blob: 02d593b49298c0b50d9d559492bafec93a4b6f53 [file] [log] [blame]
/* Copyright (c) 2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/iopoll.h>
#include "sde_hw_mdss.h"
#include "sde_hw_ctl.h"
#include "sde_hw_reg_dma_v1.h"
#include "msm_drv.h"
#include "msm_mmu.h"
#include "sde_dbg.h"
#define GUARD_BYTES (BIT(8) - 1)
#define ALIGNED_OFFSET (U32_MAX & ~(GUARD_BYTES))
#define ADDR_ALIGN BIT(8)
#define MAX_RELATIVE_OFF (BIT(20) - 1)
#define DECODE_SEL_OP (BIT(HW_BLK_SELECT))
#define REG_WRITE_OP ((BIT(REG_SINGLE_WRITE)) | (BIT(REG_BLK_WRITE_SINGLE)) | \
(BIT(REG_BLK_WRITE_INC)) | (BIT(REG_BLK_WRITE_MULTIPLE)))
#define REG_DMA_OPS (DECODE_SEL_OP | REG_WRITE_OP)
#define IS_OP_ALLOWED(op, buf_op) (BIT(op) & buf_op)
#define REG_DMA_OP_MODE_OFF 0x4
#define REG_DMA_CTL0_QUEUE_0_CMD0_OFF 0x14
#define REG_DMA_CTL0_RESET_OFF 0xE4
#define REG_DMA_CTL_TRIGGER_OFF 0xD4
#define SET_UP_REG_DMA_REG(hw, reg_dma) \
do { \
(hw).base_off = (reg_dma)->addr; \
(hw).blk_off = (reg_dma)->caps->base; \
(hw).hwversion = (reg_dma)->caps->version; \
} while (0)
#define SIZE_DWORD(x) ((x) / (sizeof(u32)))
#define NOT_WORD_ALIGNED(x) ((x) & 0x3)
#define GRP_VIG_HW_BLK_SELECT (VIG0 | VIG1 | VIG2 | VIG3)
#define GRP_DSPP_HW_BLK_SELECT (DSPP0 | DSPP1 | DSPP2 | DSPP3)
#define BUFFER_SPACE_LEFT(cfg) ((cfg)->dma_buf->buffer_size - \
(cfg)->dma_buf->index)
#define REG_DMA_DECODE_SEL 0x180AC060
#define SINGLE_REG_WRITE_OPCODE (BIT(28))
#define REL_ADDR_OPCODE (BIT(27))
#define HW_INDEX_REG_WRITE_OPCODE (BIT(28) | BIT(29))
#define AUTO_INC_REG_WRITE_OPCODE (BIT(30))
#define BLK_REG_WRITE_OPCODE (BIT(30) | BIT(28))
#define WRAP_MIN_SIZE 2
#define WRAP_MAX_SIZE (BIT(4) - 1)
#define MAX_DWORDS_SZ (BIT(14) - 1)
#define REG_DMA_HEADERS_BUFFER_SZ (sizeof(u32) * 128)
typedef int (*reg_dma_internal_ops) (struct sde_reg_dma_setup_ops_cfg *cfg);
static struct sde_hw_reg_dma *reg_dma;
static u32 ops_mem_size[REG_DMA_SETUP_OPS_MAX] = {
[REG_BLK_WRITE_SINGLE] = sizeof(u32) * 2,
[REG_BLK_WRITE_INC] = sizeof(u32) * 2,
[REG_BLK_WRITE_MULTIPLE] = sizeof(u32) * 2,
[HW_BLK_SELECT] = sizeof(u32) * 2,
[REG_SINGLE_WRITE] = sizeof(u32) * 2
};
static u32 queue_sel[DMA_CTL_QUEUE_MAX] = {
[DMA_CTL_QUEUE0] = BIT(0),
[DMA_CTL_QUEUE1] = BIT(4),
};
static u32 reg_dma_ctl_queue_off[CTL_MAX];
static u32 dspp_read_sel[DSPP_HIST_MAX] = {
[DSPP0_HIST] = 0,
[DSPP1_HIST] = 1,
[DSPP2_HIST] = 2,
[DSPP3_HIST] = 3,
};
static u32 v1_supported[REG_DMA_FEATURES_MAX] = {
[GAMUT] = GRP_VIG_HW_BLK_SELECT | GRP_DSPP_HW_BLK_SELECT,
[VLUT] = GRP_DSPP_HW_BLK_SELECT,
[GC] = GRP_DSPP_HW_BLK_SELECT,
[IGC] = DSPP_IGC | GRP_DSPP_HW_BLK_SELECT,
[PCC] = GRP_DSPP_HW_BLK_SELECT,
};
static u32 ctl_trigger_done_mask[CTL_MAX][DMA_CTL_QUEUE_MAX] = {
[CTL_0][0] = BIT(16),
[CTL_0][1] = BIT(21),
[CTL_1][0] = BIT(17),
[CTL_1][1] = BIT(22),
[CTL_2][0] = BIT(18),
[CTL_2][1] = BIT(23),
[CTL_3][0] = BIT(19),
[CTL_3][1] = BIT(24),
};
static int reg_dma_int_status_off;
static int reg_dma_clear_status_off;
static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg);
static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf);
static int check_support_v1(enum sde_reg_dma_features feature,
enum sde_reg_dma_blk blk, bool *is_supported);
static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg);
static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg);
static int reset_v1(struct sde_hw_ctl *ctl);
static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
enum sde_reg_dma_last_cmd_mode mode);
static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size);
static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *lut_buf);
static reg_dma_internal_ops write_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
[HW_BLK_SELECT] = write_decode_sel,
[REG_SINGLE_WRITE] = write_single_reg,
[REG_BLK_WRITE_SINGLE] = write_multi_reg_inc,
[REG_BLK_WRITE_INC] = write_multi_reg_index,
[REG_BLK_WRITE_MULTIPLE] = write_multi_lut_reg,
};
static reg_dma_internal_ops validate_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
[HW_BLK_SELECT] = validate_write_decode_sel,
[REG_SINGLE_WRITE] = validate_write_reg,
[REG_BLK_WRITE_SINGLE] = validate_write_reg,
[REG_BLK_WRITE_INC] = validate_write_reg,
[REG_BLK_WRITE_MULTIPLE] = validate_write_multi_lut_reg,
};
static struct sde_reg_dma_buffer *last_cmd_buf[CTL_MAX];
static void get_decode_sel(unsigned long blk, u32 *decode_sel)
{
int i = 0;
*decode_sel = 0;
for_each_set_bit(i, &blk, 31) {
switch (BIT(i)) {
case VIG0:
*decode_sel |= BIT(0);
break;
case VIG1:
*decode_sel |= BIT(1);
break;
case VIG2:
*decode_sel |= BIT(2);
break;
case VIG3:
*decode_sel |= BIT(3);
break;
case DSPP0:
*decode_sel |= BIT(17);
break;
case DSPP1:
*decode_sel |= BIT(18);
break;
case DSPP2:
*decode_sel |= BIT(19);
break;
case DSPP3:
*decode_sel |= BIT(20);
break;
case SSPP_IGC:
*decode_sel |= BIT(4);
break;
case DSPP_IGC:
*decode_sel |= BIT(21);
break;
default:
DRM_ERROR("block not supported %zx\n", BIT(i));
break;
}
}
}
static int write_multi_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u8 *loc = NULL;
loc = (u8 *)cfg->dma_buf->vaddr + cfg->dma_buf->index;
memcpy(loc, cfg->data, cfg->data_size);
cfg->dma_buf->index += cfg->data_size;
cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
cfg->dma_buf->ops_completed |= REG_WRITE_OP;
return 0;
}
int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = HW_INDEX_REG_WRITE_OPCODE;
loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
loc[1] = SIZE_DWORD(cfg->data_size);
cfg->dma_buf->index += ops_mem_size[cfg->ops];
return write_multi_reg(cfg);
}
int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = AUTO_INC_REG_WRITE_OPCODE;
loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
loc[1] = SIZE_DWORD(cfg->data_size);
cfg->dma_buf->index += ops_mem_size[cfg->ops];
return write_multi_reg(cfg);
}
static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = BLK_REG_WRITE_OPCODE;
loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
loc[1] = (cfg->inc) ? 0 : BIT(31);
loc[1] |= (cfg->wrap_size & WRAP_MAX_SIZE) << 16;
loc[1] |= ((SIZE_DWORD(cfg->data_size)) & MAX_DWORDS_SZ);
cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
cfg->dma_buf->index += ops_mem_size[cfg->ops];
return write_multi_reg(cfg);
}
static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = SINGLE_REG_WRITE_OPCODE;
loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
loc[1] = *cfg->data;
cfg->dma_buf->index += ops_mem_size[cfg->ops];
cfg->dma_buf->ops_completed |= REG_WRITE_OP;
cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
return 0;
}
static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = REG_DMA_DECODE_SEL;
get_decode_sel(cfg->blk, &loc[1]);
cfg->dma_buf->index += sizeof(u32) * 2;
cfg->dma_buf->ops_completed |= DECODE_SEL_OP;
cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
return 0;
}
static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
int rc;
rc = validate_write_reg(cfg);
if (rc)
return rc;
if (cfg->wrap_size < WRAP_MIN_SIZE || cfg->wrap_size > WRAP_MAX_SIZE) {
DRM_ERROR("invalid wrap sz %d min %d max %zd\n",
cfg->wrap_size, WRAP_MIN_SIZE, WRAP_MAX_SIZE);
rc = -EINVAL;
}
return rc;
}
static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 remain_len, write_len;
remain_len = BUFFER_SPACE_LEFT(cfg);
write_len = ops_mem_size[cfg->ops] + cfg->data_size;
if (remain_len < write_len) {
DRM_ERROR("buffer is full sz %d needs %d bytes\n",
remain_len, write_len);
return -EINVAL;
}
if (!cfg->data) {
DRM_ERROR("invalid data %pK size %d exp sz %d\n", cfg->data,
cfg->data_size, write_len);
return -EINVAL;
}
if ((SIZE_DWORD(cfg->data_size)) > MAX_DWORDS_SZ ||
NOT_WORD_ALIGNED(cfg->data_size)) {
DRM_ERROR("Invalid data size %d max %zd align %x\n",
cfg->data_size, MAX_DWORDS_SZ,
NOT_WORD_ALIGNED(cfg->data_size));
return -EINVAL;
}
if (cfg->blk_offset > MAX_RELATIVE_OFF ||
NOT_WORD_ALIGNED(cfg->blk_offset)) {
DRM_ERROR("invalid offset %d max %zd align %x\n",
cfg->blk_offset, MAX_RELATIVE_OFF,
NOT_WORD_ALIGNED(cfg->blk_offset));
return -EINVAL;
}
return 0;
}
static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 remain_len;
remain_len = BUFFER_SPACE_LEFT(cfg);
if (remain_len < ops_mem_size[HW_BLK_SELECT]) {
DRM_ERROR("buffer is full needs %d bytes\n",
ops_mem_size[HW_BLK_SELECT]);
return -EINVAL;
}
if (!cfg->blk) {
DRM_ERROR("blk set as 0\n");
return -EINVAL;
}
/* DSPP and VIG can't be combined */
if ((cfg->blk & GRP_VIG_HW_BLK_SELECT) &&
(cfg->blk & GRP_DSPP_HW_BLK_SELECT)) {
DRM_ERROR("invalid blk combination %x\n",
cfg->blk);
return -EINVAL;
}
return 0;
}
static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg)
{
int rc = 0;
bool supported;
if (!cfg || cfg->ops >= REG_DMA_SETUP_OPS_MAX || !cfg->dma_buf) {
DRM_ERROR("invalid param cfg %pK ops %d dma_buf %pK\n",
cfg, ((cfg) ? cfg->ops : REG_DMA_SETUP_OPS_MAX),
((cfg) ? cfg->dma_buf : NULL));
return -EINVAL;
}
rc = check_support_v1(cfg->feature, cfg->blk, &supported);
if (rc || !supported) {
DRM_ERROR("check support failed rc %d supported %d\n",
rc, supported);
rc = -EINVAL;
return rc;
}
if (cfg->dma_buf->index >= cfg->dma_buf->buffer_size ||
NOT_WORD_ALIGNED(cfg->dma_buf->index)) {
DRM_ERROR("Buf Overflow index %d max size %d align %x\n",
cfg->dma_buf->index, cfg->dma_buf->buffer_size,
NOT_WORD_ALIGNED(cfg->dma_buf->index));
return -EINVAL;
}
if (cfg->dma_buf->iova & GUARD_BYTES || !cfg->dma_buf->vaddr) {
DRM_ERROR("iova not aligned to %zx iova %x kva %pK",
ADDR_ALIGN, cfg->dma_buf->iova,
cfg->dma_buf->vaddr);
return -EINVAL;
}
if (!IS_OP_ALLOWED(cfg->ops, cfg->dma_buf->next_op_allowed)) {
DRM_ERROR("invalid op %x allowed %x\n", cfg->ops,
cfg->dma_buf->next_op_allowed);
return -EINVAL;
}
if (!validate_dma_op_params[cfg->ops] ||
!write_dma_op_params[cfg->ops]) {
DRM_ERROR("invalid op %d validate %pK write %pK\n", cfg->ops,
validate_dma_op_params[cfg->ops],
write_dma_op_params[cfg->ops]);
return -EINVAL;
}
return rc;
}
static int validate_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
{
if (!cfg || !cfg->ctl || !cfg->dma_buf) {
DRM_ERROR("invalid cfg %pK ctl %pK dma_buf %pK\n",
cfg, ((!cfg) ? NULL : cfg->ctl),
((!cfg) ? NULL : cfg->dma_buf));
return -EINVAL;
}
if (cfg->ctl->idx < CTL_0 && cfg->ctl->idx >= CTL_MAX) {
DRM_ERROR("invalid ctl idx %d\n", cfg->ctl->idx);
return -EINVAL;
}
if (cfg->op >= REG_DMA_OP_MAX) {
DRM_ERROR("invalid op %d\n", cfg->op);
return -EINVAL;
}
if ((cfg->op == REG_DMA_WRITE) &&
(!(cfg->dma_buf->ops_completed & DECODE_SEL_OP) ||
!(cfg->dma_buf->ops_completed & REG_WRITE_OP))) {
DRM_ERROR("incomplete write ops %x\n",
cfg->dma_buf->ops_completed);
return -EINVAL;
}
if (cfg->op == REG_DMA_READ && cfg->block_select >= DSPP_HIST_MAX) {
DRM_ERROR("invalid block for read %d\n", cfg->block_select);
return -EINVAL;
}
/* Only immediate triggers are supported now hence hardcode */
cfg->trigger_mode = (cfg->op == REG_DMA_READ) ? (READ_TRIGGER) :
(WRITE_TRIGGER);
if (cfg->dma_buf->iova & GUARD_BYTES) {
DRM_ERROR("Address is not aligned to %zx iova %x", ADDR_ALIGN,
cfg->dma_buf->iova);
return -EINVAL;
}
if (cfg->queue_select >= DMA_CTL_QUEUE_MAX) {
DRM_ERROR("invalid queue selected %d\n", cfg->queue_select);
return -EINVAL;
}
if (SIZE_DWORD(cfg->dma_buf->index) > MAX_DWORDS_SZ ||
!cfg->dma_buf->index) {
DRM_ERROR("invalid dword size %zd max %zd\n",
SIZE_DWORD(cfg->dma_buf->index), MAX_DWORDS_SZ);
return -EINVAL;
}
return 0;
}
static int write_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
{
u32 cmd1;
struct sde_hw_blk_reg_map hw;
memset(&hw, 0, sizeof(hw));
msm_gem_sync(cfg->dma_buf->buf);
cmd1 = (cfg->op == REG_DMA_READ) ?
(dspp_read_sel[cfg->block_select] << 30) : 0;
cmd1 |= (cfg->last_command) ? BIT(24) : 0;
cmd1 |= (cfg->op == REG_DMA_READ) ? (2 << 22) : 0;
cmd1 |= (cfg->op == REG_DMA_WRITE) ? (BIT(22)) : 0;
cmd1 |= (SIZE_DWORD(cfg->dma_buf->index) & MAX_DWORDS_SZ);
SET_UP_REG_DMA_REG(hw, reg_dma);
SDE_REG_WRITE(&hw, REG_DMA_OP_MODE_OFF, BIT(0));
SDE_REG_WRITE(&hw, reg_dma_clear_status_off,
ctl_trigger_done_mask[cfg->ctl->idx][cfg->queue_select]);
SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx],
cfg->dma_buf->iova);
SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx] + 0x4,
cmd1);
if (cfg->last_command)
SDE_REG_WRITE(&cfg->ctl->hw, REG_DMA_CTL_TRIGGER_OFF,
queue_sel[cfg->queue_select]);
return 0;
}
int init_v1(struct sde_hw_reg_dma *cfg)
{
int i = 0, rc = 0;
if (!cfg)
return -EINVAL;
reg_dma = cfg;
for (i = CTL_0; i < CTL_MAX; i++) {
if (!last_cmd_buf[i]) {
last_cmd_buf[i] =
alloc_reg_dma_buf_v1(REG_DMA_HEADERS_BUFFER_SZ);
if (IS_ERR_OR_NULL(last_cmd_buf[i])) {
/*
* This will allow reg dma to fall back to
* AHB domain
*/
pr_info("Failed to allocate reg dma, ret:%lu\n",
PTR_ERR(last_cmd_buf[i]));
return 0;
}
}
}
if (rc) {
for (i = 0; i < CTL_MAX; i++) {
if (!last_cmd_buf[i])
continue;
dealloc_reg_dma_v1(last_cmd_buf[i]);
last_cmd_buf[i] = NULL;
}
return rc;
}
reg_dma->ops.check_support = check_support_v1;
reg_dma->ops.setup_payload = setup_payload_v1;
reg_dma->ops.kick_off = kick_off_v1;
reg_dma->ops.reset = reset_v1;
reg_dma->ops.alloc_reg_dma_buf = alloc_reg_dma_buf_v1;
reg_dma->ops.dealloc_reg_dma = dealloc_reg_dma_v1;
reg_dma->ops.reset_reg_dma_buf = reset_reg_dma_buffer_v1;
reg_dma->ops.last_command = last_cmd_v1;
reg_dma_ctl_queue_off[CTL_0] = REG_DMA_CTL0_QUEUE_0_CMD0_OFF;
for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
reg_dma_ctl_queue_off[i] = reg_dma_ctl_queue_off[i - 1] +
(sizeof(u32) * 4);
reg_dma_int_status_off = 0x90;
reg_dma_clear_status_off = 0xa0;
return 0;
}
static int check_support_v1(enum sde_reg_dma_features feature,
enum sde_reg_dma_blk blk,
bool *is_supported)
{
int ret = 0;
if (!is_supported)
return -EINVAL;
if (feature >= REG_DMA_FEATURES_MAX || blk >= MDSS) {
*is_supported = false;
return ret;
}
*is_supported = (blk & v1_supported[feature]) ? true : false;
return ret;
}
static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg)
{
int rc = 0;
rc = validate_dma_cfg(cfg);
if (!rc)
rc = validate_dma_op_params[cfg->ops](cfg);
if (!rc)
rc = write_dma_op_params[cfg->ops](cfg);
return rc;
}
static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
{
int rc = 0;
rc = validate_kick_off_v1(cfg);
if (rc)
return rc;
rc = write_kick_off_v1(cfg);
return rc;
}
int reset_v1(struct sde_hw_ctl *ctl)
{
struct sde_hw_blk_reg_map hw;
u32 index, val;
if (!ctl || ctl->idx > CTL_MAX) {
DRM_ERROR("invalid ctl %pK ctl idx %d\n",
ctl, ((ctl) ? ctl->idx : 0));
return -EINVAL;
}
memset(&hw, 0, sizeof(hw));
index = ctl->idx - CTL_0;
SET_UP_REG_DMA_REG(hw, reg_dma);
SDE_REG_WRITE(&hw, REG_DMA_OP_MODE_OFF, BIT(0));
SDE_REG_WRITE(&hw, (REG_DMA_CTL0_RESET_OFF + index * sizeof(u32)),
BIT(0));
index = 0;
do {
udelay(1000);
index++;
val = SDE_REG_READ(&hw,
(REG_DMA_CTL0_RESET_OFF + index * sizeof(u32)));
} while (index < 2 && val);
return 0;
}
static void sde_reg_dma_aspace_cb_locked(void *cb_data, bool is_detach)
{
struct sde_reg_dma_buffer *dma_buf = NULL;
struct msm_gem_address_space *aspace = NULL;
u32 iova_aligned, offset;
int rc;
if (!cb_data) {
DRM_ERROR("aspace cb called with invalid dma_buf\n");
return;
}
dma_buf = (struct sde_reg_dma_buffer *)cb_data;
aspace = dma_buf->aspace;
if (is_detach) {
/* invalidate the stored iova */
dma_buf->iova = 0;
/* return the virtual address mapping */
msm_gem_put_vaddr_locked(dma_buf->buf);
msm_gem_vunmap(dma_buf->buf);
} else {
rc = msm_gem_get_iova_locked(dma_buf->buf, aspace,
&dma_buf->iova);
if (rc) {
DRM_ERROR("failed to get the iova rc %d\n", rc);
return;
}
dma_buf->vaddr = msm_gem_get_vaddr_locked(dma_buf->buf);
if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
DRM_ERROR("failed to get va rc %d\n", rc);
return;
}
iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
offset = iova_aligned - dma_buf->iova;
dma_buf->iova = dma_buf->iova + offset;
dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
dma_buf->next_op_allowed = DECODE_SEL_OP;
}
}
static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size)
{
struct sde_reg_dma_buffer *dma_buf = NULL;
u32 iova_aligned, offset;
u32 rsize = size + GUARD_BYTES;
struct msm_gem_address_space *aspace = NULL;
int rc = 0;
if (!size || SIZE_DWORD(size) > MAX_DWORDS_SZ) {
DRM_ERROR("invalid buffer size %d\n", size);
return ERR_PTR(-EINVAL);
}
dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
if (!dma_buf)
return ERR_PTR(-ENOMEM);
mutex_lock(&reg_dma->drm_dev->struct_mutex);
dma_buf->buf = msm_gem_new(reg_dma->drm_dev,
rsize, MSM_BO_UNCACHED);
mutex_unlock(&reg_dma->drm_dev->struct_mutex);
if (IS_ERR_OR_NULL(dma_buf->buf)) {
rc = -EINVAL;
goto fail;
}
aspace = msm_gem_smmu_address_space_get(reg_dma->drm_dev,
MSM_SMMU_DOMAIN_UNSECURE);
if (!aspace) {
DRM_ERROR("failed to get aspace\n");
rc = -EINVAL;
goto free_gem;
}
/* register to aspace */
rc = msm_gem_address_space_register_cb(aspace,
sde_reg_dma_aspace_cb_locked,
(void *)dma_buf);
if (rc) {
DRM_ERROR("failed to register callback %d", rc);
goto free_gem;
}
dma_buf->aspace = aspace;
rc = msm_gem_get_iova(dma_buf->buf, aspace, &dma_buf->iova);
if (rc) {
DRM_ERROR("failed to get the iova rc %d\n", rc);
goto free_aspace_cb;
}
dma_buf->vaddr = msm_gem_get_vaddr(dma_buf->buf);
if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
DRM_ERROR("failed to get va rc %d\n", rc);
rc = -EINVAL;
goto put_iova;
}
dma_buf->buffer_size = size;
iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
offset = iova_aligned - dma_buf->iova;
dma_buf->iova = dma_buf->iova + offset;
dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
dma_buf->next_op_allowed = DECODE_SEL_OP;
return dma_buf;
put_iova:
msm_gem_put_iova(dma_buf->buf, aspace);
free_aspace_cb:
msm_gem_address_space_unregister_cb(aspace,
sde_reg_dma_aspace_cb_locked, dma_buf);
free_gem:
mutex_lock(&reg_dma->drm_dev->struct_mutex);
msm_gem_free_object(dma_buf->buf);
mutex_unlock(&reg_dma->drm_dev->struct_mutex);
fail:
kfree(dma_buf);
return ERR_PTR(rc);
}
static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *dma_buf)
{
if (!dma_buf) {
DRM_ERROR("invalid param reg_buf %pK\n", dma_buf);
return -EINVAL;
}
if (dma_buf->buf) {
msm_gem_put_iova(dma_buf->buf, 0);
msm_gem_address_space_unregister_cb(dma_buf->aspace,
sde_reg_dma_aspace_cb_locked, dma_buf);
mutex_lock(&reg_dma->drm_dev->struct_mutex);
msm_gem_free_object(dma_buf->buf);
mutex_unlock(&reg_dma->drm_dev->struct_mutex);
}
kfree(dma_buf);
return 0;
}
static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf)
{
if (!lut_buf)
return -EINVAL;
lut_buf->index = 0;
lut_buf->ops_completed = 0;
lut_buf->next_op_allowed = DECODE_SEL_OP;
return 0;
}
static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 remain_len, write_len;
remain_len = BUFFER_SPACE_LEFT(cfg);
write_len = sizeof(u32);
if (remain_len < write_len) {
DRM_ERROR("buffer is full sz %d needs %d bytes\n",
remain_len, write_len);
return -EINVAL;
}
return 0;
}
static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
{
u32 *loc = NULL;
loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
cfg->dma_buf->index);
loc[0] = REG_DMA_DECODE_SEL;
loc[1] = 0;
cfg->dma_buf->index = sizeof(u32) * 2;
cfg->dma_buf->ops_completed = REG_WRITE_OP | DECODE_SEL_OP;
cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
return 0;
}
static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
enum sde_reg_dma_last_cmd_mode mode)
{
struct sde_reg_dma_setup_ops_cfg cfg;
struct sde_reg_dma_kickoff_cfg kick_off;
struct sde_hw_blk_reg_map hw;
u32 val;
int rc;
if (!ctl || ctl->idx >= CTL_MAX || q >= DMA_CTL_QUEUE_MAX) {
DRM_ERROR("ctl %pK q %d index %d\n", ctl, q,
((ctl) ? ctl->idx : -1));
return -EINVAL;
}
if (!last_cmd_buf[ctl->idx] || !last_cmd_buf[ctl->idx]->iova) {
DRM_DEBUG("invalid last cmd buf for idx %d\n", ctl->idx);
return 0;
}
cfg.dma_buf = last_cmd_buf[ctl->idx];
reset_reg_dma_buffer_v1(last_cmd_buf[ctl->idx]);
if (validate_last_cmd(&cfg)) {
DRM_ERROR("validate buf failed\n");
return -EINVAL;
}
if (write_last_cmd(&cfg)) {
DRM_ERROR("write buf failed\n");
return -EINVAL;
}
kick_off.ctl = ctl;
kick_off.queue_select = q;
kick_off.trigger_mode = WRITE_IMMEDIATE;
kick_off.last_command = 1;
kick_off.op = REG_DMA_WRITE;
kick_off.dma_buf = last_cmd_buf[ctl->idx];
if (kick_off_v1(&kick_off)) {
DRM_ERROR("kick off last cmd failed\n");
return -EINVAL;
}
memset(&hw, 0, sizeof(hw));
SET_UP_REG_DMA_REG(hw, reg_dma);
SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, mode);
if (mode == REG_DMA_WAIT4_COMP) {
rc = readl_poll_timeout(hw.base_off + hw.blk_off +
reg_dma_int_status_off, val,
(val & ctl_trigger_done_mask[ctl->idx][q]),
10, 20000);
if (rc)
DRM_ERROR("poll wait failed %d val %x mask %x\n",
rc, val, ctl_trigger_done_mask[ctl->idx][q]);
SDE_EVT32(SDE_EVTLOG_FUNC_EXIT, mode);
}
return 0;
}
void deinit_v1(void)
{
int i = 0;
for (i = CTL_0; i < CTL_MAX; i++) {
if (last_cmd_buf[i])
dealloc_reg_dma_v1(last_cmd_buf[i]);
last_cmd_buf[i] = NULL;
}
}