blob: ac9d2591bb6fca292cca0fc44171ef1d9a4a7575 [file] [log] [blame]
/*
* Driver for the Integrant ITD1000 "Zero-IF Tuner IC for Direct Broadcast Satellite"
*
* Copyright (c) 2007-8 Patrick Boettcher <pb@linuxtv.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include "dvb_frontend.h"
#include "itd1000.h"
#include "itd1000_priv.h"
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
#define itd_dbg(args...) do { \
if (debug) { \
printk(KERN_DEBUG "ITD1000: " args);\
} \
} while (0)
#define itd_warn(args...) do { \
printk(KERN_WARNING "ITD1000: " args); \
} while (0)
#define itd_info(args...) do { \
printk(KERN_INFO "ITD1000: " args); \
} while (0)
/* don't write more than one byte with flexcop behind */
static int itd1000_write_regs(struct itd1000_state *state, u8 reg, u8 v[], u8 len)
{
u8 buf[MAX_XFER_SIZE];
struct i2c_msg msg = {
.addr = state->cfg->i2c_address, .flags = 0, .buf = buf, .len = len+1
};
if (1 + len > sizeof(buf)) {
printk(KERN_WARNING
"itd1000: i2c wr reg=%04x: len=%d is too big!\n",
reg, len);
return -EINVAL;
}
buf[0] = reg;
memcpy(&buf[1], v, len);
/* itd_dbg("wr %02x: %02x\n", reg, v[0]); */
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "itd1000 I2C write failed\n");
return -EREMOTEIO;
}
return 0;
}
static int itd1000_read_reg(struct itd1000_state *state, u8 reg)
{
u8 val;
struct i2c_msg msg[2] = {
{ .addr = state->cfg->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = state->cfg->i2c_address, .flags = I2C_M_RD, .buf = &val, .len = 1 },
};
/* ugly flexcop workaround */
itd1000_write_regs(state, (reg - 1) & 0xff, &state->shadow[(reg - 1) & 0xff], 1);
if (i2c_transfer(state->i2c, msg, 2) != 2) {
itd_warn("itd1000 I2C read failed\n");
return -EREMOTEIO;
}
return val;
}
static inline int itd1000_write_reg(struct itd1000_state *state, u8 r, u8 v)
{
u8 tmp = v; /* see gcc.gnu.org/bugzilla/show_bug.cgi?id=81715 */
int ret = itd1000_write_regs(state, r, &tmp, 1);
state->shadow[r] = tmp;
return ret;
}
static struct {
u32 symbol_rate;
u8 pgaext : 4; /* PLLFH */
u8 bbgvmin : 4; /* BBGVMIN */
} itd1000_lpf_pga[] = {
{ 0, 0x8, 0x3 },
{ 5200000, 0x8, 0x3 },
{ 12200000, 0x4, 0x3 },
{ 15400000, 0x2, 0x3 },
{ 19800000, 0x2, 0x3 },
{ 21500000, 0x2, 0x3 },
{ 24500000, 0x2, 0x3 },
{ 28400000, 0x2, 0x3 },
{ 33400000, 0x2, 0x3 },
{ 34400000, 0x1, 0x4 },
{ 34400000, 0x1, 0x4 },
{ 38400000, 0x1, 0x4 },
{ 38400000, 0x1, 0x4 },
{ 40400000, 0x1, 0x4 },
{ 45400000, 0x1, 0x4 },
};
static void itd1000_set_lpf_bw(struct itd1000_state *state, u32 symbol_rate)
{
u8 i;
u8 con1 = itd1000_read_reg(state, CON1) & 0xfd;
u8 pllfh = itd1000_read_reg(state, PLLFH) & 0x0f;
u8 bbgvmin = itd1000_read_reg(state, BBGVMIN) & 0xf0;
u8 bw = itd1000_read_reg(state, BW) & 0xf0;
itd_dbg("symbol_rate = %d\n", symbol_rate);
/* not sure what is that ? - starting to download the table */
itd1000_write_reg(state, CON1, con1 | (1 << 1));
for (i = 0; i < ARRAY_SIZE(itd1000_lpf_pga); i++)
if (symbol_rate < itd1000_lpf_pga[i].symbol_rate) {
itd_dbg("symrate: index: %d pgaext: %x, bbgvmin: %x\n", i, itd1000_lpf_pga[i].pgaext, itd1000_lpf_pga[i].bbgvmin);
itd1000_write_reg(state, PLLFH, pllfh | (itd1000_lpf_pga[i].pgaext << 4));
itd1000_write_reg(state, BBGVMIN, bbgvmin | (itd1000_lpf_pga[i].bbgvmin));
itd1000_write_reg(state, BW, bw | (i & 0x0f));
break;
}
itd1000_write_reg(state, CON1, con1 | (0 << 1));
}
static struct {
u8 vcorg;
u32 fmax_rg;
} itd1000_vcorg[] = {
{ 1, 920000 },
{ 2, 971000 },
{ 3, 1031000 },
{ 4, 1091000 },
{ 5, 1171000 },
{ 6, 1281000 },
{ 7, 1381000 },
{ 8, 500000 }, /* this is intentional. */
{ 9, 1451000 },
{ 10, 1531000 },
{ 11, 1631000 },
{ 12, 1741000 },
{ 13, 1891000 },
{ 14, 2071000 },
{ 15, 2250000 },
};
static void itd1000_set_vco(struct itd1000_state *state, u32 freq_khz)
{
u8 i;
u8 gvbb_i2c = itd1000_read_reg(state, GVBB_I2C) & 0xbf;
u8 vco_chp1_i2c = itd1000_read_reg(state, VCO_CHP1_I2C) & 0x0f;
u8 adcout;
/* reserved bit again (reset ?) */
itd1000_write_reg(state, GVBB_I2C, gvbb_i2c | (1 << 6));
for (i = 0; i < ARRAY_SIZE(itd1000_vcorg); i++) {
if (freq_khz < itd1000_vcorg[i].fmax_rg) {
itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | (itd1000_vcorg[i].vcorg << 4));
msleep(1);
adcout = itd1000_read_reg(state, PLLLOCK) & 0x0f;
itd_dbg("VCO: %dkHz: %d -> ADCOUT: %d %02x\n", freq_khz, itd1000_vcorg[i].vcorg, adcout, vco_chp1_i2c);
if (adcout > 13) {
if (!(itd1000_vcorg[i].vcorg == 7 || itd1000_vcorg[i].vcorg == 15))
itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg + 1) << 4));
} else if (adcout < 2) {
if (!(itd1000_vcorg[i].vcorg == 1 || itd1000_vcorg[i].vcorg == 9))
itd1000_write_reg(state, VCO_CHP1_I2C, vco_chp1_i2c | ((itd1000_vcorg[i].vcorg - 1) << 4));
}
break;
}
}
}
static const struct {
u32 freq;
u8 values[10]; /* RFTR, RFST1 - RFST9 */
} itd1000_fre_values[] = {
{ 1075000, { 0x59, 0x1d, 0x1c, 0x17, 0x16, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1250000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1450000, { 0x89, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1650000, { 0x69, 0x1e, 0x1d, 0x17, 0x15, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1750000, { 0x69, 0x1e, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a } },
{ 1850000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
{ 1900000, { 0x69, 0x1d, 0x17, 0x15, 0x14, 0x0f, 0x0e, 0x0d, 0x0b, 0x0a } },
{ 1950000, { 0x69, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0d, 0x0b, 0x0a } },
{ 2050000, { 0x69, 0x1e, 0x1d, 0x17, 0x16, 0x14, 0x13, 0x0e, 0x0b, 0x0a } },
{ 2150000, { 0x69, 0x1d, 0x1c, 0x17, 0x15, 0x14, 0x13, 0x0f, 0x0e, 0x0b } }
};
#define FREF 16
static void itd1000_set_lo(struct itd1000_state *state, u32 freq_khz)
{
int i, j;
u32 plln, pllf;
u64 tmp;
plln = (freq_khz * 1000) / 2 / FREF;
/* Compute the factional part times 1000 */
tmp = plln % 1000000;
plln /= 1000000;
tmp *= 1048576;
do_div(tmp, 1000000);
pllf = (u32) tmp;
state->frequency = ((plln * 1000) + (pllf * 1000)/1048576) * 2*FREF;
itd_dbg("frequency: %dkHz (wanted) %dkHz (set), PLLF = %d, PLLN = %d\n", freq_khz, state->frequency, pllf, plln);
itd1000_write_reg(state, PLLNH, 0x80); /* PLLNH */
itd1000_write_reg(state, PLLNL, plln & 0xff);
itd1000_write_reg(state, PLLFH, (itd1000_read_reg(state, PLLFH) & 0xf0) | ((pllf >> 16) & 0x0f));
itd1000_write_reg(state, PLLFM, (pllf >> 8) & 0xff);
itd1000_write_reg(state, PLLFL, (pllf >> 0) & 0xff);
for (i = 0; i < ARRAY_SIZE(itd1000_fre_values); i++) {
if (freq_khz <= itd1000_fre_values[i].freq) {
itd_dbg("fre_values: %d\n", i);
itd1000_write_reg(state, RFTR, itd1000_fre_values[i].values[0]);
for (j = 0; j < 9; j++)
itd1000_write_reg(state, RFST1+j, itd1000_fre_values[i].values[j+1]);
break;
}
}
itd1000_set_vco(state, freq_khz);
}
static int itd1000_set_parameters(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
struct itd1000_state *state = fe->tuner_priv;
u8 pllcon1;
itd1000_set_lo(state, c->frequency);
itd1000_set_lpf_bw(state, c->symbol_rate);
pllcon1 = itd1000_read_reg(state, PLLCON1) & 0x7f;
itd1000_write_reg(state, PLLCON1, pllcon1 | (1 << 7));
itd1000_write_reg(state, PLLCON1, pllcon1);
return 0;
}
static int itd1000_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct itd1000_state *state = fe->tuner_priv;
*frequency = state->frequency;
return 0;
}
static int itd1000_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
return 0;
}
static u8 itd1000_init_tab[][2] = {
{ PLLCON1, 0x65 }, /* Register does not change */
{ PLLNH, 0x80 }, /* Bits [7:6] do not change */
{ RESERVED_0X6D, 0x3b },
{ VCO_CHP2_I2C, 0x12 },
{ 0x72, 0xf9 }, /* No such regsister defined */
{ RESERVED_0X73, 0xff },
{ RESERVED_0X74, 0xb2 },
{ RESERVED_0X75, 0xc7 },
{ EXTGVBBRF, 0xf0 },
{ DIVAGCCK, 0x80 },
{ BBTR, 0xa0 },
{ RESERVED_0X7E, 0x4f },
{ 0x82, 0x88 }, /* No such regsister defined */
{ 0x83, 0x80 }, /* No such regsister defined */
{ 0x84, 0x80 }, /* No such regsister defined */
{ RESERVED_0X85, 0x74 },
{ RESERVED_0X86, 0xff },
{ RESERVED_0X88, 0x02 },
{ RESERVED_0X89, 0x16 },
{ RFST0, 0x1f },
{ RESERVED_0X94, 0x66 },
{ RESERVED_0X95, 0x66 },
{ RESERVED_0X96, 0x77 },
{ RESERVED_0X97, 0x99 },
{ RESERVED_0X98, 0xff },
{ RESERVED_0X99, 0xfc },
{ RESERVED_0X9A, 0xba },
{ RESERVED_0X9B, 0xaa },
};
static u8 itd1000_reinit_tab[][2] = {
{ VCO_CHP1_I2C, 0x8a },
{ BW, 0x87 },
{ GVBB_I2C, 0x03 },
{ BBGVMIN, 0x03 },
{ CON1, 0x2e },
};
static int itd1000_init(struct dvb_frontend *fe)
{
struct itd1000_state *state = fe->tuner_priv;
int i;
for (i = 0; i < ARRAY_SIZE(itd1000_init_tab); i++)
itd1000_write_reg(state, itd1000_init_tab[i][0], itd1000_init_tab[i][1]);
for (i = 0; i < ARRAY_SIZE(itd1000_reinit_tab); i++)
itd1000_write_reg(state, itd1000_reinit_tab[i][0], itd1000_reinit_tab[i][1]);
return 0;
}
static int itd1000_sleep(struct dvb_frontend *fe)
{
return 0;
}
static int itd1000_release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static const struct dvb_tuner_ops itd1000_tuner_ops = {
.info = {
.name = "Integrant ITD1000",
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_step = 125, /* kHz for QPSK frontends */
},
.release = itd1000_release,
.init = itd1000_init,
.sleep = itd1000_sleep,
.set_params = itd1000_set_parameters,
.get_frequency = itd1000_get_frequency,
.get_bandwidth = itd1000_get_bandwidth
};
struct dvb_frontend *itd1000_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct itd1000_config *cfg)
{
struct itd1000_state *state = NULL;
u8 i = 0;
state = kzalloc(sizeof(struct itd1000_state), GFP_KERNEL);
if (state == NULL)
return NULL;
state->cfg = cfg;
state->i2c = i2c;
i = itd1000_read_reg(state, 0);
if (i != 0) {
kfree(state);
return NULL;
}
itd_info("successfully identified (ID: %d)\n", i);
memset(state->shadow, 0xff, sizeof(state->shadow));
for (i = 0x65; i < 0x9c; i++)
state->shadow[i] = itd1000_read_reg(state, i);
memcpy(&fe->ops.tuner_ops, &itd1000_tuner_ops, sizeof(struct dvb_tuner_ops));
fe->tuner_priv = state;
return fe;
}
EXPORT_SYMBOL(itd1000_attach);
MODULE_AUTHOR("Patrick Boettcher <pb@linuxtv.org>");
MODULE_DESCRIPTION("Integrant ITD1000 driver");
MODULE_LICENSE("GPL");