| |
| if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes |
| /* shifting may merge items which might save space */ |
| - |
| ((!h |
| && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0) |
| - |
| ((!h && r_key |
| && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0) |
| + ((h) ? KEY_SIZE : 0)) { |
| /* node can not be removed */ |
| if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ |
| if (!h) |
| tb->s0num = |
| B_NR_ITEMS(Sh) + |
| ((mode == M_INSERT) ? 1 : 0); |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| } |
| } |
| PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]); |
| return !NO_BALANCING_NEEDED; |
| } |
| |
| /* Check whether current node S[h] is balanced when increasing its size by |
| * Inserting or Pasting. |
| * Calculate parameters for balancing for current level h. |
| * Parameters: |
| * tb tree_balance structure; |
| * h current level of the node; |
| * inum item number in S[h]; |
| * mode i - insert, p - paste; |
| * Returns: 1 - schedule occurred; |
| * 0 - balancing for higher levels needed; |
| * -1 - no balancing for higher levels needed; |
| * -2 - no disk space. |
| */ |
| /* ip means Inserting or Pasting */ |
| static int ip_check_balance(struct tree_balance *tb, int h) |
| { |
| struct virtual_node *vn = tb->tb_vn; |
| int levbytes, /* Number of bytes that must be inserted into (value |
| is negative if bytes are deleted) buffer which |
| contains node being balanced. The mnemonic is |
| that the attempted change in node space used level |
| is levbytes bytes. */ |
| n_ret_value; |
| |
| int lfree, sfree, rfree /* free space in L, S and R */ ; |
| |
| /* nver is short for number of vertixes, and lnver is the number if |
| we shift to the left, rnver is the number if we shift to the |
| right, and lrnver is the number if we shift in both directions. |
| The goal is to minimize first the number of vertixes, and second, |
| the number of vertixes whose contents are changed by shifting, |
| and third the number of uncached vertixes whose contents are |
| changed by shifting and must be read from disk. */ |
| int nver, lnver, rnver, lrnver; |
| |
| /* used at leaf level only, S0 = S[0] is the node being balanced, |
| sInum [ I = 0,1,2 ] is the number of items that will |
| remain in node SI after balancing. S1 and S2 are new |
| nodes that might be created. */ |
| |
| /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters. |
| where 4th parameter is s1bytes and 5th - s2bytes |
| */ |
| short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases |
| 0,1 - do not shift and do not shift but bottle |
| 2 - shift only whole item to left |
| 3 - shift to left and bottle as much as possible |
| 4,5 - shift to right (whole items and as much as possible |
| 6,7 - shift to both directions (whole items and as much as possible) |
| */ |
| |
| /* Sh is the node whose balance is currently being checked */ |
| struct buffer_head *Sh; |
| |
| Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| levbytes = tb->insert_size[h]; |
| |
| /* Calculate balance parameters for creating new root. */ |
| if (!Sh) { |
| if (!h) |
| reiserfs_panic(tb->tb_sb, |
| "vs-8210: ip_check_balance: S[0] can not be 0"); |
| switch (n_ret_value = get_empty_nodes(tb, h)) { |
| case CARRY_ON: |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ |
| |
| case NO_DISK_SPACE: |
| case REPEAT_SEARCH: |
| return n_ret_value; |
| default: |
| reiserfs_panic(tb->tb_sb, |
| "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes"); |
| } |
| } |
| |
| if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */ |
| return n_ret_value; |
| |
| sfree = B_FREE_SPACE(Sh); |
| |
| /* get free space of neighbors */ |
| rfree = get_rfree(tb, h); |
| lfree = get_lfree(tb, h); |
| |
| if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) == |
| NO_BALANCING_NEEDED) |
| /* and new item fits into node S[h] without any shifting */ |
| return NO_BALANCING_NEEDED; |
| |
| create_virtual_node(tb, h); |
| |
| /* |
| determine maximal number of items we can shift to the left neighbor (in tb structure) |
| and the maximal number of bytes that can flow to the left neighbor |
| from the left most liquid item that cannot be shifted from S[0] entirely (returned value) |
| */ |
| check_left(tb, h, lfree); |
| |
| /* |
| determine maximal number of items we can shift to the right neighbor (in tb structure) |
| and the maximal number of bytes that can flow to the right neighbor |
| from the right most liquid item that cannot be shifted from S[0] entirely (returned value) |
| */ |
| check_right(tb, h, rfree); |
| |
| /* all contents of internal node S[h] can be moved into its |
| neighbors, S[h] will be removed after balancing */ |
| if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { |
| int to_r; |
| |
| /* Since we are working on internal nodes, and our internal |
| nodes have fixed size entries, then we can balance by the |
| number of items rather than the space they consume. In this |
| routine we set the left node equal to the right node, |
| allowing a difference of less than or equal to 1 child |
| pointer. */ |
| to_r = |
| ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + |
| vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - |
| tb->rnum[h]); |
| set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, |
| -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* this checks balance condition, that any two neighboring nodes can not fit in one node */ |
| RFALSE(h && |
| (tb->lnum[h] >= vn->vn_nr_item + 1 || |
| tb->rnum[h] >= vn->vn_nr_item + 1), |
| "vs-8220: tree is not balanced on internal level"); |
| RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || |
| (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))), |
| "vs-8225: tree is not balanced on leaf level"); |
| |
| /* all contents of S[0] can be moved into its neighbors |
| S[0] will be removed after balancing. */ |
| if (!h && is_leaf_removable(tb)) |
| return CARRY_ON; |
| |
| /* why do we perform this check here rather than earlier?? |
| Answer: we can win 1 node in some cases above. Moreover we |
| checked it above, when we checked, that S[0] is not removable |
| in principle */ |
| if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ |
| if (!h) |
| tb->s0num = vn->vn_nr_item; |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| } |
| |
| { |
| int lpar, rpar, nset, lset, rset, lrset; |
| /* |
| * regular overflowing of the node |
| */ |
| |
| /* get_num_ver works in 2 modes (FLOW & NO_FLOW) |
| lpar, rpar - number of items we can shift to left/right neighbor (including splitting item) |
| nset, lset, rset, lrset - shows, whether flowing items give better packing |
| */ |
| #define FLOW 1 |
| #define NO_FLOW 0 /* do not any splitting */ |
| |
| /* we choose one the following */ |
| #define NOTHING_SHIFT_NO_FLOW 0 |
| #define NOTHING_SHIFT_FLOW 5 |
| #define LEFT_SHIFT_NO_FLOW 10 |
| #define LEFT_SHIFT_FLOW 15 |
| #define RIGHT_SHIFT_NO_FLOW 20 |
| #define RIGHT_SHIFT_FLOW 25 |
| #define LR_SHIFT_NO_FLOW 30 |
| #define LR_SHIFT_FLOW 35 |
| |
| lpar = tb->lnum[h]; |
| rpar = tb->rnum[h]; |
| |
| /* calculate number of blocks S[h] must be split into when |
| nothing is shifted to the neighbors, |
| as well as number of items in each part of the split node (s012 numbers), |
| and number of bytes (s1bytes) of the shared drop which flow to S1 if any */ |
| nset = NOTHING_SHIFT_NO_FLOW; |
| nver = get_num_ver(vn->vn_mode, tb, h, |
| 0, -1, h ? vn->vn_nr_item : 0, -1, |
| snum012, NO_FLOW); |
| |
| if (!h) { |
| int nver1; |
| |
| /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */ |
| nver1 = get_num_ver(vn->vn_mode, tb, h, |
| 0, -1, 0, -1, |
| snum012 + NOTHING_SHIFT_FLOW, FLOW); |
| if (nver > nver1) |
| nset = NOTHING_SHIFT_FLOW, nver = nver1; |
| } |
| |
| /* calculate number of blocks S[h] must be split into when |
| l_shift_num first items and l_shift_bytes of the right most |
| liquid item to be shifted are shifted to the left neighbor, |
| as well as number of items in each part of the splitted node (s012 numbers), |
| and number of bytes (s1bytes) of the shared drop which flow to S1 if any |
| */ |
| lset = LEFT_SHIFT_NO_FLOW; |
| lnver = get_num_ver(vn->vn_mode, tb, h, |
| lpar - ((h || tb->lbytes == -1) ? 0 : 1), |
| -1, h ? vn->vn_nr_item : 0, -1, |
| snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); |
| if (!h) { |
| int lnver1; |
| |
| lnver1 = get_num_ver(vn->vn_mode, tb, h, |
| lpar - |
| ((tb->lbytes != -1) ? 1 : 0), |
| tb->lbytes, 0, -1, |
| snum012 + LEFT_SHIFT_FLOW, FLOW); |
| if (lnver > lnver1) |
| lset = LEFT_SHIFT_FLOW, lnver = lnver1; |
| } |
| |
| /* calculate number of blocks S[h] must be split into when |
| r_shift_num first items and r_shift_bytes of the left most |
| liquid item to be shifted are shifted to the right neighbor, |
| as well as number of items in each part of the splitted node (s012 numbers), |
| and number of bytes (s1bytes) of the shared drop which flow to S1 if any |
| */ |
| rset = RIGHT_SHIFT_NO_FLOW; |
| rnver = get_num_ver(vn->vn_mode, tb, h, |
| 0, -1, |
| h ? (vn->vn_nr_item - rpar) : (rpar - |
| ((tb-> |
| rbytes != |
| -1) ? 1 : |
| 0)), -1, |
| snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); |
| if (!h) { |
| int rnver1; |
| |
| rnver1 = get_num_ver(vn->vn_mode, tb, h, |
| 0, -1, |
| (rpar - |
| ((tb->rbytes != -1) ? 1 : 0)), |
| tb->rbytes, |
| snum012 + RIGHT_SHIFT_FLOW, FLOW); |
| |
| if (rnver > rnver1) |
| rset = RIGHT_SHIFT_FLOW, rnver = rnver1; |
| } |
| |
| /* calculate number of blocks S[h] must be split into when |
| items are shifted in both directions, |
| as well as number of items in each part of the splitted node (s012 numbers), |
| and number of bytes (s1bytes) of the shared drop which flow to S1 if any |
| */ |
| lrset = LR_SHIFT_NO_FLOW; |
| lrnver = get_num_ver(vn->vn_mode, tb, h, |
| lpar - ((h || tb->lbytes == -1) ? 0 : 1), |
| -1, |
| h ? (vn->vn_nr_item - rpar) : (rpar - |
| ((tb-> |
| rbytes != |
| -1) ? 1 : |
| 0)), -1, |
| snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); |
| if (!h) { |
| int lrnver1; |
| |
| lrnver1 = get_num_ver(vn->vn_mode, tb, h, |
| lpar - |
| ((tb->lbytes != -1) ? 1 : 0), |
| tb->lbytes, |
| (rpar - |
| ((tb->rbytes != -1) ? 1 : 0)), |
| tb->rbytes, |
| snum012 + LR_SHIFT_FLOW, FLOW); |
| if (lrnver > lrnver1) |
| lrset = LR_SHIFT_FLOW, lrnver = lrnver1; |
| } |
| |
| /* Our general shifting strategy is: |
| 1) to minimized number of new nodes; |
| 2) to minimized number of neighbors involved in shifting; |
| 3) to minimized number of disk reads; */ |
| |
| /* we can win TWO or ONE nodes by shifting in both directions */ |
| if (lrnver < lnver && lrnver < rnver) { |
| RFALSE(h && |
| (tb->lnum[h] != 1 || |
| tb->rnum[h] != 1 || |
| lrnver != 1 || rnver != 2 || lnver != 2 |
| || h != 1), "vs-8230: bad h"); |
| if (lrset == LR_SHIFT_FLOW) |
| set_parameters(tb, h, tb->lnum[h], tb->rnum[h], |
| lrnver, snum012 + lrset, |
| tb->lbytes, tb->rbytes); |
| else |
| set_parameters(tb, h, |
| tb->lnum[h] - |
| ((tb->lbytes == -1) ? 0 : 1), |
| tb->rnum[h] - |
| ((tb->rbytes == -1) ? 0 : 1), |
| lrnver, snum012 + lrset, -1, -1); |
| |
| return CARRY_ON; |
| } |
| |
| /* if shifting doesn't lead to better packing then don't shift */ |
| if (nver == lrnver) { |
| set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1, |
| -1); |
| return CARRY_ON; |
| } |
| |
| /* now we know that for better packing shifting in only one |
| direction either to the left or to the right is required */ |
| |
| /* if shifting to the left is better than shifting to the right */ |
| if (lnver < rnver) { |
| SET_PAR_SHIFT_LEFT; |
| return CARRY_ON; |
| } |
| |
| /* if shifting to the right is better than shifting to the left */ |
| if (lnver > rnver) { |
| SET_PAR_SHIFT_RIGHT; |
| return CARRY_ON; |
| } |
| |
| /* now shifting in either direction gives the same number |
| of nodes and we can make use of the cached neighbors */ |
| if (is_left_neighbor_in_cache(tb, h)) { |
| SET_PAR_SHIFT_LEFT; |
| return CARRY_ON; |
| } |
| |
| /* shift to the right independently on whether the right neighbor in cache or not */ |
| SET_PAR_SHIFT_RIGHT; |
| return CARRY_ON; |
| } |
| } |
| |
| /* Check whether current node S[h] is balanced when Decreasing its size by |
| * Deleting or Cutting for INTERNAL node of S+tree. |
| * Calculate parameters for balancing for current level h. |
| * Parameters: |
| * tb tree_balance structure; |
| * h current level of the node; |
| * inum item number in S[h]; |
| * mode i - insert, p - paste; |
| * Returns: 1 - schedule occurred; |
| * 0 - balancing for higher levels needed; |
| * -1 - no balancing for higher levels needed; |
| * -2 - no disk space. |
| * |
| * Note: Items of internal nodes have fixed size, so the balance condition for |
| * the internal part of S+tree is as for the B-trees. |
| */ |
| static int dc_check_balance_internal(struct tree_balance *tb, int h) |
| { |
| struct virtual_node *vn = tb->tb_vn; |
| |
| /* Sh is the node whose balance is currently being checked, |
| and Fh is its father. */ |
| struct buffer_head *Sh, *Fh; |
| int maxsize, n_ret_value; |
| int lfree, rfree /* free space in L and R */ ; |
| |
| Sh = PATH_H_PBUFFER(tb->tb_path, h); |
| Fh = PATH_H_PPARENT(tb->tb_path, h); |
| |
| maxsize = MAX_CHILD_SIZE(Sh); |
| |
| /* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */ |
| /* new_nr_item = number of items node would have if operation is */ |
| /* performed without balancing (new_nr_item); */ |
| create_virtual_node(tb, h); |
| |
| if (!Fh) { /* S[h] is the root. */ |
| if (vn->vn_nr_item > 0) { |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ |
| } |
| /* new_nr_item == 0. |
| * Current root will be deleted resulting in |
| * decrementing the tree height. */ |
| set_parameters(tb, h, 0, 0, 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) |
| return n_ret_value; |
| |
| /* get free space of neighbors */ |
| rfree = get_rfree(tb, h); |
| lfree = get_lfree(tb, h); |
| |
| /* determine maximal number of items we can fit into neighbors */ |
| check_left(tb, h, lfree); |
| check_right(tb, h, rfree); |
| |
| if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid. |
| * In this case we balance only if it leads to better packing. */ |
| if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors, |
| * which is impossible with greater values of new_nr_item. */ |
| if (tb->lnum[h] >= vn->vn_nr_item + 1) { |
| /* All contents of S[h] can be moved to L[h]. */ |
| int n; |
| int order_L; |
| |
| order_L = |
| ((n = |
| PATH_H_B_ITEM_ORDER(tb->tb_path, |
| h)) == |
| 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; |
| n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / |
| (DC_SIZE + KEY_SIZE); |
| set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, |
| -1); |
| return CARRY_ON; |
| } |
| |
| if (tb->rnum[h] >= vn->vn_nr_item + 1) { |
| /* All contents of S[h] can be moved to R[h]. */ |
| int n; |
| int order_R; |
| |
| order_R = |
| ((n = |
| PATH_H_B_ITEM_ORDER(tb->tb_path, |
| h)) == |
| B_NR_ITEMS(Fh)) ? 0 : n + 1; |
| n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / |
| (DC_SIZE + KEY_SIZE); |
| set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, |
| -1); |
| return CARRY_ON; |
| } |
| } |
| |
| if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { |
| /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ |
| int to_r; |
| |
| to_r = |
| ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - |
| tb->rnum[h] + vn->vn_nr_item + 1) / 2 - |
| (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); |
| set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, |
| 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* Balancing does not lead to better packing. */ |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| } |
| |
| /* Current node contain insufficient number of items. Balancing is required. */ |
| /* Check whether we can merge S[h] with left neighbor. */ |
| if (tb->lnum[h] >= vn->vn_nr_item + 1) |
| if (is_left_neighbor_in_cache(tb, h) |
| || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) { |
| int n; |
| int order_L; |
| |
| order_L = |
| ((n = |
| PATH_H_B_ITEM_ORDER(tb->tb_path, |
| h)) == |
| 0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; |
| n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE + |
| KEY_SIZE); |
| set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* Check whether we can merge S[h] with right neighbor. */ |
| if (tb->rnum[h] >= vn->vn_nr_item + 1) { |
| int n; |
| int order_R; |
| |
| order_R = |
| ((n = |
| PATH_H_B_ITEM_ORDER(tb->tb_path, |
| h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1); |
| n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE + |
| KEY_SIZE); |
| set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ |
| if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) { |
| int to_r; |
| |
| to_r = |
| ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] + |
| vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - |
| tb->rnum[h]); |
| set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, |
| -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* For internal nodes try to borrow item from a neighbor */ |
| RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); |
| |
| /* Borrow one or two items from caching neighbor */ |
| if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) { |
| int from_l; |
| |
| from_l = |
| (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + |
| 1) / 2 - (vn->vn_nr_item + 1); |
| set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| set_parameters(tb, h, 0, |
| -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item + |
| 1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* Check whether current node S[h] is balanced when Decreasing its size by |
| * Deleting or Truncating for LEAF node of S+tree. |
| * Calculate parameters for balancing for current level h. |
| * Parameters: |
| * tb tree_balance structure; |
| * h current level of the node; |
| * inum item number in S[h]; |
| * mode i - insert, p - paste; |
| * Returns: 1 - schedule occurred; |
| * 0 - balancing for higher levels needed; |
| * -1 - no balancing for higher levels needed; |
| * -2 - no disk space. |
| */ |
| static int dc_check_balance_leaf(struct tree_balance *tb, int h) |
| { |
| struct virtual_node *vn = tb->tb_vn; |
| |
| /* Number of bytes that must be deleted from |
| (value is negative if bytes are deleted) buffer which |
| contains node being balanced. The mnemonic is that the |
| attempted change in node space used level is levbytes bytes. */ |
| int levbytes; |
| /* the maximal item size */ |
| int maxsize, n_ret_value; |
| /* S0 is the node whose balance is currently being checked, |
| and F0 is its father. */ |
| struct buffer_head *S0, *F0; |
| int lfree, rfree /* free space in L and R */ ; |
| |
| S0 = PATH_H_PBUFFER(tb->tb_path, 0); |
| F0 = PATH_H_PPARENT(tb->tb_path, 0); |
| |
| levbytes = tb->insert_size[h]; |
| |
| maxsize = MAX_CHILD_SIZE(S0); /* maximal possible size of an item */ |
| |
| if (!F0) { /* S[0] is the root now. */ |
| |
| RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0), |
| "vs-8240: attempt to create empty buffer tree"); |
| |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| } |
| |
| if ((n_ret_value = get_parents(tb, h)) != CARRY_ON) |
| return n_ret_value; |
| |
| /* get free space of neighbors */ |
| rfree = get_rfree(tb, h); |
| lfree = get_lfree(tb, h); |
| |
| create_virtual_node(tb, h); |
| |
| /* if 3 leaves can be merge to one, set parameters and return */ |
| if (are_leaves_removable(tb, lfree, rfree)) |
| return CARRY_ON; |
| |
| /* determine maximal number of items we can shift to the left/right neighbor |
| and the maximal number of bytes that can flow to the left/right neighbor |
| from the left/right most liquid item that cannot be shifted from S[0] entirely |
| */ |
| check_left(tb, h, lfree); |
| check_right(tb, h, rfree); |
| |
| /* check whether we can merge S with left neighbor. */ |
| if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) |
| if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */ |
| !tb->FR[h]) { |
| |
| RFALSE(!tb->FL[h], |
| "vs-8245: dc_check_balance_leaf: FL[h] must exist"); |
| |
| /* set parameter to merge S[0] with its left neighbor */ |
| set_parameters(tb, h, -1, 0, 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* check whether we can merge S[0] with right neighbor. */ |
| if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { |
| set_parameters(tb, h, 0, -1, 0, NULL, -1, -1); |
| return CARRY_ON; |
| } |
| |
| /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */ |
| if (is_leaf_removable(tb)) |
| return CARRY_ON; |
| |
| /* Balancing is not required. */ |
| tb->s0num = vn->vn_nr_item; |
| set_parameters(tb, h, 0, 0, 1, NULL, -1, -1); |
| return NO_BALANCING_NEEDED; |
| } |
| |
| /* Check whether current node S[h] is balanced when Decreasing its size by |
| * Deleting or Cutting. |
| * Calculate parameters for balancing for current level h. |
| * Parameters: |
| * tb tree_balance structure; |
| * h current level of the node; |
| * inum item number in S[h]; |
| * mode d - delete, c - cut. |
| * Returns: 1 - schedule occurred; |
| * 0 - balancing for higher levels needed; |
| * -1 - no balancing for higher levels needed; |
| * -2 - no disk space. |
| */ |
| static int dc_check_balance(struct tree_balance *tb, int h) |
| { |
| RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)), |
| "vs-8250: S is not initialized"); |
| |
| if (h) |
| return dc_check_balance_internal(tb, h); |
| else |
| return dc_check_balance_leaf(tb, h); |
| } |
| |
| /* Check whether current node S[h] is balanced. |
| * Calculate parameters for balancing for current level h. |
| * Parameters: |
| * |
| * tb tree_balance structure: |
| * |
| * tb is a large structure that must be read about in the header file |
| * at the same time as this procedure if the reader is to successfully |
| * understand this procedure |
| * |
| * h current level of the node; |
| * inum item number in S[h]; |
| * mode i - insert, p - paste, d - delete, c - cut. |
| * Returns: 1 - schedule occurred; |
| * 0 - balancing for higher levels needed; |
| * -1 - no balancing for higher levels needed; |
| * -2 - no disk space. |
| */ |
| static int check_balance(int mode, |
| struct tree_balance *tb, |
| int h, |
| int inum, |
| int pos_in_item, |
| struct item_head *ins_ih, const void *data) |
| { |
| struct virtual_node *vn; |
| |
| vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); |
| vn->vn_free_ptr = (char *)(tb->tb_vn + 1); |
| vn->vn_mode = mode; |
| vn->vn_affected_item_num = inum; |
| vn->vn_pos_in_item = pos_in_item; |
| vn->vn_ins_ih = ins_ih; |
| vn->vn_data = data; |
| |
| RFALSE(mode == M_INSERT && !vn->vn_ins_ih, |
| "vs-8255: ins_ih can not be 0 in insert mode"); |
| |
| if (tb->insert_size[h] > 0) |
| /* Calculate balance parameters when size of node is increasing. */ |
| return ip_check_balance(tb, h); |
| |
| /* Calculate balance parameters when size of node is decreasing. */ |
| return dc_check_balance(tb, h); |
| } |
| |
| /* Check whether parent at the path is the really parent of the current node.*/ |
| static int get_direct_parent(struct tree_balance *p_s_tb, int n_h) |
| { |
| struct buffer_head *p_s_bh; |
| struct treepath *p_s_path = p_s_tb->tb_path; |
| int n_position, |
| n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); |
| |
| /* We are in the root or in the new root. */ |
| if (n_path_offset <= FIRST_PATH_ELEMENT_OFFSET) { |
| |
| RFALSE(n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, |
| "PAP-8260: invalid offset in the path"); |
| |
| if (PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)-> |
| b_blocknr == SB_ROOT_BLOCK(p_s_tb->tb_sb)) { |
| /* Root is not changed. */ |
| PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL; |
| PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0; |
| return CARRY_ON; |
| } |
| return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */ |
| } |
| |
| if (!B_IS_IN_TREE |
| (p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))) |
| return REPEAT_SEARCH; /* Parent in the path is not in the tree. */ |
| |
| if ((n_position = |
| PATH_OFFSET_POSITION(p_s_path, |
| n_path_offset - 1)) > B_NR_ITEMS(p_s_bh)) |
| return REPEAT_SEARCH; |
| |
| if (B_N_CHILD_NUM(p_s_bh, n_position) != |
| PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr) |
| /* Parent in the path is not parent of the current node in the tree. */ |
| return REPEAT_SEARCH; |
| |
| if (buffer_locked(p_s_bh)) { |
| __wait_on_buffer(p_s_bh); |
| if (FILESYSTEM_CHANGED_TB(p_s_tb)) |
| return REPEAT_SEARCH; |
| } |
| |
| return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */ |
| } |
| |
| /* Using lnum[n_h] and rnum[n_h] we should determine what neighbors |
| * of S[n_h] we |
| * need in order to balance S[n_h], and get them if necessary. |
| * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked; |
| * CARRY_ON - schedule didn't occur while the function worked; |
| */ |
| static int get_neighbors(struct tree_balance *p_s_tb, int n_h) |
| { |
| int n_child_position, |
| n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1); |
| unsigned long n_son_number; |
| struct super_block *p_s_sb = p_s_tb->tb_sb; |
| struct buffer_head *p_s_bh; |
| |
| PROC_INFO_INC(p_s_sb, get_neighbors[n_h]); |
| |
| if (p_s_tb->lnum[n_h]) { |
| /* We need left neighbor to balance S[n_h]. */ |
| PROC_INFO_INC(p_s_sb, need_l_neighbor[n_h]); |
| p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); |
| |
| RFALSE(p_s_bh == p_s_tb->FL[n_h] && |
| !PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset), |
| "PAP-8270: invalid position in the parent"); |
| |
| n_child_position = |
| (p_s_bh == |
| p_s_tb->FL[n_h]) ? p_s_tb->lkey[n_h] : B_NR_ITEMS(p_s_tb-> |
| FL[n_h]); |
| n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position); |
| p_s_bh = sb_bread(p_s_sb, n_son_number); |
| if (!p_s_bh) |
| return IO_ERROR; |
| if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| decrement_bcount(p_s_bh); |
| PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]); |
| return REPEAT_SEARCH; |
| } |
| |
| RFALSE(!B_IS_IN_TREE(p_s_tb->FL[n_h]) || |
| n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) || |
| B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) != |
| p_s_bh->b_blocknr, "PAP-8275: invalid parent"); |
| RFALSE(!B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child"); |
| RFALSE(!n_h && |
| B_FREE_SPACE(p_s_bh) != |
| MAX_CHILD_SIZE(p_s_bh) - |
| dc_size(B_N_CHILD(p_s_tb->FL[0], n_child_position)), |
| "PAP-8290: invalid child size of left neighbor"); |
| |
| decrement_bcount(p_s_tb->L[n_h]); |
| p_s_tb->L[n_h] = p_s_bh; |
| } |
| |
| if (p_s_tb->rnum[n_h]) { /* We need right neighbor to balance S[n_path_offset]. */ |
| PROC_INFO_INC(p_s_sb, need_r_neighbor[n_h]); |
| p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); |
| |
| RFALSE(p_s_bh == p_s_tb->FR[n_h] && |
| PATH_OFFSET_POSITION(p_s_tb->tb_path, |
| n_path_offset) >= |
| B_NR_ITEMS(p_s_bh), |
| "PAP-8295: invalid position in the parent"); |
| |
| n_child_position = |
| (p_s_bh == p_s_tb->FR[n_h]) ? p_s_tb->rkey[n_h] + 1 : 0; |
| n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position); |
| p_s_bh = sb_bread(p_s_sb, n_son_number); |
| if (!p_s_bh) |
| return IO_ERROR; |
| if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| decrement_bcount(p_s_bh); |
| PROC_INFO_INC(p_s_sb, get_neighbors_restart[n_h]); |
| return REPEAT_SEARCH; |
| } |
| decrement_bcount(p_s_tb->R[n_h]); |
| p_s_tb->R[n_h] = p_s_bh; |
| |
| RFALSE(!n_h |
| && B_FREE_SPACE(p_s_bh) != |
| MAX_CHILD_SIZE(p_s_bh) - |
| dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position)), |
| "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", |
| B_FREE_SPACE(p_s_bh), MAX_CHILD_SIZE(p_s_bh), |
| dc_size(B_N_CHILD(p_s_tb->FR[0], n_child_position))); |
| |
| } |
| return CARRY_ON; |
| } |
| |
| static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh) |
| { |
| int max_num_of_items; |
| int max_num_of_entries; |
| unsigned long blocksize = sb->s_blocksize; |
| |
| #define MIN_NAME_LEN 1 |
| |
| max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); |
| max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) / |
| (DEH_SIZE + MIN_NAME_LEN); |
| |
| return sizeof(struct virtual_node) + |
| max(max_num_of_items * sizeof(struct virtual_item), |
| sizeof(struct virtual_item) + sizeof(struct direntry_uarea) + |
| (max_num_of_entries - 1) * sizeof(__u16)); |
| } |
| |
| /* maybe we should fail balancing we are going to perform when kmalloc |
| fails several times. But now it will loop until kmalloc gets |
| required memory */ |
| static int get_mem_for_virtual_node(struct tree_balance *tb) |
| { |
| int check_fs = 0; |
| int size; |
| char *buf; |
| |
| size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path)); |
| |
| if (size > tb->vn_buf_size) { |
| /* we have to allocate more memory for virtual node */ |
| if (tb->vn_buf) { |
| /* free memory allocated before */ |
| kfree(tb->vn_buf); |
| /* this is not needed if kfree is atomic */ |
| check_fs = 1; |
| } |
| |
| /* virtual node requires now more memory */ |
| tb->vn_buf_size = size; |
| |
| /* get memory for virtual item */ |
| buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN); |
| if (!buf) { |
| /* getting memory with GFP_KERNEL priority may involve |
| balancing now (due to indirect_to_direct conversion on |
| dcache shrinking). So, release path and collected |
| resources here */ |
| free_buffers_in_tb(tb); |
| buf = kmalloc(size, GFP_NOFS); |
| if (!buf) { |
| tb->vn_buf_size = 0; |
| } |
| tb->vn_buf = buf; |
| schedule(); |
| return REPEAT_SEARCH; |
| } |
| |
| tb->vn_buf = buf; |
| } |
| |
| if (check_fs && FILESYSTEM_CHANGED_TB(tb)) |
| return REPEAT_SEARCH; |
| |
| return CARRY_ON; |
| } |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| static void tb_buffer_sanity_check(struct super_block *p_s_sb, |
| struct buffer_head *p_s_bh, |
| const char *descr, int level) |
| { |
| if (p_s_bh) { |
| if (atomic_read(&(p_s_bh->b_count)) <= 0) { |
| |
| reiserfs_panic(p_s_sb, |
| "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n", |
| descr, level, p_s_bh); |
| } |
| |
| if (!buffer_uptodate(p_s_bh)) { |
| reiserfs_panic(p_s_sb, |
| "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n", |
| descr, level, p_s_bh); |
| } |
| |
| if (!B_IS_IN_TREE(p_s_bh)) { |
| reiserfs_panic(p_s_sb, |
| "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n", |
| descr, level, p_s_bh); |
| } |
| |
| if (p_s_bh->b_bdev != p_s_sb->s_bdev) { |
| reiserfs_panic(p_s_sb, |
| "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n", |
| descr, level, p_s_bh); |
| } |
| |
| if (p_s_bh->b_size != p_s_sb->s_blocksize) { |
| reiserfs_panic(p_s_sb, |
| "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n", |
| descr, level, p_s_bh); |
| } |
| |
| if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) { |
| reiserfs_panic(p_s_sb, |
| "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n", |
| descr, level, p_s_bh); |
| } |
| } |
| } |
| #else |
| static void tb_buffer_sanity_check(struct super_block *p_s_sb, |
| struct buffer_head *p_s_bh, |
| const char *descr, int level) |
| {; |
| } |
| #endif |
| |
| static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh) |
| { |
| return reiserfs_prepare_for_journal(s, bh, 0); |
| } |
| |
| static int wait_tb_buffers_until_unlocked(struct tree_balance *p_s_tb) |
| { |
| struct buffer_head *locked; |
| #ifdef CONFIG_REISERFS_CHECK |
| int repeat_counter = 0; |
| #endif |
| int i; |
| |
| do { |
| |
| locked = NULL; |
| |
| for (i = p_s_tb->tb_path->path_length; |
| !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) { |
| if (PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { |
| /* if I understand correctly, we can only be sure the last buffer |
| ** in the path is in the tree --clm |
| */ |
| #ifdef CONFIG_REISERFS_CHECK |
| if (PATH_PLAST_BUFFER(p_s_tb->tb_path) == |
| PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { |
| tb_buffer_sanity_check(p_s_tb->tb_sb, |
| PATH_OFFSET_PBUFFER |
| (p_s_tb->tb_path, |
| i), "S", |
| p_s_tb->tb_path-> |
| path_length - i); |
| } |
| #endif |
| if (!clear_all_dirty_bits(p_s_tb->tb_sb, |
| PATH_OFFSET_PBUFFER |
| (p_s_tb->tb_path, |
| i))) { |
| locked = |
| PATH_OFFSET_PBUFFER(p_s_tb->tb_path, |
| i); |
| } |
| } |
| } |
| |
| for (i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i]; |
| i++) { |
| |
| if (p_s_tb->lnum[i]) { |
| |
| if (p_s_tb->L[i]) { |
| tb_buffer_sanity_check(p_s_tb->tb_sb, |
| p_s_tb->L[i], |
| "L", i); |
| if (!clear_all_dirty_bits |
| (p_s_tb->tb_sb, p_s_tb->L[i])) |
| locked = p_s_tb->L[i]; |
| } |
| |
| if (!locked && p_s_tb->FL[i]) { |
| tb_buffer_sanity_check(p_s_tb->tb_sb, |
| p_s_tb->FL[i], |
| "FL", i); |
| if (!clear_all_dirty_bits |
| (p_s_tb->tb_sb, p_s_tb->FL[i])) |
| locked = p_s_tb->FL[i]; |
| } |
| |
| if (!locked && p_s_tb->CFL[i]) { |
| tb_buffer_sanity_check(p_s_tb->tb_sb, |
| p_s_tb->CFL[i], |
| "CFL", i); |
| if (!clear_all_dirty_bits |
| (p_s_tb->tb_sb, p_s_tb->CFL[i])) |
| locked = p_s_tb->CFL[i]; |
| } |
| |
| } |
| |
| if (!locked && (p_s_tb->rnum[i])) { |
| |
| if (p_s_tb->R[i]) { |
| tb_buffer_sanity_check(p_s_tb->tb_sb, |
| p_s_tb->R[i], |
| "R", i); |
| if (!clear_all_dirty_bits |
| (p_s_tb->tb_sb, p_s_tb->R[i])) |
| locked = p_s_tb->R[i]; |
| } |
| |
| if (!locked && p_s_tb->FR[i]) { |
| tb_buffer_sanity_check(p_s_tb->tb_sb, |
| p_s_tb->FR[i], |
| "FR", i); |
| if (!clear_all_dirty_bits |
| (p_s_tb->tb_sb, p_s_tb->FR[i])) |
| locked = p_s_tb->FR[i]; |
| } |
| |
| if (!locked && p_s_tb->CFR[i]) { |
| tb_buffer_sanity_check(p_s_tb->tb_sb, |
| p_s_tb->CFR[i], |
| "CFR", i); |
| if (!clear_all_dirty_bits |
| (p_s_tb->tb_sb, p_s_tb->CFR[i])) |
| locked = p_s_tb->CFR[i]; |
| } |
| } |
| } |
| /* as far as I can tell, this is not required. The FEB list seems |
| ** to be full of newly allocated nodes, which will never be locked, |
| ** dirty, or anything else. |
| ** To be safe, I'm putting in the checks and waits in. For the moment, |
| ** they are needed to keep the code in journal.c from complaining |
| ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well. |
| ** --clm |
| */ |
| for (i = 0; !locked && i < MAX_FEB_SIZE; i++) { |
| if (p_s_tb->FEB[i]) { |
| if (!clear_all_dirty_bits |
| (p_s_tb->tb_sb, p_s_tb->FEB[i])) |
| locked = p_s_tb->FEB[i]; |
| } |
| } |
| |
| if (locked) { |
| #ifdef CONFIG_REISERFS_CHECK |
| repeat_counter++; |
| if ((repeat_counter % 10000) == 0) { |
| reiserfs_warning(p_s_tb->tb_sb, |
| "wait_tb_buffers_until_released(): too many " |
| "iterations waiting for buffer to unlock " |
| "(%b)", locked); |
| |
| /* Don't loop forever. Try to recover from possible error. */ |
| |
| return (FILESYSTEM_CHANGED_TB(p_s_tb)) ? |
| REPEAT_SEARCH : CARRY_ON; |
| } |
| #endif |
| __wait_on_buffer(locked); |
| if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| return REPEAT_SEARCH; |
| } |
| } |
| |
| } while (locked); |
| |
| return CARRY_ON; |
| } |
| |
| /* Prepare for balancing, that is |
| * get all necessary parents, and neighbors; |
| * analyze what and where should be moved; |
| * get sufficient number of new nodes; |
| * Balancing will start only after all resources will be collected at a time. |
| * |
| * When ported to SMP kernels, only at the last moment after all needed nodes |
| * are collected in cache, will the resources be locked using the usual |
| * textbook ordered lock acquisition algorithms. Note that ensuring that |
| * this code neither write locks what it does not need to write lock nor locks out of order |
| * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans |
| * |
| * fix is meant in the sense of render unchanging |
| * |
| * Latency might be improved by first gathering a list of what buffers are needed |
| * and then getting as many of them in parallel as possible? -Hans |
| * |
| * Parameters: |
| * op_mode i - insert, d - delete, c - cut (truncate), p - paste (append) |
| * tb tree_balance structure; |
| * inum item number in S[h]; |
| * pos_in_item - comment this if you can |
| * ins_ih & ins_sd are used when inserting |
| * Returns: 1 - schedule occurred while the function worked; |
| * 0 - schedule didn't occur while the function worked; |
| * -1 - if no_disk_space |
| */ |
| |
| int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb, struct item_head *p_s_ins_ih, // item head of item being inserted |
| const void *data // inserted item or data to be pasted |
| ) |
| { |
| int n_ret_value, n_h, n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path); |
| int n_pos_in_item; |
| |
| /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared |
| ** during wait_tb_buffers_run |
| */ |
| int wait_tb_buffers_run = 0; |
| struct buffer_head *p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path); |
| |
| ++REISERFS_SB(p_s_tb->tb_sb)->s_fix_nodes; |
| |
| n_pos_in_item = p_s_tb->tb_path->pos_in_item; |
| |
| p_s_tb->fs_gen = get_generation(p_s_tb->tb_sb); |
| |
| /* we prepare and log the super here so it will already be in the |
| ** transaction when do_balance needs to change it. |
| ** This way do_balance won't have to schedule when trying to prepare |
| ** the super for logging |
| */ |
| reiserfs_prepare_for_journal(p_s_tb->tb_sb, |
| SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1); |
| journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb, |
| SB_BUFFER_WITH_SB(p_s_tb->tb_sb)); |
| if (FILESYSTEM_CHANGED_TB(p_s_tb)) |
| return REPEAT_SEARCH; |
| |
| /* if it possible in indirect_to_direct conversion */ |
| if (buffer_locked(p_s_tbS0)) { |
| __wait_on_buffer(p_s_tbS0); |
| if (FILESYSTEM_CHANGED_TB(p_s_tb)) |
| return REPEAT_SEARCH; |
| } |
| #ifdef CONFIG_REISERFS_CHECK |
| if (cur_tb) { |
| print_cur_tb("fix_nodes"); |
| reiserfs_panic(p_s_tb->tb_sb, |
| "PAP-8305: fix_nodes: there is pending do_balance"); |
| } |
| |
| if (!buffer_uptodate(p_s_tbS0) || !B_IS_IN_TREE(p_s_tbS0)) { |
| reiserfs_panic(p_s_tb->tb_sb, |
| "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate " |
| "at the beginning of fix_nodes or not in tree (mode %c)", |
| p_s_tbS0, p_s_tbS0, n_op_mode); |
| } |
| |
| /* Check parameters. */ |
| switch (n_op_mode) { |
| case M_INSERT: |
| if (n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0)) |
| reiserfs_panic(p_s_tb->tb_sb, |
| "PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert", |
| n_item_num, B_NR_ITEMS(p_s_tbS0)); |
| break; |
| case M_PASTE: |
| case M_DELETE: |
| case M_CUT: |
| if (n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0)) { |
| print_block(p_s_tbS0, 0, -1, -1); |
| reiserfs_panic(p_s_tb->tb_sb, |
| "PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n", |
| n_item_num, n_op_mode, |
| p_s_tb->insert_size[0]); |
| } |
| break; |
| default: |
| reiserfs_panic(p_s_tb->tb_sb, |
| "PAP-8340: fix_nodes: Incorrect mode of operation"); |
| } |
| #endif |
| |
| if (get_mem_for_virtual_node(p_s_tb) == REPEAT_SEARCH) |
| // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat |
| return REPEAT_SEARCH; |
| |
| /* Starting from the leaf level; for all levels n_h of the tree. */ |
| for (n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++) { |
| if ((n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON) { |
| goto repeat; |
| } |
| |
| if ((n_ret_value = |
| check_balance(n_op_mode, p_s_tb, n_h, n_item_num, |
| n_pos_in_item, p_s_ins_ih, |
| data)) != CARRY_ON) { |
| if (n_ret_value == NO_BALANCING_NEEDED) { |
| /* No balancing for higher levels needed. */ |
| if ((n_ret_value = |
| get_neighbors(p_s_tb, n_h)) != CARRY_ON) { |
| goto repeat; |
| } |
| if (n_h != MAX_HEIGHT - 1) |
| p_s_tb->insert_size[n_h + 1] = 0; |
| /* ok, analysis and resource gathering are complete */ |
| break; |
| } |
| goto repeat; |
| } |
| |
| if ((n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON) { |
| goto repeat; |
| } |
| |
| if ((n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON) { |
| goto repeat; /* No disk space, or schedule occurred and |
| analysis may be invalid and needs to be redone. */ |
| } |
| |
| if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h)) { |
| /* We have a positive insert size but no nodes exist on this |
| level, this means that we are creating a new root. */ |
| |
| RFALSE(p_s_tb->blknum[n_h] != 1, |
| "PAP-8350: creating new empty root"); |
| |
| if (n_h < MAX_HEIGHT - 1) |
| p_s_tb->insert_size[n_h + 1] = 0; |
| } else if (!PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1)) { |
| if (p_s_tb->blknum[n_h] > 1) { |
| /* The tree needs to be grown, so this node S[n_h] |
| which is the root node is split into two nodes, |
| and a new node (S[n_h+1]) will be created to |
| become the root node. */ |
| |
| RFALSE(n_h == MAX_HEIGHT - 1, |
| "PAP-8355: attempt to create too high of a tree"); |
| |
| p_s_tb->insert_size[n_h + 1] = |
| (DC_SIZE + |
| KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) + |
| DC_SIZE; |
| } else if (n_h < MAX_HEIGHT - 1) |
| p_s_tb->insert_size[n_h + 1] = 0; |
| } else |
| p_s_tb->insert_size[n_h + 1] = |
| (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1); |
| } |
| |
| if ((n_ret_value = wait_tb_buffers_until_unlocked(p_s_tb)) == CARRY_ON) { |
| if (FILESYSTEM_CHANGED_TB(p_s_tb)) { |
| wait_tb_buffers_run = 1; |
| n_ret_value = REPEAT_SEARCH; |
| goto repeat; |
| } else { |
| return CARRY_ON; |
| } |
| } else { |
| wait_tb_buffers_run = 1; |
| goto repeat; |
| } |
| |
| repeat: |
| // fix_nodes was unable to perform its calculation due to |
| // filesystem got changed under us, lack of free disk space or i/o |
| // failure. If the first is the case - the search will be |
| // repeated. For now - free all resources acquired so far except |
| // for the new allocated nodes |
| { |
| int i; |
| |
| /* Release path buffers. */ |
| if (wait_tb_buffers_run) { |
| pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path); |
| } else { |
| pathrelse(p_s_tb->tb_path); |
| } |
| /* brelse all resources collected for balancing */ |
| for (i = 0; i < MAX_HEIGHT; i++) { |
| if (wait_tb_buffers_run) { |
| reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, |
| p_s_tb->L[i]); |
| reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, |
| p_s_tb->R[i]); |
| reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, |
| p_s_tb->FL[i]); |
| reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, |
| p_s_tb->FR[i]); |
| reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, |
| p_s_tb-> |
| CFL[i]); |
| reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, |
| p_s_tb-> |
| CFR[i]); |
| } |
| |
| brelse(p_s_tb->L[i]); |
| p_s_tb->L[i] = NULL; |
| brelse(p_s_tb->R[i]); |
| p_s_tb->R[i] = NULL; |
| brelse(p_s_tb->FL[i]); |
| p_s_tb->FL[i] = NULL; |
| brelse(p_s_tb->FR[i]); |
| p_s_tb->FR[i] = NULL; |
| brelse(p_s_tb->CFL[i]); |
| p_s_tb->CFL[i] = NULL; |
| brelse(p_s_tb->CFR[i]); |
| p_s_tb->CFR[i] = NULL; |
| } |
| |
| if (wait_tb_buffers_run) { |
| for (i = 0; i < MAX_FEB_SIZE; i++) { |
| if (p_s_tb->FEB[i]) { |
| reiserfs_restore_prepared_buffer |
| (p_s_tb->tb_sb, p_s_tb->FEB[i]); |
| } |
| } |
| } |
| return n_ret_value; |
| } |
| |
| } |
| |
| /* Anatoly will probably forgive me renaming p_s_tb to tb. I just |
| wanted to make lines shorter */ |
| void unfix_nodes(struct tree_balance *tb) |
| { |
| int i; |
| |
| /* Release path buffers. */ |
| pathrelse_and_restore(tb->tb_sb, tb->tb_path); |
| |
| /* brelse all resources collected for balancing */ |
| for (i = 0; i < MAX_HEIGHT; i++) { |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]); |
| reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]); |
| |
| brelse(tb->L[i]); |
| brelse(tb->R[i]); |
| brelse(tb->FL[i]); |
| brelse(tb->FR[i]); |
| brelse(tb->CFL[i]); |
| brelse(tb->CFR[i]); |
| } |
| |
| /* deal with list of allocated (used and unused) nodes */ |
| for (i = 0; i < MAX_FEB_SIZE; i++) { |
| if (tb->FEB[i]) { |
| b_blocknr_t blocknr = tb->FEB[i]->b_blocknr; |
| /* de-allocated block which was not used by balancing and |
| bforget about buffer for it */ |
| brelse(tb->FEB[i]); |
| reiserfs_free_block(tb->transaction_handle, NULL, |
| blocknr, 0); |
| } |
| if (tb->used[i]) { |
| /* release used as new nodes including a new root */ |
| brelse(tb->used[i]); |
| } |
| } |
| |
| kfree(tb->vn_buf); |
| |
| } |