| /* |
| * Implement the default iomap interfaces |
| * |
| * (C) Copyright 2004 Linus Torvalds |
| */ |
| #include <linux/pci.h> |
| #include <linux/io.h> |
| |
| #include <linux/export.h> |
| |
| /* |
| * Read/write from/to an (offsettable) iomem cookie. It might be a PIO |
| * access or a MMIO access, these functions don't care. The info is |
| * encoded in the hardware mapping set up by the mapping functions |
| * (or the cookie itself, depending on implementation and hw). |
| * |
| * The generic routines don't assume any hardware mappings, and just |
| * encode the PIO/MMIO as part of the cookie. They coldly assume that |
| * the MMIO IO mappings are not in the low address range. |
| * |
| * Architectures for which this is not true can't use this generic |
| * implementation and should do their own copy. |
| */ |
| |
| #ifndef HAVE_ARCH_PIO_SIZE |
| /* |
| * We encode the physical PIO addresses (0-0xffff) into the |
| * pointer by offsetting them with a constant (0x10000) and |
| * assuming that all the low addresses are always PIO. That means |
| * we can do some sanity checks on the low bits, and don't |
| * need to just take things for granted. |
| */ |
| #define PIO_OFFSET 0x10000UL |
| #define PIO_MASK 0x0ffffUL |
| #define PIO_RESERVED 0x40000UL |
| #endif |
| |
| static void bad_io_access(unsigned long port, const char *access) |
| { |
| static int count = 10; |
| if (count) { |
| count--; |
| WARN(1, KERN_ERR "Bad IO access at port %#lx (%s)\n", port, access); |
| } |
| } |
| |
| /* |
| * Ugly macros are a way of life. |
| */ |
| #define IO_COND(addr, is_pio, is_mmio) do { \ |
| unsigned long port = (unsigned long __force)addr; \ |
| if (port >= PIO_RESERVED) { \ |
| is_mmio; \ |
| } else if (port > PIO_OFFSET) { \ |
| port &= PIO_MASK; \ |
| is_pio; \ |
| } else \ |
| bad_io_access(port, #is_pio ); \ |
| } while (0) |
| |
| #ifndef pio_read16be |
| #define pio_read16be(port) swab16(inw(port)) |
| #define pio_read32be(port) swab32(inl(port)) |
| #endif |
| |
| #ifndef mmio_read16be |
| #define mmio_read16be(addr) be16_to_cpu(__raw_readw(addr)) |
| #define mmio_read32be(addr) be32_to_cpu(__raw_readl(addr)) |
| #endif |
| |
| unsigned int ioread8(void __iomem *addr) |
| { |
| IO_COND(addr, return inb(port), return readb(addr)); |
| return 0xff; |
| } |
| unsigned int ioread16(void __iomem *addr) |
| { |
| IO_COND(addr, return inw(port), return readw(addr)); |
| return 0xffff; |
| } |
| unsigned int ioread16be(void __iomem *addr) |
| { |
| IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr)); |
| return 0xffff; |
| } |
| unsigned int ioread32(void __iomem *addr) |
| { |
| IO_COND(addr, return inl(port), return readl(addr)); |
| return 0xffffffff; |
| } |
| unsigned int ioread32be(void __iomem *addr) |
| { |
| IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr)); |
| return 0xffffffff; |
| } |
| EXPORT_SYMBOL(ioread8); |
| EXPORT_SYMBOL(ioread16); |
| EXPORT_SYMBOL(ioread16be); |
| EXPORT_SYMBOL(ioread32); |
| EXPORT_SYMBOL(ioread32be); |
| |
| #ifndef pio_write16be |
| #define pio_write16be(val,port) outw(swab16(val),port) |
| #define pio_write32be(val,port) outl(swab32(val),port) |
| #endif |
| |
| #ifndef mmio_write16be |
| #define mmio_write16be(val,port) __raw_writew(be16_to_cpu(val),port) |
| #define mmio_write32be(val,port) __raw_writel(be32_to_cpu(val),port) |
| #endif |
| |
| void iowrite8(u8 val, void __iomem *addr) |
| { |
| IO_COND(addr, outb(val,port), writeb(val, addr)); |
| } |
| void iowrite16(u16 val, void __iomem *addr) |
| { |
| IO_COND(addr, outw(val,port), writew(val, addr)); |
| } |
| void iowrite16be(u16 val, void __iomem *addr) |
| { |
| IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr)); |
| } |
| void iowrite32(u32 val, void __iomem *addr) |
| { |
| IO_COND(addr, outl(val,port), writel(val, addr)); |
| } |
| void iowrite32be(u32 val, void __iomem *addr) |
| { |
| IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr)); |
| } |
| EXPORT_SYMBOL(iowrite8); |
| EXPORT_SYMBOL(iowrite16); |
| EXPORT_SYMBOL(iowrite16be); |
| EXPORT_SYMBOL(iowrite32); |
| EXPORT_SYMBOL(iowrite32be); |
| |
| /* |
| * These are the "repeat MMIO read/write" functions. |
| * Note the "__raw" accesses, since we don't want to |
| * convert to CPU byte order. We write in "IO byte |
| * order" (we also don't have IO barriers). |
| */ |
| #ifndef mmio_insb |
| static inline void mmio_insb(void __iomem *addr, u8 *dst, int count) |
| { |
| while (--count >= 0) { |
| u8 data = __raw_readb(addr); |
| *dst = data; |
| dst++; |
| } |
| } |
| static inline void mmio_insw(void __iomem *addr, u16 *dst, int count) |
| { |
| while (--count >= 0) { |
| u16 data = __raw_readw(addr); |
| *dst = data; |
| dst++; |
| } |
| } |
| static inline void mmio_insl(void __iomem *addr, u32 *dst, int count) |
| { |
| while (--count >= 0) { |
| u32 data = __raw_readl(addr); |
| *dst = data; |
| dst++; |
| } |
| } |
| #endif |
| |
| #ifndef mmio_outsb |
| static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count) |
| { |
| while (--count >= 0) { |
| __raw_writeb(*src, addr); |
| src++; |
| } |
| } |
| static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count) |
| { |
| while (--count >= 0) { |
| __raw_writew(*src, addr); |
| src++; |
| } |
| } |
| static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count) |
| { |
| while (--count >= 0) { |
| __raw_writel(*src, addr); |
| src++; |
| } |
| } |
| #endif |
| |
| void ioread8_rep(void __iomem *addr, void *dst, unsigned long count) |
| { |
| IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count)); |
| } |
| void ioread16_rep(void __iomem *addr, void *dst, unsigned long count) |
| { |
| IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count)); |
| } |
| void ioread32_rep(void __iomem *addr, void *dst, unsigned long count) |
| { |
| IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count)); |
| } |
| EXPORT_SYMBOL(ioread8_rep); |
| EXPORT_SYMBOL(ioread16_rep); |
| EXPORT_SYMBOL(ioread32_rep); |
| |
| void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count) |
| { |
| IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count)); |
| } |
| void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count) |
| { |
| IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count)); |
| } |
| void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count) |
| { |
| IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count)); |
| } |
| EXPORT_SYMBOL(iowrite8_rep); |
| EXPORT_SYMBOL(iowrite16_rep); |
| EXPORT_SYMBOL(iowrite32_rep); |
| |
| #ifdef CONFIG_HAS_IOPORT_MAP |
| /* Create a virtual mapping cookie for an IO port range */ |
| void __iomem *ioport_map(unsigned long port, unsigned int nr) |
| { |
| if (port > PIO_MASK) |
| return NULL; |
| return (void __iomem *) (unsigned long) (port + PIO_OFFSET); |
| } |
| |
| void ioport_unmap(void __iomem *addr) |
| { |
| /* Nothing to do */ |
| } |
| EXPORT_SYMBOL(ioport_map); |
| EXPORT_SYMBOL(ioport_unmap); |
| #endif /* CONFIG_HAS_IOPORT_MAP */ |
| |
| #ifdef CONFIG_PCI |
| /* Hide the details if this is a MMIO or PIO address space and just do what |
| * you expect in the correct way. */ |
| void pci_iounmap(struct pci_dev *dev, void __iomem * addr) |
| { |
| IO_COND(addr, /* nothing */, iounmap(addr)); |
| } |
| EXPORT_SYMBOL(pci_iounmap); |
| #endif /* CONFIG_PCI */ |