blob: 92e08e057195a4f1cf33bbda34fc7e499b6491f9 [file] [log] [blame]
/*
* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "dsi-ctrl:[%s] " fmt, __func__
#include <linux/of_device.h>
#include <linux/err.h>
#include <linux/regulator/consumer.h>
#include <linux/clk.h>
#include <linux/msm-bus.h>
#include <linux/of_irq.h>
#include <video/mipi_display.h>
#include "msm_drv.h"
#include "msm_kms.h"
#include "msm_gpu.h"
#include "msm_mmu.h"
#include "dsi_ctrl.h"
#include "dsi_ctrl_hw.h"
#include "dsi_clk.h"
#include "dsi_pwr.h"
#include "dsi_catalog.h"
#include "sde_dbg.h"
#define DSI_CTRL_DEFAULT_LABEL "MDSS DSI CTRL"
#define DSI_CTRL_TX_TO_MS 200
#define TO_ON_OFF(x) ((x) ? "ON" : "OFF")
#define CEIL(x, y) (((x) + ((y)-1)) / (y))
/**
* enum dsi_ctrl_driver_ops - controller driver ops
*/
enum dsi_ctrl_driver_ops {
DSI_CTRL_OP_POWER_STATE_CHANGE,
DSI_CTRL_OP_CMD_ENGINE,
DSI_CTRL_OP_VID_ENGINE,
DSI_CTRL_OP_HOST_ENGINE,
DSI_CTRL_OP_CMD_TX,
DSI_CTRL_OP_HOST_INIT,
DSI_CTRL_OP_TPG,
DSI_CTRL_OP_PHY_SW_RESET,
DSI_CTRL_OP_ASYNC_TIMING,
DSI_CTRL_OP_MAX
};
struct dsi_ctrl_list_item {
struct dsi_ctrl *ctrl;
struct list_head list;
};
static LIST_HEAD(dsi_ctrl_list);
static DEFINE_MUTEX(dsi_ctrl_list_lock);
static const enum dsi_ctrl_version dsi_ctrl_v1_4 = DSI_CTRL_VERSION_1_4;
static const enum dsi_ctrl_version dsi_ctrl_v2_0 = DSI_CTRL_VERSION_2_0;
static const enum dsi_ctrl_version dsi_ctrl_v2_2 = DSI_CTRL_VERSION_2_2;
static const struct of_device_id msm_dsi_of_match[] = {
{
.compatible = "qcom,dsi-ctrl-hw-v1.4",
.data = &dsi_ctrl_v1_4,
},
{
.compatible = "qcom,dsi-ctrl-hw-v2.0",
.data = &dsi_ctrl_v2_0,
},
{
.compatible = "qcom,dsi-ctrl-hw-v2.2",
.data = &dsi_ctrl_v2_2,
},
{}
};
static ssize_t debugfs_state_info_read(struct file *file,
char __user *buff,
size_t count,
loff_t *ppos)
{
struct dsi_ctrl *dsi_ctrl = file->private_data;
char *buf;
u32 len = 0;
if (!dsi_ctrl)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(SZ_4K, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Dump current state */
len += snprintf((buf + len), (SZ_4K - len), "Current State:\n");
len += snprintf((buf + len), (SZ_4K - len),
"\tCTRL_ENGINE = %s\n",
TO_ON_OFF(dsi_ctrl->current_state.controller_state));
len += snprintf((buf + len), (SZ_4K - len),
"\tVIDEO_ENGINE = %s\n\tCOMMAND_ENGINE = %s\n",
TO_ON_OFF(dsi_ctrl->current_state.vid_engine_state),
TO_ON_OFF(dsi_ctrl->current_state.cmd_engine_state));
/* Dump clock information */
len += snprintf((buf + len), (SZ_4K - len), "\nClock Info:\n");
len += snprintf((buf + len), (SZ_4K - len),
"\tBYTE_CLK = %u, PIXEL_CLK = %u, ESC_CLK = %u\n",
dsi_ctrl->clk_freq.byte_clk_rate,
dsi_ctrl->clk_freq.pix_clk_rate,
dsi_ctrl->clk_freq.esc_clk_rate);
/* TODO: make sure that this does not exceed 4K */
if (copy_to_user(buff, buf, len)) {
kfree(buf);
return -EFAULT;
}
*ppos += len;
kfree(buf);
return len;
}
static ssize_t debugfs_reg_dump_read(struct file *file,
char __user *buff,
size_t count,
loff_t *ppos)
{
struct dsi_ctrl *dsi_ctrl = file->private_data;
char *buf;
u32 len = 0;
struct dsi_clk_ctrl_info clk_info;
int rc = 0;
if (!dsi_ctrl)
return -ENODEV;
if (*ppos)
return 0;
buf = kzalloc(SZ_4K, GFP_KERNEL);
if (!buf)
return -ENOMEM;
clk_info.client = DSI_CLK_REQ_DSI_CLIENT;
clk_info.clk_type = DSI_CORE_CLK;
clk_info.clk_state = DSI_CLK_ON;
rc = dsi_ctrl->clk_cb.dsi_clk_cb(dsi_ctrl->clk_cb.priv, clk_info);
if (rc) {
pr_err("failed to enable DSI core clocks\n");
kfree(buf);
return rc;
}
if (dsi_ctrl->hw.ops.reg_dump_to_buffer)
len = dsi_ctrl->hw.ops.reg_dump_to_buffer(&dsi_ctrl->hw,
buf, SZ_4K);
clk_info.clk_state = DSI_CLK_OFF;
rc = dsi_ctrl->clk_cb.dsi_clk_cb(dsi_ctrl->clk_cb.priv, clk_info);
if (rc) {
pr_err("failed to disable DSI core clocks\n");
kfree(buf);
return rc;
}
/* TODO: make sure that this does not exceed 4K */
if (copy_to_user(buff, buf, len)) {
kfree(buf);
return -EFAULT;
}
*ppos += len;
kfree(buf);
return len;
}
static const struct file_operations state_info_fops = {
.open = simple_open,
.read = debugfs_state_info_read,
};
static const struct file_operations reg_dump_fops = {
.open = simple_open,
.read = debugfs_reg_dump_read,
};
static int dsi_ctrl_debugfs_init(struct dsi_ctrl *dsi_ctrl,
struct dentry *parent)
{
int rc = 0;
struct dentry *dir, *state_file, *reg_dump;
char dbg_name[DSI_DEBUG_NAME_LEN];
dir = debugfs_create_dir(dsi_ctrl->name, parent);
if (IS_ERR_OR_NULL(dir)) {
rc = PTR_ERR(dir);
pr_err("[DSI_%d] debugfs create dir failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
state_file = debugfs_create_file("state_info",
0444,
dir,
dsi_ctrl,
&state_info_fops);
if (IS_ERR_OR_NULL(state_file)) {
rc = PTR_ERR(state_file);
pr_err("[DSI_%d] state file failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error_remove_dir;
}
reg_dump = debugfs_create_file("reg_dump",
0444,
dir,
dsi_ctrl,
&reg_dump_fops);
if (IS_ERR_OR_NULL(reg_dump)) {
rc = PTR_ERR(reg_dump);
pr_err("[DSI_%d] reg dump file failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error_remove_dir;
}
dsi_ctrl->debugfs_root = dir;
snprintf(dbg_name, DSI_DEBUG_NAME_LEN, "dsi%d_ctrl",
dsi_ctrl->cell_index);
sde_dbg_reg_register_base(dbg_name, dsi_ctrl->hw.base,
msm_iomap_size(dsi_ctrl->pdev, "dsi_ctrl"));
sde_dbg_reg_register_dump_range(dbg_name, dbg_name, 0,
msm_iomap_size(dsi_ctrl->pdev, "dsi_ctrl"), 0);
error_remove_dir:
debugfs_remove(dir);
error:
return rc;
}
static int dsi_ctrl_debugfs_deinit(struct dsi_ctrl *dsi_ctrl)
{
debugfs_remove(dsi_ctrl->debugfs_root);
return 0;
}
static inline struct msm_gem_address_space*
dsi_ctrl_get_aspace(struct dsi_ctrl *dsi_ctrl,
int domain)
{
if (!dsi_ctrl || !dsi_ctrl->drm_dev)
return NULL;
return msm_gem_smmu_address_space_get(dsi_ctrl->drm_dev, domain);
}
static int dsi_ctrl_check_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_ctrl_driver_ops op,
u32 op_state)
{
int rc = 0;
struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state;
SDE_EVT32(dsi_ctrl->cell_index, op);
switch (op) {
case DSI_CTRL_OP_POWER_STATE_CHANGE:
if (state->power_state == op_state) {
pr_err("[%d] No change in state, pwr_state=%d\n",
dsi_ctrl->cell_index, op_state);
rc = -EINVAL;
} else if (state->power_state == DSI_CTRL_POWER_VREG_ON) {
if (state->vid_engine_state == DSI_CTRL_ENGINE_ON) {
pr_err("[%d]State error: op=%d: %d\n",
dsi_ctrl->cell_index,
op_state,
state->vid_engine_state);
rc = -EINVAL;
}
}
break;
case DSI_CTRL_OP_CMD_ENGINE:
if (state->cmd_engine_state == op_state) {
pr_err("[%d] No change in state, cmd_state=%d\n",
dsi_ctrl->cell_index, op_state);
rc = -EINVAL;
} else if ((state->power_state != DSI_CTRL_POWER_VREG_ON) ||
(state->controller_state != DSI_CTRL_ENGINE_ON)) {
pr_err("[%d]State error: op=%d: %d, %d\n",
dsi_ctrl->cell_index,
op,
state->power_state,
state->controller_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_VID_ENGINE:
if (state->vid_engine_state == op_state) {
pr_err("[%d] No change in state, cmd_state=%d\n",
dsi_ctrl->cell_index, op_state);
rc = -EINVAL;
} else if ((state->power_state != DSI_CTRL_POWER_VREG_ON) ||
(state->controller_state != DSI_CTRL_ENGINE_ON)) {
pr_err("[%d]State error: op=%d: %d, %d\n",
dsi_ctrl->cell_index,
op,
state->power_state,
state->controller_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_HOST_ENGINE:
if (state->controller_state == op_state) {
pr_err("[%d] No change in state, ctrl_state=%d\n",
dsi_ctrl->cell_index, op_state);
rc = -EINVAL;
} else if (state->power_state != DSI_CTRL_POWER_VREG_ON) {
pr_err("[%d]State error (link is off): op=%d:, %d\n",
dsi_ctrl->cell_index,
op_state,
state->power_state);
rc = -EINVAL;
} else if ((op_state == DSI_CTRL_ENGINE_OFF) &&
((state->cmd_engine_state != DSI_CTRL_ENGINE_OFF) ||
(state->vid_engine_state != DSI_CTRL_ENGINE_OFF))) {
pr_err("[%d]State error (eng on): op=%d: %d, %d\n",
dsi_ctrl->cell_index,
op_state,
state->cmd_engine_state,
state->vid_engine_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_CMD_TX:
if ((state->power_state != DSI_CTRL_POWER_VREG_ON) ||
(state->host_initialized != true) ||
(state->cmd_engine_state != DSI_CTRL_ENGINE_ON)) {
pr_err("[%d]State error: op=%d: %d, %d, %d\n",
dsi_ctrl->cell_index,
op,
state->power_state,
state->host_initialized,
state->cmd_engine_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_HOST_INIT:
if (state->host_initialized == op_state) {
pr_err("[%d] No change in state, host_init=%d\n",
dsi_ctrl->cell_index, op_state);
rc = -EINVAL;
} else if (state->power_state != DSI_CTRL_POWER_VREG_ON) {
pr_err("[%d]State error: op=%d: %d\n",
dsi_ctrl->cell_index, op, state->power_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_TPG:
if (state->tpg_enabled == op_state) {
pr_err("[%d] No change in state, tpg_enabled=%d\n",
dsi_ctrl->cell_index, op_state);
rc = -EINVAL;
} else if ((state->power_state != DSI_CTRL_POWER_VREG_ON) ||
(state->controller_state != DSI_CTRL_ENGINE_ON)) {
pr_err("[%d]State error: op=%d: %d, %d\n",
dsi_ctrl->cell_index,
op,
state->power_state,
state->controller_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_PHY_SW_RESET:
if (state->power_state != DSI_CTRL_POWER_VREG_ON) {
pr_err("[%d]State error: op=%d: %d\n",
dsi_ctrl->cell_index, op, state->power_state);
rc = -EINVAL;
}
break;
case DSI_CTRL_OP_ASYNC_TIMING:
if (state->vid_engine_state != op_state) {
pr_err("[%d] Unexpected engine state vid_state=%d\n",
dsi_ctrl->cell_index, op_state);
rc = -EINVAL;
}
break;
default:
rc = -ENOTSUPP;
break;
}
return rc;
}
bool dsi_ctrl_validate_host_state(struct dsi_ctrl *dsi_ctrl)
{
struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state;
if (!state) {
pr_err("Invalid host state for DSI controller\n");
return -EINVAL;
}
if (!state->host_initialized)
return true;
return false;
}
static void dsi_ctrl_update_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_ctrl_driver_ops op,
u32 op_state)
{
struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state;
switch (op) {
case DSI_CTRL_OP_POWER_STATE_CHANGE:
state->power_state = op_state;
break;
case DSI_CTRL_OP_CMD_ENGINE:
state->cmd_engine_state = op_state;
break;
case DSI_CTRL_OP_VID_ENGINE:
state->vid_engine_state = op_state;
break;
case DSI_CTRL_OP_HOST_ENGINE:
state->controller_state = op_state;
break;
case DSI_CTRL_OP_HOST_INIT:
state->host_initialized = (op_state == 1) ? true : false;
break;
case DSI_CTRL_OP_TPG:
state->tpg_enabled = (op_state == 1) ? true : false;
break;
case DSI_CTRL_OP_CMD_TX:
case DSI_CTRL_OP_PHY_SW_RESET:
default:
break;
}
}
static int dsi_ctrl_init_regmap(struct platform_device *pdev,
struct dsi_ctrl *ctrl)
{
int rc = 0;
void __iomem *ptr;
ptr = msm_ioremap(pdev, "dsi_ctrl", ctrl->name);
if (IS_ERR(ptr)) {
rc = PTR_ERR(ptr);
return rc;
}
ctrl->hw.base = ptr;
pr_debug("[%s] map dsi_ctrl registers to %pK\n", ctrl->name,
ctrl->hw.base);
switch (ctrl->version) {
case DSI_CTRL_VERSION_1_4:
case DSI_CTRL_VERSION_2_0:
ptr = msm_ioremap(pdev, "mmss_misc", ctrl->name);
if (IS_ERR(ptr)) {
pr_err("mmss_misc base address not found for [%s]\n",
ctrl->name);
rc = PTR_ERR(ptr);
return rc;
}
ctrl->hw.mmss_misc_base = ptr;
ctrl->hw.disp_cc_base = NULL;
break;
case DSI_CTRL_VERSION_2_2:
ptr = msm_ioremap(pdev, "disp_cc_base", ctrl->name);
if (IS_ERR(ptr)) {
pr_err("disp_cc base address not found for [%s]\n",
ctrl->name);
rc = PTR_ERR(ptr);
return rc;
}
ctrl->hw.disp_cc_base = ptr;
ctrl->hw.mmss_misc_base = NULL;
break;
default:
break;
}
return rc;
}
static int dsi_ctrl_clocks_deinit(struct dsi_ctrl *ctrl)
{
struct dsi_core_clk_info *core = &ctrl->clk_info.core_clks;
struct dsi_link_lp_clk_info *lp_link = &ctrl->clk_info.lp_link_clks;
struct dsi_link_hs_clk_info *hs_link = &ctrl->clk_info.hs_link_clks;
struct dsi_clk_link_set *rcg = &ctrl->clk_info.rcg_clks;
if (core->mdp_core_clk)
devm_clk_put(&ctrl->pdev->dev, core->mdp_core_clk);
if (core->iface_clk)
devm_clk_put(&ctrl->pdev->dev, core->iface_clk);
if (core->core_mmss_clk)
devm_clk_put(&ctrl->pdev->dev, core->core_mmss_clk);
if (core->bus_clk)
devm_clk_put(&ctrl->pdev->dev, core->bus_clk);
if (core->mnoc_clk)
devm_clk_put(&ctrl->pdev->dev, core->mnoc_clk);
memset(core, 0x0, sizeof(*core));
if (hs_link->byte_clk)
devm_clk_put(&ctrl->pdev->dev, hs_link->byte_clk);
if (hs_link->pixel_clk)
devm_clk_put(&ctrl->pdev->dev, hs_link->pixel_clk);
if (lp_link->esc_clk)
devm_clk_put(&ctrl->pdev->dev, lp_link->esc_clk);
if (hs_link->byte_intf_clk)
devm_clk_put(&ctrl->pdev->dev, hs_link->byte_intf_clk);
memset(hs_link, 0x0, sizeof(*hs_link));
memset(lp_link, 0x0, sizeof(*lp_link));
if (rcg->byte_clk)
devm_clk_put(&ctrl->pdev->dev, rcg->byte_clk);
if (rcg->pixel_clk)
devm_clk_put(&ctrl->pdev->dev, rcg->pixel_clk);
memset(rcg, 0x0, sizeof(*rcg));
return 0;
}
static int dsi_ctrl_clocks_init(struct platform_device *pdev,
struct dsi_ctrl *ctrl)
{
int rc = 0;
struct dsi_core_clk_info *core = &ctrl->clk_info.core_clks;
struct dsi_link_lp_clk_info *lp_link = &ctrl->clk_info.lp_link_clks;
struct dsi_link_hs_clk_info *hs_link = &ctrl->clk_info.hs_link_clks;
struct dsi_clk_link_set *rcg = &ctrl->clk_info.rcg_clks;
core->mdp_core_clk = devm_clk_get(&pdev->dev, "mdp_core_clk");
if (IS_ERR(core->mdp_core_clk)) {
core->mdp_core_clk = NULL;
pr_debug("failed to get mdp_core_clk, rc=%d\n", rc);
}
core->iface_clk = devm_clk_get(&pdev->dev, "iface_clk");
if (IS_ERR(core->iface_clk)) {
core->iface_clk = NULL;
pr_debug("failed to get iface_clk, rc=%d\n", rc);
}
core->core_mmss_clk = devm_clk_get(&pdev->dev, "core_mmss_clk");
if (IS_ERR(core->core_mmss_clk)) {
core->core_mmss_clk = NULL;
pr_debug("failed to get core_mmss_clk, rc=%d\n", rc);
}
core->bus_clk = devm_clk_get(&pdev->dev, "bus_clk");
if (IS_ERR(core->bus_clk)) {
core->bus_clk = NULL;
pr_debug("failed to get bus_clk, rc=%d\n", rc);
}
core->mnoc_clk = devm_clk_get(&pdev->dev, "mnoc_clk");
if (IS_ERR(core->mnoc_clk)) {
core->mnoc_clk = NULL;
pr_debug("can't get mnoc clock, rc=%d\n", rc);
}
hs_link->byte_clk = devm_clk_get(&pdev->dev, "byte_clk");
if (IS_ERR(hs_link->byte_clk)) {
rc = PTR_ERR(hs_link->byte_clk);
pr_err("failed to get byte_clk, rc=%d\n", rc);
goto fail;
}
hs_link->pixel_clk = devm_clk_get(&pdev->dev, "pixel_clk");
if (IS_ERR(hs_link->pixel_clk)) {
rc = PTR_ERR(hs_link->pixel_clk);
pr_err("failed to get pixel_clk, rc=%d\n", rc);
goto fail;
}
lp_link->esc_clk = devm_clk_get(&pdev->dev, "esc_clk");
if (IS_ERR(lp_link->esc_clk)) {
rc = PTR_ERR(lp_link->esc_clk);
pr_err("failed to get esc_clk, rc=%d\n", rc);
goto fail;
}
hs_link->byte_intf_clk = devm_clk_get(&pdev->dev, "byte_intf_clk");
if (IS_ERR(hs_link->byte_intf_clk)) {
hs_link->byte_intf_clk = NULL;
pr_debug("can't find byte intf clk, rc=%d\n", rc);
}
rcg->byte_clk = devm_clk_get(&pdev->dev, "byte_clk_rcg");
if (IS_ERR(rcg->byte_clk)) {
rc = PTR_ERR(rcg->byte_clk);
pr_err("failed to get byte_clk_rcg, rc=%d\n", rc);
goto fail;
}
rcg->pixel_clk = devm_clk_get(&pdev->dev, "pixel_clk_rcg");
if (IS_ERR(rcg->pixel_clk)) {
rc = PTR_ERR(rcg->pixel_clk);
pr_err("failed to get pixel_clk_rcg, rc=%d\n", rc);
goto fail;
}
return 0;
fail:
dsi_ctrl_clocks_deinit(ctrl);
return rc;
}
static int dsi_ctrl_supplies_deinit(struct dsi_ctrl *ctrl)
{
int i = 0;
int rc = 0;
struct dsi_regulator_info *regs;
regs = &ctrl->pwr_info.digital;
for (i = 0; i < regs->count; i++) {
if (!regs->vregs[i].vreg)
pr_err("vreg is NULL, should not reach here\n");
else
devm_regulator_put(regs->vregs[i].vreg);
}
regs = &ctrl->pwr_info.host_pwr;
for (i = 0; i < regs->count; i++) {
if (!regs->vregs[i].vreg)
pr_err("vreg is NULL, should not reach here\n");
else
devm_regulator_put(regs->vregs[i].vreg);
}
if (!ctrl->pwr_info.host_pwr.vregs) {
devm_kfree(&ctrl->pdev->dev, ctrl->pwr_info.host_pwr.vregs);
ctrl->pwr_info.host_pwr.vregs = NULL;
ctrl->pwr_info.host_pwr.count = 0;
}
if (!ctrl->pwr_info.digital.vregs) {
devm_kfree(&ctrl->pdev->dev, ctrl->pwr_info.digital.vregs);
ctrl->pwr_info.digital.vregs = NULL;
ctrl->pwr_info.digital.count = 0;
}
return rc;
}
static int dsi_ctrl_supplies_init(struct platform_device *pdev,
struct dsi_ctrl *ctrl)
{
int rc = 0;
int i = 0;
struct dsi_regulator_info *regs;
struct regulator *vreg = NULL;
rc = dsi_pwr_get_dt_vreg_data(&pdev->dev,
&ctrl->pwr_info.digital,
"qcom,core-supply-entries");
if (rc)
pr_debug("failed to get digital supply, rc = %d\n", rc);
rc = dsi_pwr_get_dt_vreg_data(&pdev->dev,
&ctrl->pwr_info.host_pwr,
"qcom,ctrl-supply-entries");
if (rc) {
pr_err("failed to get host power supplies, rc = %d\n", rc);
goto error_digital;
}
regs = &ctrl->pwr_info.digital;
for (i = 0; i < regs->count; i++) {
vreg = devm_regulator_get(&pdev->dev, regs->vregs[i].vreg_name);
if (IS_ERR(vreg)) {
pr_err("failed to get %s regulator\n",
regs->vregs[i].vreg_name);
rc = PTR_ERR(vreg);
goto error_host_pwr;
}
regs->vregs[i].vreg = vreg;
}
regs = &ctrl->pwr_info.host_pwr;
for (i = 0; i < regs->count; i++) {
vreg = devm_regulator_get(&pdev->dev, regs->vregs[i].vreg_name);
if (IS_ERR(vreg)) {
pr_err("failed to get %s regulator\n",
regs->vregs[i].vreg_name);
for (--i; i >= 0; i--)
devm_regulator_put(regs->vregs[i].vreg);
rc = PTR_ERR(vreg);
goto error_digital_put;
}
regs->vregs[i].vreg = vreg;
}
return rc;
error_digital_put:
regs = &ctrl->pwr_info.digital;
for (i = 0; i < regs->count; i++)
devm_regulator_put(regs->vregs[i].vreg);
error_host_pwr:
devm_kfree(&pdev->dev, ctrl->pwr_info.host_pwr.vregs);
ctrl->pwr_info.host_pwr.vregs = NULL;
ctrl->pwr_info.host_pwr.count = 0;
error_digital:
if (ctrl->pwr_info.digital.vregs)
devm_kfree(&pdev->dev, ctrl->pwr_info.digital.vregs);
ctrl->pwr_info.digital.vregs = NULL;
ctrl->pwr_info.digital.count = 0;
return rc;
}
static int dsi_ctrl_axi_bus_client_init(struct platform_device *pdev,
struct dsi_ctrl *ctrl)
{
int rc = 0;
struct dsi_ctrl_bus_scale_info *bus = &ctrl->axi_bus_info;
bus->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (IS_ERR_OR_NULL(bus->bus_scale_table)) {
rc = PTR_ERR(bus->bus_scale_table);
pr_debug("msm_bus_cl_get_pdata() failed, rc = %d\n", rc);
bus->bus_scale_table = NULL;
return rc;
}
bus->bus_handle = msm_bus_scale_register_client(bus->bus_scale_table);
if (!bus->bus_handle) {
rc = -EINVAL;
pr_err("failed to register axi bus client\n");
}
return rc;
}
static int dsi_ctrl_axi_bus_client_deinit(struct dsi_ctrl *ctrl)
{
struct dsi_ctrl_bus_scale_info *bus = &ctrl->axi_bus_info;
if (bus->bus_handle) {
msm_bus_scale_unregister_client(bus->bus_handle);
bus->bus_handle = 0;
}
return 0;
}
static int dsi_ctrl_validate_panel_info(struct dsi_ctrl *dsi_ctrl,
struct dsi_host_config *config)
{
int rc = 0;
struct dsi_host_common_cfg *host_cfg = &config->common_config;
if (config->panel_mode >= DSI_OP_MODE_MAX) {
pr_err("Invalid dsi operation mode (%d)\n", config->panel_mode);
rc = -EINVAL;
goto err;
}
if ((host_cfg->data_lanes & (DSI_CLOCK_LANE - 1)) == 0) {
pr_err("No data lanes are enabled\n");
rc = -EINVAL;
goto err;
}
err:
return rc;
}
static int dsi_ctrl_update_link_freqs(struct dsi_ctrl *dsi_ctrl,
struct dsi_host_config *config, void *clk_handle)
{
int rc = 0;
u32 num_of_lanes = 0;
u32 bpp = 3;
u64 h_period, v_period, bit_rate, pclk_rate, bit_rate_per_lane,
byte_clk_rate;
struct dsi_host_common_cfg *host_cfg = &config->common_config;
struct dsi_mode_info *timing = &config->video_timing;
if (host_cfg->data_lanes & DSI_DATA_LANE_0)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_1)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_2)
num_of_lanes++;
if (host_cfg->data_lanes & DSI_DATA_LANE_3)
num_of_lanes++;
if (config->bit_clk_rate_hz == 0) {
h_period = DSI_H_TOTAL_DSC(timing);
v_period = DSI_V_TOTAL(timing);
bit_rate = h_period * v_period * timing->refresh_rate * bpp * 8;
} else {
bit_rate = config->bit_clk_rate_hz * num_of_lanes;
}
bit_rate_per_lane = bit_rate;
do_div(bit_rate_per_lane, num_of_lanes);
pclk_rate = bit_rate;
do_div(pclk_rate, (8 * bpp));
byte_clk_rate = bit_rate_per_lane;
do_div(byte_clk_rate, 8);
pr_debug("bit_clk_rate = %llu, bit_clk_rate_per_lane = %llu\n",
bit_rate, bit_rate_per_lane);
pr_debug("byte_clk_rate = %llu, pclk_rate = %llu\n",
byte_clk_rate, pclk_rate);
dsi_ctrl->clk_freq.byte_clk_rate = byte_clk_rate;
dsi_ctrl->clk_freq.pix_clk_rate = pclk_rate;
dsi_ctrl->clk_freq.esc_clk_rate = config->esc_clk_rate_hz;
rc = dsi_clk_set_link_frequencies(clk_handle, dsi_ctrl->clk_freq,
dsi_ctrl->cell_index);
if (rc)
pr_err("Failed to update link frequencies\n");
return rc;
}
static int dsi_ctrl_enable_supplies(struct dsi_ctrl *dsi_ctrl, bool enable)
{
int rc = 0;
if (enable) {
if (!dsi_ctrl->current_state.host_initialized) {
rc = dsi_pwr_enable_regulator(
&dsi_ctrl->pwr_info.host_pwr, true);
if (rc) {
pr_err("failed to enable host power regs\n");
goto error;
}
}
rc = dsi_pwr_enable_regulator(&dsi_ctrl->pwr_info.digital,
true);
if (rc) {
pr_err("failed to enable gdsc, rc=%d\n", rc);
(void)dsi_pwr_enable_regulator(
&dsi_ctrl->pwr_info.host_pwr,
false
);
goto error;
}
} else {
rc = dsi_pwr_enable_regulator(&dsi_ctrl->pwr_info.digital,
false);
if (rc) {
pr_err("failed to disable gdsc, rc=%d\n", rc);
goto error;
}
if (!dsi_ctrl->current_state.host_initialized) {
rc = dsi_pwr_enable_regulator(
&dsi_ctrl->pwr_info.host_pwr, false);
if (rc) {
pr_err("failed to disable host power regs\n");
goto error;
}
}
}
error:
return rc;
}
static int dsi_ctrl_copy_and_pad_cmd(struct dsi_ctrl *dsi_ctrl,
const struct mipi_dsi_packet *packet,
u8 **buffer,
u32 *size)
{
int rc = 0;
u8 *buf = NULL;
u32 len, i;
len = packet->size;
len += 0x3; len &= ~0x03; /* Align to 32 bits */
buf = devm_kzalloc(&dsi_ctrl->pdev->dev, len * sizeof(u8), GFP_KERNEL);
if (!buf)
return -ENOMEM;
for (i = 0; i < len; i++) {
if (i >= packet->size)
buf[i] = 0xFF;
else if (i < sizeof(packet->header))
buf[i] = packet->header[i];
else
buf[i] = packet->payload[i - sizeof(packet->header)];
}
if (packet->payload_length > 0)
buf[3] |= BIT(6);
/* send embedded BTA for read commands */
if ((buf[2] & 0x3f) == MIPI_DSI_DCS_READ)
buf[3] |= BIT(5);
*buffer = buf;
*size = len;
return rc;
}
int dsi_ctrl_wait_for_cmd_mode_mdp_idle(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (dsi_ctrl->host_config.panel_mode != DSI_OP_CMD_MODE)
return -EINVAL;
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl->hw.ops.wait_for_cmd_mode_mdp_idle(&dsi_ctrl->hw);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
static void dsi_ctrl_wait_for_video_done(struct dsi_ctrl *dsi_ctrl)
{
u32 v_total = 0, v_blank = 0, sleep_ms = 0, fps = 0, ret;
struct dsi_mode_info *timing;
/**
* No need to wait if the panel is not video mode or
* if DSI controller supports command DMA scheduling or
* if we are sending init commands.
*/
if ((dsi_ctrl->host_config.panel_mode != DSI_OP_VIDEO_MODE) ||
(dsi_ctrl->version >= DSI_CTRL_VERSION_2_2) ||
(dsi_ctrl->current_state.vid_engine_state !=
DSI_CTRL_ENGINE_ON))
return;
dsi_ctrl->hw.ops.clear_interrupt_status(&dsi_ctrl->hw,
DSI_VIDEO_MODE_FRAME_DONE);
dsi_ctrl_enable_status_interrupt(dsi_ctrl,
DSI_SINT_VIDEO_MODE_FRAME_DONE, NULL);
reinit_completion(&dsi_ctrl->irq_info.vid_frame_done);
ret = wait_for_completion_timeout(
&dsi_ctrl->irq_info.vid_frame_done,
msecs_to_jiffies(DSI_CTRL_TX_TO_MS));
if (ret <= 0)
pr_debug("wait for video done failed\n");
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_VIDEO_MODE_FRAME_DONE);
timing = &(dsi_ctrl->host_config.video_timing);
v_total = timing->v_sync_width + timing->v_back_porch +
timing->v_front_porch + timing->v_active;
v_blank = timing->v_sync_width + timing->v_back_porch;
fps = timing->refresh_rate;
sleep_ms = CEIL((v_blank * 1000), (v_total * fps)) + 1;
udelay(sleep_ms * 1000);
}
void dsi_message_setup_tx_mode(struct dsi_ctrl *dsi_ctrl,
u32 cmd_len,
u32 *flags)
{
/**
* Setup the mode of transmission
* override cmd fetch mode during secure session
*/
if (dsi_ctrl->secure_mode) {
*flags &= ~DSI_CTRL_CMD_FETCH_MEMORY;
*flags |= DSI_CTRL_CMD_FIFO_STORE;
pr_debug("[%s] override to TPG during secure session\n",
dsi_ctrl->name);
return;
}
/* Check to see if cmd len plus header is greater than fifo size */
if ((cmd_len + 4) > DSI_EMBEDDED_MODE_DMA_MAX_SIZE_BYTES) {
*flags |= DSI_CTRL_CMD_NON_EMBEDDED_MODE;
pr_debug("[%s] override to non-embedded mode,cmd len =%d\n",
dsi_ctrl->name, cmd_len);
return;
}
}
int dsi_message_validate_tx_mode(struct dsi_ctrl *dsi_ctrl,
u32 cmd_len,
u32 *flags)
{
int rc = 0;
if (*flags & DSI_CTRL_CMD_FIFO_STORE) {
/* if command size plus header is greater than fifo size */
if ((cmd_len + 4) > DSI_CTRL_MAX_CMD_FIFO_STORE_SIZE) {
pr_err("Cannot transfer Cmd in FIFO config\n");
return -ENOTSUPP;
}
if (!dsi_ctrl->hw.ops.kickoff_fifo_command) {
pr_err("Cannot transfer command,ops not defined\n");
return -ENOTSUPP;
}
}
if (*flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
if (*flags & DSI_CTRL_CMD_BROADCAST) {
pr_err("Non embedded not supported with broadcast\n");
return -ENOTSUPP;
}
if (!dsi_ctrl->hw.ops.kickoff_command_non_embedded_mode) {
pr_err(" Cannot transfer command,ops not defined\n");
return -ENOTSUPP;
}
}
return rc;
}
static int dsi_message_tx(struct dsi_ctrl *dsi_ctrl,
const struct mipi_dsi_msg *msg,
u32 flags)
{
int rc = 0, ret = 0;
struct mipi_dsi_packet packet;
struct dsi_ctrl_cmd_dma_fifo_info cmd;
struct dsi_ctrl_cmd_dma_info cmd_mem;
u32 hw_flags = 0;
u32 length = 0;
u8 *buffer = NULL;
u32 cnt = 0, line_no = 0x1;
u8 *cmdbuf;
struct dsi_mode_info *timing;
/* Select the tx mode to transfer the command */
dsi_message_setup_tx_mode(dsi_ctrl, msg->tx_len, &flags);
/* Validate the mode before sending the command */
rc = dsi_message_validate_tx_mode(dsi_ctrl, msg->tx_len, &flags);
if (rc) {
pr_err(" Cmd tx validation failed, cannot transfer cmd\n");
rc = -ENOTSUPP;
goto error;
}
if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
cmd_mem.offset = dsi_ctrl->cmd_buffer_iova;
cmd_mem.en_broadcast = (flags & DSI_CTRL_CMD_BROADCAST) ?
true : false;
cmd_mem.is_master = (flags & DSI_CTRL_CMD_BROADCAST_MASTER) ?
true : false;
cmd_mem.use_lpm = (msg->flags & MIPI_DSI_MSG_USE_LPM) ?
true : false;
cmd_mem.datatype = msg->type;
cmd_mem.length = msg->tx_len;
dsi_ctrl->cmd_len = msg->tx_len;
memcpy(dsi_ctrl->vaddr, msg->tx_buf, msg->tx_len);
pr_debug(" non-embedded mode , size of command =%zd\n",
msg->tx_len);
goto kickoff;
}
rc = mipi_dsi_create_packet(&packet, msg);
if (rc) {
pr_err("Failed to create message packet, rc=%d\n", rc);
goto error;
}
rc = dsi_ctrl_copy_and_pad_cmd(dsi_ctrl,
&packet,
&buffer,
&length);
if (rc) {
pr_err("[%s] failed to copy message, rc=%d\n",
dsi_ctrl->name, rc);
goto error;
}
if ((msg->flags & MIPI_DSI_MSG_LASTCOMMAND))
buffer[3] |= BIT(7);//set the last cmd bit in header.
if (flags & DSI_CTRL_CMD_FETCH_MEMORY) {
/* Embedded mode config is selected */
cmd_mem.offset = dsi_ctrl->cmd_buffer_iova;
cmd_mem.en_broadcast = (flags & DSI_CTRL_CMD_BROADCAST) ?
true : false;
cmd_mem.is_master = (flags & DSI_CTRL_CMD_BROADCAST_MASTER) ?
true : false;
cmd_mem.use_lpm = (msg->flags & MIPI_DSI_MSG_USE_LPM) ?
true : false;
cmdbuf = (u8 *)(dsi_ctrl->vaddr);
msm_gem_sync(dsi_ctrl->tx_cmd_buf);
for (cnt = 0; cnt < length; cnt++)
cmdbuf[dsi_ctrl->cmd_len + cnt] = buffer[cnt];
dsi_ctrl->cmd_len += length;
if (!(msg->flags & MIPI_DSI_MSG_LASTCOMMAND)) {
goto error;
} else {
cmd_mem.length = dsi_ctrl->cmd_len;
dsi_ctrl->cmd_len = 0;
}
} else if (flags & DSI_CTRL_CMD_FIFO_STORE) {
cmd.command = (u32 *)buffer;
cmd.size = length;
cmd.en_broadcast = (flags & DSI_CTRL_CMD_BROADCAST) ?
true : false;
cmd.is_master = (flags & DSI_CTRL_CMD_BROADCAST_MASTER) ?
true : false;
cmd.use_lpm = (msg->flags & MIPI_DSI_MSG_USE_LPM) ?
true : false;
}
kickoff:
/* check if custom dma scheduling line needed */
if ((dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) &&
(flags & DSI_CTRL_CMD_CUSTOM_DMA_SCHED))
line_no = dsi_ctrl->host_config.u.video_engine.dma_sched_line;
timing = &(dsi_ctrl->host_config.video_timing);
if (timing)
line_no += timing->v_back_porch + timing->v_sync_width +
timing->v_active;
if ((dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) &&
dsi_ctrl->hw.ops.schedule_dma_cmd &&
(dsi_ctrl->current_state.vid_engine_state ==
DSI_CTRL_ENGINE_ON))
dsi_ctrl->hw.ops.schedule_dma_cmd(&dsi_ctrl->hw,
line_no);
hw_flags |= (flags & DSI_CTRL_CMD_DEFER_TRIGGER) ?
DSI_CTRL_HW_CMD_WAIT_FOR_TRIGGER : 0;
if ((msg->flags & MIPI_DSI_MSG_LASTCOMMAND))
hw_flags |= DSI_CTRL_CMD_LAST_COMMAND;
if (flags & DSI_CTRL_CMD_DEFER_TRIGGER) {
if (flags & DSI_CTRL_CMD_FETCH_MEMORY) {
if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
dsi_ctrl->hw.ops.
kickoff_command_non_embedded_mode(
&dsi_ctrl->hw,
&cmd_mem,
hw_flags);
} else {
dsi_ctrl->hw.ops.kickoff_command(
&dsi_ctrl->hw,
&cmd_mem,
hw_flags);
}
} else if (flags & DSI_CTRL_CMD_FIFO_STORE) {
dsi_ctrl->hw.ops.kickoff_fifo_command(&dsi_ctrl->hw,
&cmd,
hw_flags);
}
}
if (!(flags & DSI_CTRL_CMD_DEFER_TRIGGER)) {
dsi_ctrl_wait_for_video_done(dsi_ctrl);
dsi_ctrl_enable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_MODE_DMA_DONE, NULL);
if (dsi_ctrl->hw.ops.mask_error_intr)
dsi_ctrl->hw.ops.mask_error_intr(&dsi_ctrl->hw,
BIT(DSI_FIFO_OVERFLOW), true);
reinit_completion(&dsi_ctrl->irq_info.cmd_dma_done);
if (flags & DSI_CTRL_CMD_FETCH_MEMORY) {
if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
dsi_ctrl->hw.ops.
kickoff_command_non_embedded_mode(
&dsi_ctrl->hw,
&cmd_mem,
hw_flags);
} else {
dsi_ctrl->hw.ops.kickoff_command(
&dsi_ctrl->hw,
&cmd_mem,
hw_flags);
}
} else if (flags & DSI_CTRL_CMD_FIFO_STORE) {
dsi_ctrl->hw.ops.kickoff_fifo_command(&dsi_ctrl->hw,
&cmd,
hw_flags);
}
ret = wait_for_completion_timeout(
&dsi_ctrl->irq_info.cmd_dma_done,
msecs_to_jiffies(DSI_CTRL_TX_TO_MS));
if (ret == 0) {
u32 status = dsi_ctrl->hw.ops.get_interrupt_status(
&dsi_ctrl->hw);
u32 mask = DSI_CMD_MODE_DMA_DONE;
if (status & mask) {
status |= (DSI_CMD_MODE_DMA_DONE |
DSI_BTA_DONE);
dsi_ctrl->hw.ops.clear_interrupt_status(
&dsi_ctrl->hw,
status);
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_MODE_DMA_DONE);
complete_all(&dsi_ctrl->irq_info.cmd_dma_done);
pr_warn("dma_tx done but irq not triggered\n");
} else {
rc = -ETIMEDOUT;
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_MODE_DMA_DONE);
pr_err("[DSI_%d]Command transfer failed\n",
dsi_ctrl->cell_index);
}
}
if (dsi_ctrl->hw.ops.mask_error_intr)
dsi_ctrl->hw.ops.mask_error_intr(&dsi_ctrl->hw,
BIT(DSI_FIFO_OVERFLOW), false);
dsi_ctrl->hw.ops.reset_cmd_fifo(&dsi_ctrl->hw);
/*
* DSI 2.2 needs a soft reset whenever we send non-embedded
* mode command followed by embedded mode. Otherwise it will
* result in smmu write faults with DSI as client.
*/
if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
dsi_ctrl->hw.ops.soft_reset(&dsi_ctrl->hw);
dsi_ctrl->cmd_len = 0;
}
}
error:
if (buffer)
devm_kfree(&dsi_ctrl->pdev->dev, buffer);
return rc;
}
static int dsi_set_max_return_size(struct dsi_ctrl *dsi_ctrl,
const struct mipi_dsi_msg *rx_msg,
u32 size)
{
int rc = 0;
u8 tx[2] = { (u8)(size & 0xFF), (u8)(size >> 8) };
u32 flags = DSI_CTRL_CMD_FETCH_MEMORY;
struct mipi_dsi_msg msg = {
.channel = rx_msg->channel,
.type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE,
.tx_len = 2,
.tx_buf = tx,
};
rc = dsi_message_tx(dsi_ctrl, &msg, flags);
if (rc)
pr_err("failed to send max return size packet, rc=%d\n", rc);
return rc;
}
/* Helper functions to support DCS read operation */
static int dsi_parse_short_read1_resp(const struct mipi_dsi_msg *msg,
unsigned char *buff)
{
u8 *data = msg->rx_buf;
int read_len = 1;
if (!data)
return 0;
/* remove dcs type */
if (msg->rx_len >= 1)
data[0] = buff[1];
else
read_len = 0;
return read_len;
}
static int dsi_parse_short_read2_resp(const struct mipi_dsi_msg *msg,
unsigned char *buff)
{
u8 *data = msg->rx_buf;
int read_len = 2;
if (!data)
return 0;
/* remove dcs type */
if (msg->rx_len >= 2) {
data[0] = buff[1];
data[1] = buff[2];
} else {
read_len = 0;
}
return read_len;
}
static int dsi_parse_long_read_resp(const struct mipi_dsi_msg *msg,
unsigned char *buff)
{
if (!msg->rx_buf)
return 0;
/* remove dcs type */
if (msg->rx_buf && msg->rx_len)
memcpy(msg->rx_buf, buff + 4, msg->rx_len);
return msg->rx_len;
}
static int dsi_message_rx(struct dsi_ctrl *dsi_ctrl,
const struct mipi_dsi_msg *msg,
u32 flags)
{
int rc = 0;
u32 rd_pkt_size, total_read_len, hw_read_cnt;
u32 current_read_len = 0, total_bytes_read = 0;
bool short_resp = false;
bool read_done = false;
u32 dlen, diff, rlen;
unsigned char *buff;
char cmd;
struct dsi_cmd_desc *of_cmd;
if (!msg) {
pr_err("Invalid msg\n");
rc = -EINVAL;
goto error;
}
of_cmd = container_of(msg, struct dsi_cmd_desc, msg);
rlen = msg->rx_len;
if (msg->rx_len <= 2) {
short_resp = true;
rd_pkt_size = msg->rx_len;
total_read_len = 4;
} else {
short_resp = false;
current_read_len = 10;
if (msg->rx_len < current_read_len)
rd_pkt_size = msg->rx_len;
else
rd_pkt_size = current_read_len;
total_read_len = current_read_len + 6;
}
buff = msg->rx_buf;
while (!read_done) {
rc = dsi_set_max_return_size(dsi_ctrl, msg, rd_pkt_size);
if (rc) {
pr_err("Failed to set max return packet size, rc=%d\n",
rc);
goto error;
}
/* clear RDBK_DATA registers before proceeding */
dsi_ctrl->hw.ops.clear_rdbk_register(&dsi_ctrl->hw);
rc = dsi_message_tx(dsi_ctrl, msg, flags);
if (rc) {
pr_err("Message transmission failed, rc=%d\n", rc);
goto error;
}
/*
* wait before reading rdbk_data register, if any delay is
* required after sending the read command.
*/
if (msg->wait_ms)
usleep_range(msg->wait_ms * 1000,
((msg->wait_ms * 1000) + 10));
dlen = dsi_ctrl->hw.ops.get_cmd_read_data(&dsi_ctrl->hw,
buff, total_bytes_read,
total_read_len, rd_pkt_size,
&hw_read_cnt);
if (!dlen)
goto error;
if (short_resp)
break;
if (rlen <= current_read_len) {
diff = current_read_len - rlen;
read_done = true;
} else {
diff = 0;
rlen -= current_read_len;
}
dlen -= 2; /* 2 bytes of CRC */
dlen -= diff;
buff += dlen;
total_bytes_read += dlen;
if (!read_done) {
current_read_len = 14; /* Not first read */
if (rlen < current_read_len)
rd_pkt_size += rlen;
else
rd_pkt_size += current_read_len;
}
}
if (hw_read_cnt < 16 && !short_resp)
buff = msg->rx_buf + (16 - hw_read_cnt);
else
buff = msg->rx_buf;
/* parse the data read from panel */
cmd = buff[0];
switch (cmd) {
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
pr_err("Rx ACK_ERROR\n");
rc = 0;
break;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
rc = dsi_parse_short_read1_resp(msg, buff);
break;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
rc = dsi_parse_short_read2_resp(msg, buff);
break;
case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
rc = dsi_parse_long_read_resp(msg, buff);
break;
default:
pr_warn("Invalid response\n");
rc = 0;
}
error:
return rc;
}
static int dsi_enable_ulps(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
u32 lanes = 0;
u32 ulps_lanes;
lanes = dsi_ctrl->host_config.common_config.data_lanes;
rc = dsi_ctrl->hw.ops.wait_for_lane_idle(&dsi_ctrl->hw, lanes);
if (rc) {
pr_err("lanes not entering idle, skip ULPS\n");
return rc;
}
if (!dsi_ctrl->hw.ops.ulps_ops.ulps_request ||
!dsi_ctrl->hw.ops.ulps_ops.ulps_exit) {
pr_debug("DSI controller ULPS ops not present\n");
return 0;
}
lanes |= DSI_CLOCK_LANE;
dsi_ctrl->hw.ops.ulps_ops.ulps_request(&dsi_ctrl->hw, lanes);
ulps_lanes = dsi_ctrl->hw.ops.ulps_ops.get_lanes_in_ulps(&dsi_ctrl->hw);
if ((lanes & ulps_lanes) != lanes) {
pr_err("Failed to enter ULPS, request=0x%x, actual=0x%x\n",
lanes, ulps_lanes);
rc = -EIO;
}
return rc;
}
static int dsi_disable_ulps(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
u32 ulps_lanes, lanes = 0;
dsi_ctrl->hw.ops.clear_phy0_ln_err(&dsi_ctrl->hw);
if (!dsi_ctrl->hw.ops.ulps_ops.ulps_request ||
!dsi_ctrl->hw.ops.ulps_ops.ulps_exit) {
pr_debug("DSI controller ULPS ops not present\n");
return 0;
}
lanes = dsi_ctrl->host_config.common_config.data_lanes;
lanes |= DSI_CLOCK_LANE;
ulps_lanes = dsi_ctrl->hw.ops.ulps_ops.get_lanes_in_ulps(&dsi_ctrl->hw);
if ((lanes & ulps_lanes) != lanes)
pr_err("Mismatch between lanes in ULPS\n");
lanes &= ulps_lanes;
dsi_ctrl->hw.ops.ulps_ops.ulps_exit(&dsi_ctrl->hw, lanes);
ulps_lanes = dsi_ctrl->hw.ops.ulps_ops.get_lanes_in_ulps(&dsi_ctrl->hw);
if (ulps_lanes & lanes) {
pr_err("Lanes (0x%x) stuck in ULPS\n", ulps_lanes);
rc = -EIO;
}
return rc;
}
static int dsi_ctrl_drv_state_init(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
bool splash_enabled = false;
struct dsi_ctrl_state_info *state = &dsi_ctrl->current_state;
if (!splash_enabled) {
state->power_state = DSI_CTRL_POWER_VREG_OFF;
state->cmd_engine_state = DSI_CTRL_ENGINE_OFF;
state->vid_engine_state = DSI_CTRL_ENGINE_OFF;
}
return rc;
}
static int dsi_ctrl_buffer_deinit(struct dsi_ctrl *dsi_ctrl)
{
struct msm_gem_address_space *aspace = NULL;
if (dsi_ctrl->tx_cmd_buf) {
aspace = dsi_ctrl_get_aspace(dsi_ctrl,
MSM_SMMU_DOMAIN_UNSECURE);
if (!aspace) {
pr_err("failed to get address space\n");
return -ENOMEM;
}
msm_gem_put_iova(dsi_ctrl->tx_cmd_buf, aspace);
mutex_lock(&dsi_ctrl->drm_dev->struct_mutex);
msm_gem_free_object(dsi_ctrl->tx_cmd_buf);
mutex_unlock(&dsi_ctrl->drm_dev->struct_mutex);
dsi_ctrl->tx_cmd_buf = NULL;
}
return 0;
}
int dsi_ctrl_buffer_init(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
u32 iova = 0;
struct msm_gem_address_space *aspace = NULL;
aspace = dsi_ctrl_get_aspace(dsi_ctrl, MSM_SMMU_DOMAIN_UNSECURE);
if (!aspace) {
pr_err("failed to get address space\n");
return -ENOMEM;
}
dsi_ctrl->tx_cmd_buf = msm_gem_new(dsi_ctrl->drm_dev,
SZ_4K,
MSM_BO_UNCACHED);
if (IS_ERR(dsi_ctrl->tx_cmd_buf)) {
rc = PTR_ERR(dsi_ctrl->tx_cmd_buf);
pr_err("failed to allocate gem, rc=%d\n", rc);
dsi_ctrl->tx_cmd_buf = NULL;
goto error;
}
dsi_ctrl->cmd_buffer_size = SZ_4K;
rc = msm_gem_get_iova(dsi_ctrl->tx_cmd_buf, aspace, &iova);
if (rc) {
pr_err("failed to get iova, rc=%d\n", rc);
(void)dsi_ctrl_buffer_deinit(dsi_ctrl);
goto error;
}
if (iova & 0x07) {
pr_err("Tx command buffer is not 8 byte aligned\n");
rc = -ENOTSUPP;
(void)dsi_ctrl_buffer_deinit(dsi_ctrl);
goto error;
}
error:
return rc;
}
static int dsi_enable_io_clamp(struct dsi_ctrl *dsi_ctrl,
bool enable, bool ulps_enabled)
{
u32 lanes = 0;
if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE)
lanes = dsi_ctrl->host_config.common_config.data_lanes;
lanes |= DSI_CLOCK_LANE;
if (enable)
dsi_ctrl->hw.ops.clamp_enable(&dsi_ctrl->hw,
lanes, ulps_enabled);
else
dsi_ctrl->hw.ops.clamp_disable(&dsi_ctrl->hw,
lanes, ulps_enabled);
return 0;
}
static int dsi_ctrl_dts_parse(struct dsi_ctrl *dsi_ctrl,
struct device_node *of_node)
{
u32 index = 0;
int rc = 0;
if (!dsi_ctrl || !of_node) {
pr_err("invalid dsi_ctrl:%d or of_node:%d\n",
dsi_ctrl != NULL, of_node != NULL);
return -EINVAL;
}
rc = of_property_read_u32(of_node, "cell-index", &index);
if (rc) {
pr_debug("cell index not set, default to 0\n");
index = 0;
}
dsi_ctrl->cell_index = index;
dsi_ctrl->name = of_get_property(of_node, "label", NULL);
if (!dsi_ctrl->name)
dsi_ctrl->name = DSI_CTRL_DEFAULT_LABEL;
dsi_ctrl->phy_isolation_enabled = of_property_read_bool(of_node,
"qcom,dsi-phy-isolation-enabled");
dsi_ctrl->null_insertion_enabled = of_property_read_bool(of_node,
"qcom,null-insertion-enabled");
return 0;
}
static int dsi_ctrl_dev_probe(struct platform_device *pdev)
{
struct dsi_ctrl *dsi_ctrl;
struct dsi_ctrl_list_item *item;
const struct of_device_id *id;
enum dsi_ctrl_version version;
int rc = 0;
id = of_match_node(msm_dsi_of_match, pdev->dev.of_node);
if (!id)
return -ENODEV;
version = *(enum dsi_ctrl_version *)id->data;
item = devm_kzalloc(&pdev->dev, sizeof(*item), GFP_KERNEL);
if (!item)
return -ENOMEM;
dsi_ctrl = devm_kzalloc(&pdev->dev, sizeof(*dsi_ctrl), GFP_KERNEL);
if (!dsi_ctrl)
return -ENOMEM;
dsi_ctrl->version = version;
dsi_ctrl->irq_info.irq_num = -1;
dsi_ctrl->irq_info.irq_stat_mask = 0x0;
spin_lock_init(&dsi_ctrl->irq_info.irq_lock);
rc = dsi_ctrl_dts_parse(dsi_ctrl, pdev->dev.of_node);
if (rc) {
pr_err("ctrl:%d dts parse failed, rc = %d\n",
dsi_ctrl->cell_index, rc);
goto fail;
}
rc = dsi_ctrl_init_regmap(pdev, dsi_ctrl);
if (rc) {
pr_err("Failed to parse register information, rc = %d\n", rc);
goto fail;
}
rc = dsi_ctrl_clocks_init(pdev, dsi_ctrl);
if (rc) {
pr_err("Failed to parse clock information, rc = %d\n", rc);
goto fail;
}
rc = dsi_ctrl_supplies_init(pdev, dsi_ctrl);
if (rc) {
pr_err("Failed to parse voltage supplies, rc = %d\n", rc);
goto fail_clks;
}
rc = dsi_catalog_ctrl_setup(&dsi_ctrl->hw, dsi_ctrl->version,
dsi_ctrl->cell_index, dsi_ctrl->phy_isolation_enabled,
dsi_ctrl->null_insertion_enabled);
if (rc) {
pr_err("Catalog does not support version (%d)\n",
dsi_ctrl->version);
goto fail_supplies;
}
rc = dsi_ctrl_axi_bus_client_init(pdev, dsi_ctrl);
if (rc)
pr_debug("failed to init axi bus client, rc = %d\n", rc);
item->ctrl = dsi_ctrl;
mutex_lock(&dsi_ctrl_list_lock);
list_add(&item->list, &dsi_ctrl_list);
mutex_unlock(&dsi_ctrl_list_lock);
mutex_init(&dsi_ctrl->ctrl_lock);
dsi_ctrl->secure_mode = false;
dsi_ctrl->pdev = pdev;
platform_set_drvdata(pdev, dsi_ctrl);
pr_info("Probe successful for %s\n", dsi_ctrl->name);
return 0;
fail_supplies:
(void)dsi_ctrl_supplies_deinit(dsi_ctrl);
fail_clks:
(void)dsi_ctrl_clocks_deinit(dsi_ctrl);
fail:
return rc;
}
static int dsi_ctrl_dev_remove(struct platform_device *pdev)
{
int rc = 0;
struct dsi_ctrl *dsi_ctrl;
struct list_head *pos, *tmp;
dsi_ctrl = platform_get_drvdata(pdev);
mutex_lock(&dsi_ctrl_list_lock);
list_for_each_safe(pos, tmp, &dsi_ctrl_list) {
struct dsi_ctrl_list_item *n = list_entry(pos,
struct dsi_ctrl_list_item,
list);
if (n->ctrl == dsi_ctrl) {
list_del(&n->list);
break;
}
}
mutex_unlock(&dsi_ctrl_list_lock);
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_axi_bus_client_deinit(dsi_ctrl);
if (rc)
pr_err("failed to deinitialize axi bus client, rc = %d\n", rc);
rc = dsi_ctrl_supplies_deinit(dsi_ctrl);
if (rc)
pr_err("failed to deinitialize voltage supplies, rc=%d\n", rc);
rc = dsi_ctrl_clocks_deinit(dsi_ctrl);
if (rc)
pr_err("failed to deinitialize clocks, rc=%d\n", rc);
mutex_unlock(&dsi_ctrl->ctrl_lock);
mutex_destroy(&dsi_ctrl->ctrl_lock);
devm_kfree(&pdev->dev, dsi_ctrl);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver dsi_ctrl_driver = {
.probe = dsi_ctrl_dev_probe,
.remove = dsi_ctrl_dev_remove,
.driver = {
.name = "drm_dsi_ctrl",
.of_match_table = msm_dsi_of_match,
},
};
#if defined(CONFIG_DEBUG_FS)
void dsi_ctrl_debug_dump(u32 *entries, u32 size)
{
struct list_head *pos, *tmp;
struct dsi_ctrl *ctrl = NULL;
if (!entries || !size)
return;
mutex_lock(&dsi_ctrl_list_lock);
list_for_each_safe(pos, tmp, &dsi_ctrl_list) {
struct dsi_ctrl_list_item *n;
n = list_entry(pos, struct dsi_ctrl_list_item, list);
ctrl = n->ctrl;
pr_err("dsi ctrl:%d\n", ctrl->cell_index);
ctrl->hw.ops.debug_bus(&ctrl->hw, entries, size);
}
mutex_unlock(&dsi_ctrl_list_lock);
}
#endif
/**
* dsi_ctrl_get() - get a dsi_ctrl handle from an of_node
* @of_node: of_node of the DSI controller.
*
* Gets the DSI controller handle for the corresponding of_node. The ref count
* is incremented to one and all subsequent gets will fail until the original
* clients calls a put.
*
* Return: DSI Controller handle.
*/
struct dsi_ctrl *dsi_ctrl_get(struct device_node *of_node)
{
struct list_head *pos, *tmp;
struct dsi_ctrl *ctrl = NULL;
mutex_lock(&dsi_ctrl_list_lock);
list_for_each_safe(pos, tmp, &dsi_ctrl_list) {
struct dsi_ctrl_list_item *n;
n = list_entry(pos, struct dsi_ctrl_list_item, list);
if (n->ctrl->pdev->dev.of_node == of_node) {
ctrl = n->ctrl;
break;
}
}
mutex_unlock(&dsi_ctrl_list_lock);
if (!ctrl) {
pr_err("Device with of node not found\n");
ctrl = ERR_PTR(-EPROBE_DEFER);
return ctrl;
}
mutex_lock(&ctrl->ctrl_lock);
if (ctrl->refcount == 1) {
pr_err("[%s] Device in use\n", ctrl->name);
mutex_unlock(&ctrl->ctrl_lock);
ctrl = ERR_PTR(-EBUSY);
return ctrl;
} else {
ctrl->refcount++;
}
mutex_unlock(&ctrl->ctrl_lock);
return ctrl;
}
/**
* dsi_ctrl_put() - releases a dsi controller handle.
* @dsi_ctrl: DSI controller handle.
*
* Releases the DSI controller. Driver will clean up all resources and puts back
* the DSI controller into reset state.
*/
void dsi_ctrl_put(struct dsi_ctrl *dsi_ctrl)
{
mutex_lock(&dsi_ctrl->ctrl_lock);
if (dsi_ctrl->refcount == 0)
pr_err("Unbalanced dsi_ctrl_put call\n");
else
dsi_ctrl->refcount--;
mutex_unlock(&dsi_ctrl->ctrl_lock);
}
/**
* dsi_ctrl_drv_init() - initialize dsi controller driver.
* @dsi_ctrl: DSI controller handle.
* @parent: Parent directory for debug fs.
*
* Initializes DSI controller driver. Driver should be initialized after
* dsi_ctrl_get() succeeds.
*
* Return: error code.
*/
int dsi_ctrl_drv_init(struct dsi_ctrl *dsi_ctrl, struct dentry *parent)
{
int rc = 0;
if (!dsi_ctrl || !parent) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_drv_state_init(dsi_ctrl);
if (rc) {
pr_err("Failed to initialize driver state, rc=%d\n", rc);
goto error;
}
rc = dsi_ctrl_debugfs_init(dsi_ctrl, parent);
if (rc) {
pr_err("[DSI_%d] failed to init debug fs, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_drv_deinit() - de-initializes dsi controller driver
* @dsi_ctrl: DSI controller handle.
*
* Releases all resources acquired by dsi_ctrl_drv_init().
*
* Return: error code.
*/
int dsi_ctrl_drv_deinit(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_debugfs_deinit(dsi_ctrl);
if (rc)
pr_err("failed to release debugfs root, rc=%d\n", rc);
rc = dsi_ctrl_buffer_deinit(dsi_ctrl);
if (rc)
pr_err("Failed to free cmd buffers, rc=%d\n", rc);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_clk_cb_register(struct dsi_ctrl *dsi_ctrl,
struct clk_ctrl_cb *clk_cb)
{
if (!dsi_ctrl || !clk_cb) {
pr_err("Invalid params\n");
return -EINVAL;
}
dsi_ctrl->clk_cb.priv = clk_cb->priv;
dsi_ctrl->clk_cb.dsi_clk_cb = clk_cb->dsi_clk_cb;
return 0;
}
/**
* dsi_ctrl_phy_sw_reset() - perform a PHY software reset
* @dsi_ctrl: DSI controller handle.
*
* Performs a PHY software reset on the DSI controller. Reset should be done
* when the controller power state is DSI_CTRL_POWER_CORE_CLK_ON and the PHY is
* not enabled.
*
* This function will fail if driver is in any other state.
*
* Return: error code.
*/
int dsi_ctrl_phy_sw_reset(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_PHY_SW_RESET, 0x0);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
dsi_ctrl->hw.ops.phy_sw_reset(&dsi_ctrl->hw);
pr_debug("[DSI_%d] PHY soft reset done\n", dsi_ctrl->cell_index);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_PHY_SW_RESET, 0x0);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_seamless_timing_update() - update only controller timing
* @dsi_ctrl: DSI controller handle.
* @timing: New DSI timing info
*
* Updates host timing values to conduct a seamless transition to new timing
* For example, to update the porch values in a dynamic fps switch.
*
* Return: error code.
*/
int dsi_ctrl_async_timing_update(struct dsi_ctrl *dsi_ctrl,
struct dsi_mode_info *timing)
{
struct dsi_mode_info *host_mode;
int rc = 0;
if (!dsi_ctrl || !timing) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_ASYNC_TIMING,
DSI_CTRL_ENGINE_ON);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto exit;
}
host_mode = &dsi_ctrl->host_config.video_timing;
memcpy(host_mode, timing, sizeof(*host_mode));
dsi_ctrl->hw.ops.set_timing_db(&dsi_ctrl->hw, true);
dsi_ctrl->hw.ops.set_video_timing(&dsi_ctrl->hw, host_mode);
exit:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_timing_db_update() - update only controller Timing DB
* @dsi_ctrl: DSI controller handle.
* @enable: Enable/disable Timing DB register
*
* Update timing db register value during dfps usecases
*
* Return: error code.
*/
int dsi_ctrl_timing_db_update(struct dsi_ctrl *dsi_ctrl,
bool enable)
{
int rc = 0;
if (!dsi_ctrl) {
pr_err("Invalid dsi_ctrl\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_ASYNC_TIMING,
DSI_CTRL_ENGINE_ON);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto exit;
}
/*
* Add HW recommended delay for dfps feature.
* When prefetch is enabled, MDSS HW works on 2 vsync
* boundaries i.e. mdp_vsync and panel_vsync.
* In the current implementation we are only waiting
* for mdp_vsync. We need to make sure that interface
* flush is after panel_vsync. So, added the recommended
* delays after dfps update.
*/
usleep_range(2000, 2010);
dsi_ctrl->hw.ops.set_timing_db(&dsi_ctrl->hw, enable);
exit:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_setup(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->hw.ops.setup_lane_map(&dsi_ctrl->hw,
&dsi_ctrl->host_config.lane_map);
dsi_ctrl->hw.ops.host_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config);
if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) {
dsi_ctrl->hw.ops.cmd_engine_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config,
&dsi_ctrl->host_config.u.cmd_engine);
dsi_ctrl->hw.ops.setup_cmd_stream(&dsi_ctrl->hw,
&dsi_ctrl->host_config.video_timing,
dsi_ctrl->host_config.video_timing.h_active * 3,
0x0,
&dsi_ctrl->roi);
dsi_ctrl->hw.ops.cmd_engine_en(&dsi_ctrl->hw, true);
} else {
dsi_ctrl->hw.ops.video_engine_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config,
&dsi_ctrl->host_config.u.video_engine);
dsi_ctrl->hw.ops.set_video_timing(&dsi_ctrl->hw,
&dsi_ctrl->host_config.video_timing);
dsi_ctrl->hw.ops.video_engine_en(&dsi_ctrl->hw, true);
}
dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw, 0x0);
dsi_ctrl->hw.ops.enable_error_interrupts(&dsi_ctrl->hw, 0xFF00E0);
dsi_ctrl->hw.ops.ctrl_en(&dsi_ctrl->hw, true);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_set_roi(struct dsi_ctrl *dsi_ctrl, struct dsi_rect *roi,
bool *changed)
{
int rc = 0;
if (!dsi_ctrl || !roi || !changed) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
if ((!dsi_rect_is_equal(&dsi_ctrl->roi, roi)) ||
dsi_ctrl->modeupdated) {
*changed = true;
memcpy(&dsi_ctrl->roi, roi, sizeof(dsi_ctrl->roi));
dsi_ctrl->modeupdated = false;
} else
*changed = false;
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_phy_reset_config() - Mask/unmask propagation of ahb reset signal
* to DSI PHY hardware.
* @dsi_ctrl: DSI controller handle.
* @enable: Mask/unmask the PHY reset signal.
*
* Return: error code.
*/
int dsi_ctrl_phy_reset_config(struct dsi_ctrl *dsi_ctrl, bool enable)
{
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (dsi_ctrl->hw.ops.phy_reset_config)
dsi_ctrl->hw.ops.phy_reset_config(&dsi_ctrl->hw, enable);
return 0;
}
static void dsi_ctrl_handle_error_status(struct dsi_ctrl *dsi_ctrl,
unsigned long int error)
{
struct dsi_event_cb_info cb_info;
cb_info = dsi_ctrl->irq_info.irq_err_cb;
/* disable error interrupts */
if (dsi_ctrl->hw.ops.error_intr_ctrl)
dsi_ctrl->hw.ops.error_intr_ctrl(&dsi_ctrl->hw, false);
/* clear error interrupts first */
if (dsi_ctrl->hw.ops.clear_error_status)
dsi_ctrl->hw.ops.clear_error_status(&dsi_ctrl->hw,
error);
/* DTLN PHY error */
if (error & 0x3000E00)
pr_err("dsi PHY contention error: 0x%lx\n", error);
/* TX timeout error */
if (error & 0xE0) {
if (error & 0xA0) {
if (cb_info.event_cb) {
cb_info.event_idx = DSI_LP_Rx_TIMEOUT;
(void)cb_info.event_cb(cb_info.event_usr_ptr,
cb_info.event_idx,
dsi_ctrl->cell_index,
0, 0, 0, 0);
}
}
pr_err("tx timeout error: 0x%lx\n", error);
}
/* DSI FIFO OVERFLOW error */
if (error & 0xF0000) {
u32 mask = 0;
if (dsi_ctrl->hw.ops.get_error_mask)
mask = dsi_ctrl->hw.ops.get_error_mask(&dsi_ctrl->hw);
/* no need to report FIFO overflow if already masked */
if (cb_info.event_cb && !(mask & 0xf0000)) {
cb_info.event_idx = DSI_FIFO_OVERFLOW;
(void)cb_info.event_cb(cb_info.event_usr_ptr,
cb_info.event_idx,
dsi_ctrl->cell_index,
0, 0, 0, 0);
pr_err("dsi FIFO OVERFLOW error: 0x%lx\n", error);
}
}
/* DSI FIFO UNDERFLOW error */
if (error & 0xF00000) {
if (cb_info.event_cb) {
cb_info.event_idx = DSI_FIFO_UNDERFLOW;
(void)cb_info.event_cb(cb_info.event_usr_ptr,
cb_info.event_idx,
dsi_ctrl->cell_index,
0, 0, 0, 0);
}
pr_err("dsi FIFO UNDERFLOW error: 0x%lx\n", error);
}
/* DSI PLL UNLOCK error */
if (error & BIT(8))
pr_err("dsi PLL unlock error: 0x%lx\n", error);
/* ACK error */
if (error & 0xF)
pr_err("ack error: 0x%lx\n", error);
/* enable back DSI interrupts */
if (dsi_ctrl->hw.ops.error_intr_ctrl)
dsi_ctrl->hw.ops.error_intr_ctrl(&dsi_ctrl->hw, true);
}
/**
* dsi_ctrl_isr - interrupt service routine for DSI CTRL component
* @irq: Incoming IRQ number
* @ptr: Pointer to user data structure (struct dsi_ctrl)
* Returns: IRQ_HANDLED if no further action required
*/
static irqreturn_t dsi_ctrl_isr(int irq, void *ptr)
{
struct dsi_ctrl *dsi_ctrl;
struct dsi_event_cb_info cb_info;
unsigned long flags;
uint32_t status = 0x0, i;
uint64_t errors = 0x0;
if (!ptr)
return IRQ_NONE;
dsi_ctrl = ptr;
/* check status interrupts */
if (dsi_ctrl->hw.ops.get_interrupt_status)
status = dsi_ctrl->hw.ops.get_interrupt_status(&dsi_ctrl->hw);
/* check error interrupts */
if (dsi_ctrl->hw.ops.get_error_status)
errors = dsi_ctrl->hw.ops.get_error_status(&dsi_ctrl->hw);
/* clear interrupts */
if (dsi_ctrl->hw.ops.clear_interrupt_status)
dsi_ctrl->hw.ops.clear_interrupt_status(&dsi_ctrl->hw, 0x0);
SDE_EVT32_IRQ(dsi_ctrl->cell_index, status, errors);
/* handle DSI error recovery */
if (status & DSI_ERROR)
dsi_ctrl_handle_error_status(dsi_ctrl, errors);
if (status & DSI_CMD_MODE_DMA_DONE) {
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_MODE_DMA_DONE);
complete_all(&dsi_ctrl->irq_info.cmd_dma_done);
}
if (status & DSI_CMD_FRAME_DONE) {
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_FRAME_DONE);
complete_all(&dsi_ctrl->irq_info.cmd_frame_done);
}
if (status & DSI_VIDEO_MODE_FRAME_DONE) {
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_VIDEO_MODE_FRAME_DONE);
complete_all(&dsi_ctrl->irq_info.vid_frame_done);
}
if (status & DSI_BTA_DONE) {
u32 fifo_overflow_mask = (DSI_DLN0_HS_FIFO_OVERFLOW |
DSI_DLN1_HS_FIFO_OVERFLOW |
DSI_DLN2_HS_FIFO_OVERFLOW |
DSI_DLN3_HS_FIFO_OVERFLOW);
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_BTA_DONE);
complete_all(&dsi_ctrl->irq_info.bta_done);
if (dsi_ctrl->hw.ops.clear_error_status)
dsi_ctrl->hw.ops.clear_error_status(&dsi_ctrl->hw,
fifo_overflow_mask);
}
for (i = 0; status && i < DSI_STATUS_INTERRUPT_COUNT; ++i) {
if (status & 0x1) {
spin_lock_irqsave(&dsi_ctrl->irq_info.irq_lock, flags);
cb_info = dsi_ctrl->irq_info.irq_stat_cb[i];
spin_unlock_irqrestore(
&dsi_ctrl->irq_info.irq_lock, flags);
if (cb_info.event_cb)
(void)cb_info.event_cb(cb_info.event_usr_ptr,
cb_info.event_idx,
dsi_ctrl->cell_index,
irq, 0, 0, 0);
}
status >>= 1;
}
return IRQ_HANDLED;
}
/**
* _dsi_ctrl_setup_isr - register ISR handler
* @dsi_ctrl: Pointer to associated dsi_ctrl structure
* Returns: Zero on success
*/
static int _dsi_ctrl_setup_isr(struct dsi_ctrl *dsi_ctrl)
{
int irq_num, rc;
if (!dsi_ctrl)
return -EINVAL;
if (dsi_ctrl->irq_info.irq_num != -1)
return 0;
init_completion(&dsi_ctrl->irq_info.cmd_dma_done);
init_completion(&dsi_ctrl->irq_info.vid_frame_done);
init_completion(&dsi_ctrl->irq_info.cmd_frame_done);
init_completion(&dsi_ctrl->irq_info.bta_done);
irq_num = platform_get_irq(dsi_ctrl->pdev, 0);
if (irq_num < 0) {
pr_err("[DSI_%d] Failed to get IRQ number, %d\n",
dsi_ctrl->cell_index, irq_num);
rc = irq_num;
} else {
rc = devm_request_threaded_irq(&dsi_ctrl->pdev->dev, irq_num,
dsi_ctrl_isr, NULL, 0, "dsi_ctrl", dsi_ctrl);
if (rc) {
pr_err("[DSI_%d] Failed to request IRQ, %d\n",
dsi_ctrl->cell_index, rc);
} else {
dsi_ctrl->irq_info.irq_num = irq_num;
disable_irq_nosync(irq_num);
pr_info("[DSI_%d] IRQ %d registered\n",
dsi_ctrl->cell_index, irq_num);
}
}
return rc;
}
/**
* _dsi_ctrl_destroy_isr - unregister ISR handler
* @dsi_ctrl: Pointer to associated dsi_ctrl structure
*/
static void _dsi_ctrl_destroy_isr(struct dsi_ctrl *dsi_ctrl)
{
if (!dsi_ctrl || !dsi_ctrl->pdev || dsi_ctrl->irq_info.irq_num < 0)
return;
if (dsi_ctrl->irq_info.irq_num != -1) {
devm_free_irq(&dsi_ctrl->pdev->dev,
dsi_ctrl->irq_info.irq_num, dsi_ctrl);
dsi_ctrl->irq_info.irq_num = -1;
}
}
void dsi_ctrl_enable_status_interrupt(struct dsi_ctrl *dsi_ctrl,
uint32_t intr_idx, struct dsi_event_cb_info *event_info)
{
unsigned long flags;
if (!dsi_ctrl || dsi_ctrl->irq_info.irq_num == -1 ||
intr_idx >= DSI_STATUS_INTERRUPT_COUNT)
return;
spin_lock_irqsave(&dsi_ctrl->irq_info.irq_lock, flags);
if (dsi_ctrl->irq_info.irq_stat_refcount[intr_idx] == 0) {
/* enable irq on first request */
if (dsi_ctrl->irq_info.irq_stat_mask == 0)
enable_irq(dsi_ctrl->irq_info.irq_num);
/* update hardware mask */
dsi_ctrl->irq_info.irq_stat_mask |= BIT(intr_idx);
dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw,
dsi_ctrl->irq_info.irq_stat_mask);
}
++(dsi_ctrl->irq_info.irq_stat_refcount[intr_idx]);
if (event_info)
dsi_ctrl->irq_info.irq_stat_cb[intr_idx] = *event_info;
spin_unlock_irqrestore(&dsi_ctrl->irq_info.irq_lock, flags);
}
void dsi_ctrl_disable_status_interrupt(struct dsi_ctrl *dsi_ctrl,
uint32_t intr_idx)
{
unsigned long flags;
if (!dsi_ctrl || dsi_ctrl->irq_info.irq_num == -1 ||
intr_idx >= DSI_STATUS_INTERRUPT_COUNT)
return;
spin_lock_irqsave(&dsi_ctrl->irq_info.irq_lock, flags);
if (dsi_ctrl->irq_info.irq_stat_refcount[intr_idx])
if (--(dsi_ctrl->irq_info.irq_stat_refcount[intr_idx]) == 0) {
dsi_ctrl->irq_info.irq_stat_mask &= ~BIT(intr_idx);
dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw,
dsi_ctrl->irq_info.irq_stat_mask);
/* don't need irq if no lines are enabled */
if (dsi_ctrl->irq_info.irq_stat_mask == 0)
disable_irq_nosync(dsi_ctrl->irq_info.irq_num);
}
spin_unlock_irqrestore(&dsi_ctrl->irq_info.irq_lock, flags);
}
int dsi_ctrl_host_timing_update(struct dsi_ctrl *dsi_ctrl)
{
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (dsi_ctrl->hw.ops.host_setup)
dsi_ctrl->hw.ops.host_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config);
if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) {
if (dsi_ctrl->hw.ops.cmd_engine_setup)
dsi_ctrl->hw.ops.cmd_engine_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config,
&dsi_ctrl->host_config.u.cmd_engine);
if (dsi_ctrl->hw.ops.setup_cmd_stream)
dsi_ctrl->hw.ops.setup_cmd_stream(&dsi_ctrl->hw,
&dsi_ctrl->host_config.video_timing,
dsi_ctrl->host_config.video_timing.h_active * 3,
0x0, NULL);
} else {
pr_err("invalid panel mode for resolution switch\n");
return -EINVAL;
}
return 0;
}
/**
* dsi_ctrl_update_host_init_state() - Update the host initialization state.
* @dsi_ctrl: DSI controller handle.
* @enable: boolean signifying host state.
*
* Update the host initialization status only while exiting from ulps during
* suspend state.
*
* Return: error code.
*/
int dsi_ctrl_update_host_init_state(struct dsi_ctrl *dsi_ctrl, bool enable)
{
int rc = 0;
u32 state = enable ? 0x1 : 0x0;
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, state);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
return rc;
}
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, state);
return rc;
}
/**
* dsi_ctrl_host_init() - Initialize DSI host hardware.
* @dsi_ctrl: DSI controller handle.
* @is_splash_enabled: boolean signifying splash status.
*
* Initializes DSI controller hardware with host configuration provided by
* dsi_ctrl_update_host_config(). Initialization can be performed only during
* DSI_CTRL_POWER_CORE_CLK_ON state and after the PHY SW reset has been
* performed.
*
* Return: error code.
*/
int dsi_ctrl_host_init(struct dsi_ctrl *dsi_ctrl, bool is_splash_enabled)
{
int rc = 0;
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x1);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
/* For Splash usecases we omit hw operations as bootloader
* already takes care of them
*/
if (!is_splash_enabled) {
dsi_ctrl->hw.ops.setup_lane_map(&dsi_ctrl->hw,
&dsi_ctrl->host_config.lane_map);
dsi_ctrl->hw.ops.host_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config);
if (dsi_ctrl->host_config.panel_mode == DSI_OP_CMD_MODE) {
dsi_ctrl->hw.ops.cmd_engine_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config,
&dsi_ctrl->host_config.u.cmd_engine);
dsi_ctrl->hw.ops.setup_cmd_stream(&dsi_ctrl->hw,
&dsi_ctrl->host_config.video_timing,
dsi_ctrl->host_config.video_timing.h_active * 3,
0x0,
NULL);
} else {
dsi_ctrl->hw.ops.video_engine_setup(&dsi_ctrl->hw,
&dsi_ctrl->host_config.common_config,
&dsi_ctrl->host_config.u.video_engine);
dsi_ctrl->hw.ops.set_video_timing(&dsi_ctrl->hw,
&dsi_ctrl->host_config.video_timing);
}
}
dsi_ctrl->hw.ops.enable_status_interrupts(&dsi_ctrl->hw, 0x0);
dsi_ctrl->hw.ops.enable_error_interrupts(&dsi_ctrl->hw, 0xFF00E0);
pr_debug("[DSI_%d]Host initialization complete, continuous splash status:%d\n",
dsi_ctrl->cell_index, is_splash_enabled);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x1);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_isr_configure() - API to register/deregister dsi isr
* @dsi_ctrl: DSI controller handle.
* @enable: variable to control register/deregister isr
*/
void dsi_ctrl_isr_configure(struct dsi_ctrl *dsi_ctrl, bool enable)
{
if (!dsi_ctrl)
return;
mutex_lock(&dsi_ctrl->ctrl_lock);
if (enable)
_dsi_ctrl_setup_isr(dsi_ctrl);
else
_dsi_ctrl_destroy_isr(dsi_ctrl);
mutex_unlock(&dsi_ctrl->ctrl_lock);
}
int dsi_ctrl_soft_reset(struct dsi_ctrl *dsi_ctrl)
{
if (!dsi_ctrl)
return -EINVAL;
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->hw.ops.soft_reset(&dsi_ctrl->hw);
mutex_unlock(&dsi_ctrl->ctrl_lock);
pr_debug("[DSI_%d]Soft reset complete\n", dsi_ctrl->cell_index);
return 0;
}
int dsi_ctrl_reset(struct dsi_ctrl *dsi_ctrl, int mask)
{
int rc = 0;
if (!dsi_ctrl)
return -EINVAL;
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl->hw.ops.ctrl_reset(&dsi_ctrl->hw, mask);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_get_hw_version(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl)
return -EINVAL;
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl->hw.ops.get_hw_version(&dsi_ctrl->hw);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
int dsi_ctrl_vid_engine_en(struct dsi_ctrl *dsi_ctrl, bool on)
{
int rc = 0;
if (!dsi_ctrl)
return -EINVAL;
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->hw.ops.video_engine_en(&dsi_ctrl->hw, on);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_host_deinit() - De-Initialize DSI host hardware.
* @dsi_ctrl: DSI controller handle.
*
* De-initializes DSI controller hardware. It can be performed only during
* DSI_CTRL_POWER_CORE_CLK_ON state after LINK clocks have been turned off.
*
* Return: error code.
*/
int dsi_ctrl_host_deinit(struct dsi_ctrl *dsi_ctrl)
{
int rc = 0;
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x0);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
pr_err("driver state check failed, rc=%d\n", rc);
goto error;
}
pr_debug("[DSI_%d] Host deinitization complete\n",
dsi_ctrl->cell_index);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_INIT, 0x0);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_update_host_config() - update dsi host configuration
* @dsi_ctrl: DSI controller handle.
* @config: DSI host configuration.
* @flags: dsi_mode_flags modifying the behavior
*
* Updates driver with new Host configuration to use for host initialization.
* This function call will only update the software context. The stored
* configuration information will be used when the host is initialized.
*
* Return: error code.
*/
int dsi_ctrl_update_host_config(struct dsi_ctrl *ctrl,
struct dsi_host_config *config,
int flags, void *clk_handle)
{
int rc = 0;
if (!ctrl || !config) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&ctrl->ctrl_lock);
rc = dsi_ctrl_validate_panel_info(ctrl, config);
if (rc) {
pr_err("panel validation failed, rc=%d\n", rc);
goto error;
}
if (!(flags & (DSI_MODE_FLAG_SEAMLESS | DSI_MODE_FLAG_VRR))) {
rc = dsi_ctrl_update_link_freqs(ctrl, config, clk_handle);
if (rc) {
pr_err("[%s] failed to update link frequencies, rc=%d\n",
ctrl->name, rc);
goto error;
}
}
pr_debug("[DSI_%d]Host config updated\n", ctrl->cell_index);
memcpy(&ctrl->host_config, config, sizeof(ctrl->host_config));
ctrl->mode_bounds.x = ctrl->host_config.video_timing.h_active *
ctrl->horiz_index;
ctrl->mode_bounds.y = 0;
ctrl->mode_bounds.w = ctrl->host_config.video_timing.h_active;
ctrl->mode_bounds.h = ctrl->host_config.video_timing.v_active;
memcpy(&ctrl->roi, &ctrl->mode_bounds, sizeof(ctrl->mode_bounds));
ctrl->modeupdated = true;
ctrl->roi.x = 0;
error:
mutex_unlock(&ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_validate_timing() - validate a video timing configuration
* @dsi_ctrl: DSI controller handle.
* @timing: Pointer to timing data.
*
* Driver will validate if the timing configuration is supported on the
* controller hardware.
*
* Return: error code if timing is not supported.
*/
int dsi_ctrl_validate_timing(struct dsi_ctrl *dsi_ctrl,
struct dsi_mode_info *mode)
{
int rc = 0;
if (!dsi_ctrl || !mode) {
pr_err("Invalid params\n");
return -EINVAL;
}
return rc;
}
/**
* dsi_ctrl_cmd_transfer() - Transfer commands on DSI link
* @dsi_ctrl: DSI controller handle.
* @msg: Message to transfer on DSI link.
* @flags: Modifiers for message transfer.
*
* Command transfer can be done only when command engine is enabled. The
* transfer API will block until either the command transfer finishes or
* the timeout value is reached. If the trigger is deferred, it will return
* without triggering the transfer. Command parameters are programmed to
* hardware.
*
* Return: error code.
*/
int dsi_ctrl_cmd_transfer(struct dsi_ctrl *dsi_ctrl,
const struct mipi_dsi_msg *msg,
u32 flags)
{
int rc = 0;
if (!dsi_ctrl || !msg) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_CMD_TX, 0x0);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
if (flags & DSI_CTRL_CMD_READ) {
rc = dsi_message_rx(dsi_ctrl, msg, flags);
if (rc <= 0)
pr_err("read message failed read length, rc=%d\n", rc);
} else {
rc = dsi_message_tx(dsi_ctrl, msg, flags);
if (rc)
pr_err("command msg transfer failed, rc = %d\n", rc);
}
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_CMD_TX, 0x0);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_cmd_tx_trigger() - Trigger a deferred command.
* @dsi_ctrl: DSI controller handle.
* @flags: Modifiers.
*
* Return: error code.
*/
int dsi_ctrl_cmd_tx_trigger(struct dsi_ctrl *dsi_ctrl, u32 flags)
{
int rc = 0, ret = 0;
u32 status = 0;
u32 mask = (DSI_CMD_MODE_DMA_DONE);
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
/* Dont trigger the command if this is not the last ocmmand */
if (!(flags & DSI_CTRL_CMD_LAST_COMMAND))
return rc;
mutex_lock(&dsi_ctrl->ctrl_lock);
if (!(flags & DSI_CTRL_CMD_BROADCAST_MASTER))
dsi_ctrl->hw.ops.trigger_command_dma(&dsi_ctrl->hw);
if ((flags & DSI_CTRL_CMD_BROADCAST) &&
(flags & DSI_CTRL_CMD_BROADCAST_MASTER)) {
dsi_ctrl_wait_for_video_done(dsi_ctrl);
dsi_ctrl_enable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_MODE_DMA_DONE, NULL);
if (dsi_ctrl->hw.ops.mask_error_intr)
dsi_ctrl->hw.ops.mask_error_intr(&dsi_ctrl->hw,
BIT(DSI_FIFO_OVERFLOW), true);
reinit_completion(&dsi_ctrl->irq_info.cmd_dma_done);
/* trigger command */
dsi_ctrl->hw.ops.trigger_command_dma(&dsi_ctrl->hw);
ret = wait_for_completion_timeout(
&dsi_ctrl->irq_info.cmd_dma_done,
msecs_to_jiffies(DSI_CTRL_TX_TO_MS));
if (ret == 0) {
status = dsi_ctrl->hw.ops.get_interrupt_status(
&dsi_ctrl->hw);
if (status & mask) {
status |= (DSI_CMD_MODE_DMA_DONE |
DSI_BTA_DONE);
dsi_ctrl->hw.ops.clear_interrupt_status(
&dsi_ctrl->hw,
status);
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_MODE_DMA_DONE);
complete_all(&dsi_ctrl->irq_info.cmd_dma_done);
pr_warn("dma_tx done but irq not triggered\n");
} else {
rc = -ETIMEDOUT;
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_CMD_MODE_DMA_DONE);
pr_err("[DSI_%d]Command transfer failed\n",
dsi_ctrl->cell_index);
}
}
if (dsi_ctrl->hw.ops.mask_error_intr)
dsi_ctrl->hw.ops.mask_error_intr(&dsi_ctrl->hw,
BIT(DSI_FIFO_OVERFLOW), false);
if (flags & DSI_CTRL_CMD_NON_EMBEDDED_MODE) {
dsi_ctrl->hw.ops.soft_reset(&dsi_ctrl->hw);
dsi_ctrl->cmd_len = 0;
}
}
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* _dsi_ctrl_cache_misr - Cache frame MISR value
* @dsi_ctrl: Pointer to associated dsi_ctrl structure
*/
static void _dsi_ctrl_cache_misr(struct dsi_ctrl *dsi_ctrl)
{
u32 misr;
if (!dsi_ctrl || !dsi_ctrl->hw.ops.collect_misr)
return;
misr = dsi_ctrl->hw.ops.collect_misr(&dsi_ctrl->hw,
dsi_ctrl->host_config.panel_mode);
if (misr)
dsi_ctrl->misr_cache = misr;
pr_debug("DSI_%d misr_cache = %x\n", dsi_ctrl->cell_index,
dsi_ctrl->misr_cache);
}
/**
* dsi_ctrl_get_host_engine_init_state() - Return host init state
* @dsi_ctrl: DSI controller handle.
* @state: Controller initialization state
*
* Return: error code.
*/
int dsi_ctrl_get_host_engine_init_state(struct dsi_ctrl *dsi_ctrl,
bool *state)
{
if (!dsi_ctrl || !state) {
pr_err("Invalid Params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
*state = dsi_ctrl->current_state.host_initialized;
mutex_unlock(&dsi_ctrl->ctrl_lock);
return 0;
}
/**
* dsi_ctrl_update_host_engine_state_for_cont_splash() -
* set engine state for dsi controller during continuous splash
* @dsi_ctrl: DSI controller handle.
* @state: Engine state.
*
* Set host engine state for DSI controller during continuous splash.
*
* Return: error code.
*/
int dsi_ctrl_update_host_engine_state_for_cont_splash(struct dsi_ctrl *dsi_ctrl,
enum dsi_engine_state state)
{
int rc = 0;
if (!dsi_ctrl || (state >= DSI_CTRL_ENGINE_MAX)) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_ENGINE, state);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
pr_debug("[DSI_%d] Set host engine state = %d\n", dsi_ctrl->cell_index,
state);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_ENGINE, state);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_power_state() - set power state for dsi controller
* @dsi_ctrl: DSI controller handle.
* @state: Power state.
*
* Set power state for DSI controller. Power state can be changed only when
* Controller, Video and Command engines are turned off.
*
* Return: error code.
*/
int dsi_ctrl_set_power_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_power_state state)
{
int rc = 0;
if (!dsi_ctrl || (state >= DSI_CTRL_POWER_MAX)) {
pr_err("Invalid Params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_POWER_STATE_CHANGE,
state);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
if (state == DSI_CTRL_POWER_VREG_ON) {
rc = dsi_ctrl_enable_supplies(dsi_ctrl, true);
if (rc) {
pr_err("[%d]failed to enable voltage supplies, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
} else if (state == DSI_CTRL_POWER_VREG_OFF) {
if (dsi_ctrl->misr_enable)
_dsi_ctrl_cache_misr(dsi_ctrl);
rc = dsi_ctrl_enable_supplies(dsi_ctrl, false);
if (rc) {
pr_err("[%d]failed to disable vreg supplies, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
}
pr_debug("[DSI_%d] Power state updated to %d\n", dsi_ctrl->cell_index,
state);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_POWER_STATE_CHANGE, state);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_tpg_state() - enable/disable test pattern on the controller
* @dsi_ctrl: DSI controller handle.
* @on: enable/disable test pattern.
*
* Test pattern can be enabled only after Video engine (for video mode panels)
* or command engine (for cmd mode panels) is enabled.
*
* Return: error code.
*/
int dsi_ctrl_set_tpg_state(struct dsi_ctrl *dsi_ctrl, bool on)
{
int rc = 0;
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_TPG, on);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
if (on) {
if (dsi_ctrl->host_config.panel_mode == DSI_OP_VIDEO_MODE) {
dsi_ctrl->hw.ops.video_test_pattern_setup(&dsi_ctrl->hw,
DSI_TEST_PATTERN_INC,
0xFFFF);
} else {
dsi_ctrl->hw.ops.cmd_test_pattern_setup(
&dsi_ctrl->hw,
DSI_TEST_PATTERN_INC,
0xFFFF,
0x0);
}
}
dsi_ctrl->hw.ops.test_pattern_enable(&dsi_ctrl->hw, on);
pr_debug("[DSI_%d]Set test pattern state=%d\n",
dsi_ctrl->cell_index, on);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_TPG, on);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_host_engine_state() - set host engine state
* @dsi_ctrl: DSI Controller handle.
* @state: Engine state.
*
* Host engine state can be modified only when DSI controller power state is
* set to DSI_CTRL_POWER_LINK_CLK_ON and cmd, video engines are disabled.
*
* Return: error code.
*/
int dsi_ctrl_set_host_engine_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_engine_state state)
{
int rc = 0;
if (!dsi_ctrl || (state >= DSI_CTRL_ENGINE_MAX)) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_HOST_ENGINE, state);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
if (state == DSI_CTRL_ENGINE_ON)
dsi_ctrl->hw.ops.ctrl_en(&dsi_ctrl->hw, true);
else
dsi_ctrl->hw.ops.ctrl_en(&dsi_ctrl->hw, false);
pr_debug("[DSI_%d] Set host engine state = %d\n", dsi_ctrl->cell_index,
state);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_HOST_ENGINE, state);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_cmd_engine_state() - set command engine state
* @dsi_ctrl: DSI Controller handle.
* @state: Engine state.
*
* Command engine state can be modified only when DSI controller power state is
* set to DSI_CTRL_POWER_LINK_CLK_ON.
*
* Return: error code.
*/
int dsi_ctrl_set_cmd_engine_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_engine_state state)
{
int rc = 0;
if (!dsi_ctrl || (state >= DSI_CTRL_ENGINE_MAX)) {
pr_err("Invalid params\n");
return -EINVAL;
}
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_CMD_ENGINE, state);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
if (state == DSI_CTRL_ENGINE_ON)
dsi_ctrl->hw.ops.cmd_engine_en(&dsi_ctrl->hw, true);
else
dsi_ctrl->hw.ops.cmd_engine_en(&dsi_ctrl->hw, false);
pr_debug("[DSI_%d] Set cmd engine state = %d\n", dsi_ctrl->cell_index,
state);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_CMD_ENGINE, state);
error:
return rc;
}
/**
* dsi_ctrl_set_vid_engine_state() - set video engine state
* @dsi_ctrl: DSI Controller handle.
* @state: Engine state.
*
* Video engine state can be modified only when DSI controller power state is
* set to DSI_CTRL_POWER_LINK_CLK_ON.
*
* Return: error code.
*/
int dsi_ctrl_set_vid_engine_state(struct dsi_ctrl *dsi_ctrl,
enum dsi_engine_state state)
{
int rc = 0;
bool on;
if (!dsi_ctrl || (state >= DSI_CTRL_ENGINE_MAX)) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_ctrl_check_state(dsi_ctrl, DSI_CTRL_OP_VID_ENGINE, state);
if (rc) {
pr_err("[DSI_%d] Controller state check failed, rc=%d\n",
dsi_ctrl->cell_index, rc);
goto error;
}
on = (state == DSI_CTRL_ENGINE_ON) ? true : false;
dsi_ctrl->hw.ops.video_engine_en(&dsi_ctrl->hw, on);
/* perform a reset when turning off video engine */
if (!on)
dsi_ctrl->hw.ops.soft_reset(&dsi_ctrl->hw);
pr_debug("[DSI_%d] Set video engine state = %d\n", dsi_ctrl->cell_index,
state);
dsi_ctrl_update_state(dsi_ctrl, DSI_CTRL_OP_VID_ENGINE, state);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_ulps() - set ULPS state for DSI lanes.
* @dsi_ctrl: DSI controller handle.
* @enable: enable/disable ULPS.
*
* ULPS can be enabled/disabled after DSI host engine is turned on.
*
* Return: error code.
*/
int dsi_ctrl_set_ulps(struct dsi_ctrl *dsi_ctrl, bool enable)
{
int rc = 0;
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
if (enable)
rc = dsi_enable_ulps(dsi_ctrl);
else
rc = dsi_disable_ulps(dsi_ctrl);
if (rc) {
pr_err("[DSI_%d] Ulps state change(%d) failed, rc=%d\n",
dsi_ctrl->cell_index, enable, rc);
goto error;
}
pr_debug("[DSI_%d] ULPS state = %d\n", dsi_ctrl->cell_index, enable);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_clamp_state() - set clamp state for DSI phy
* @dsi_ctrl: DSI controller handle.
* @enable: enable/disable clamping.
*
* Clamps can be enabled/disabled while DSI contoller is still turned on.
*
* Return: error code.
*/
int dsi_ctrl_set_clamp_state(struct dsi_ctrl *dsi_ctrl,
bool enable, bool ulps_enabled)
{
int rc = 0;
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (!dsi_ctrl->hw.ops.clamp_enable ||
!dsi_ctrl->hw.ops.clamp_disable) {
pr_debug("No clamp control for DSI controller\n");
return 0;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_enable_io_clamp(dsi_ctrl, enable, ulps_enabled);
if (rc) {
pr_err("[DSI_%d] Failed to enable IO clamp\n",
dsi_ctrl->cell_index);
goto error;
}
pr_debug("[DSI_%d] Clamp state = %d\n", dsi_ctrl->cell_index, enable);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_set_clock_source() - set clock source fpr dsi link clocks
* @dsi_ctrl: DSI controller handle.
* @source_clks: Source clocks for DSI link clocks.
*
* Clock source should be changed while link clocks are disabled.
*
* Return: error code.
*/
int dsi_ctrl_set_clock_source(struct dsi_ctrl *dsi_ctrl,
struct dsi_clk_link_set *source_clks)
{
int rc = 0;
if (!dsi_ctrl || !source_clks) {
pr_err("Invalid params\n");
return -EINVAL;
}
mutex_lock(&dsi_ctrl->ctrl_lock);
rc = dsi_clk_update_parent(source_clks, &dsi_ctrl->clk_info.rcg_clks);
if (rc) {
pr_err("[DSI_%d]Failed to update link clk parent, rc=%d\n",
dsi_ctrl->cell_index, rc);
(void)dsi_clk_update_parent(&dsi_ctrl->clk_info.pll_op_clks,
&dsi_ctrl->clk_info.rcg_clks);
goto error;
}
dsi_ctrl->clk_info.pll_op_clks.byte_clk = source_clks->byte_clk;
dsi_ctrl->clk_info.pll_op_clks.pixel_clk = source_clks->pixel_clk;
pr_debug("[DSI_%d] Source clocks are updated\n", dsi_ctrl->cell_index);
error:
mutex_unlock(&dsi_ctrl->ctrl_lock);
return rc;
}
/**
* dsi_ctrl_setup_misr() - Setup frame MISR
* @dsi_ctrl: DSI controller handle.
* @enable: enable/disable MISR.
* @frame_count: Number of frames to accumulate MISR.
*
* Return: error code.
*/
int dsi_ctrl_setup_misr(struct dsi_ctrl *dsi_ctrl,
bool enable,
u32 frame_count)
{
if (!dsi_ctrl) {
pr_err("Invalid params\n");
return -EINVAL;
}
if (!dsi_ctrl->hw.ops.setup_misr)
return 0;
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->misr_enable = enable;
dsi_ctrl->hw.ops.setup_misr(&dsi_ctrl->hw,
dsi_ctrl->host_config.panel_mode,
enable, frame_count);
mutex_unlock(&dsi_ctrl->ctrl_lock);
return 0;
}
/**
* dsi_ctrl_collect_misr() - Read frame MISR
* @dsi_ctrl: DSI controller handle.
*
* Return: MISR value.
*/
u32 dsi_ctrl_collect_misr(struct dsi_ctrl *dsi_ctrl)
{
u32 misr;
if (!dsi_ctrl || !dsi_ctrl->hw.ops.collect_misr)
return 0;
misr = dsi_ctrl->hw.ops.collect_misr(&dsi_ctrl->hw,
dsi_ctrl->host_config.panel_mode);
if (!misr)
misr = dsi_ctrl->misr_cache;
pr_debug("DSI_%d cached misr = %x, final = %x\n",
dsi_ctrl->cell_index, dsi_ctrl->misr_cache, misr);
return misr;
}
void dsi_ctrl_mask_error_status_interrupts(struct dsi_ctrl *dsi_ctrl)
{
if (!dsi_ctrl || !dsi_ctrl->hw.ops.error_intr_ctrl
|| !dsi_ctrl->hw.ops.clear_error_status) {
pr_err("Invalid params\n");
return;
}
/*
* Mask DSI error status interrupts and clear error status
* register
*/
mutex_lock(&dsi_ctrl->ctrl_lock);
dsi_ctrl->hw.ops.error_intr_ctrl(&dsi_ctrl->hw, false);
dsi_ctrl->hw.ops.clear_error_status(&dsi_ctrl->hw,
DSI_ERROR_INTERRUPT_COUNT);
mutex_unlock(&dsi_ctrl->ctrl_lock);
}
/**
* dsi_ctrl_irq_update() - Put a irq vote to process DSI error
* interrupts at any time.
* @dsi_ctrl: DSI controller handle.
* @enable: variable to enable/disable irq
*/
void dsi_ctrl_irq_update(struct dsi_ctrl *dsi_ctrl, bool enable)
{
if (!dsi_ctrl)
return;
mutex_lock(&dsi_ctrl->ctrl_lock);
if (enable)
dsi_ctrl_enable_status_interrupt(dsi_ctrl,
DSI_SINT_ERROR, NULL);
else
dsi_ctrl_disable_status_interrupt(dsi_ctrl,
DSI_SINT_ERROR);
mutex_unlock(&dsi_ctrl->ctrl_lock);
}
/**
* dsi_ctrl_drv_register() - register platform driver for dsi controller
*/
void dsi_ctrl_drv_register(void)
{
platform_driver_register(&dsi_ctrl_driver);
}
/**
* dsi_ctrl_drv_unregister() - unregister platform driver
*/
void dsi_ctrl_drv_unregister(void)
{
platform_driver_unregister(&dsi_ctrl_driver);
}