| /* Copyright (c) 2013-2017, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/arm-smccc.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/regmap.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/slab.h> |
| #include <linux/spmi.h> |
| #include <linux/platform_device.h> |
| #include <linux/string.h> |
| #include <linux/regulator/driver.h> |
| #include <linux/regulator/machine.h> |
| #include <linux/regulator/of_regulator.h> |
| #include <linux/regulator/spm-regulator.h> |
| #include <soc/qcom/spm.h> |
| #include <linux/arm-smccc.h> |
| |
| #if defined(CONFIG_ARM64) || (defined(CONFIG_ARM) && defined(CONFIG_ARM_PSCI)) |
| #else |
| #define __invoke_psci_fn_smc(a, b, c, d) 0 |
| #endif |
| |
| #define SPM_REGULATOR_DRIVER_NAME "qcom,spm-regulator" |
| |
| struct voltage_range { |
| int min_uV; |
| int set_point_min_uV; |
| int max_uV; |
| int step_uV; |
| }; |
| |
| enum qpnp_regulator_uniq_type { |
| QPNP_TYPE_HF, |
| QPNP_TYPE_FTS2, |
| QPNP_TYPE_FTS2p5, |
| QPNP_TYPE_FTS426, |
| QPNP_TYPE_ULT_HF, |
| }; |
| |
| enum qpnp_regulator_type { |
| QPNP_HF_TYPE = 0x03, |
| QPNP_FTS2_TYPE = 0x1C, |
| QPNP_FTS2p5_TYPE = 0x1C, |
| QPNP_FTS426_TYPE = 0x1C, |
| QPNP_ULT_HF_TYPE = 0x22, |
| }; |
| |
| enum qpnp_regulator_subtype { |
| QPNP_FTS2_SUBTYPE = 0x08, |
| QPNP_HF_SUBTYPE = 0x08, |
| QPNP_FTS2p5_SUBTYPE = 0x09, |
| QPNP_FTS426_SUBTYPE = 0x0A, |
| QPNP_ULT_HF_SUBTYPE = 0x0D, |
| }; |
| |
| enum qpnp_logical_mode { |
| QPNP_LOGICAL_MODE_AUTO, |
| QPNP_LOGICAL_MODE_PWM, |
| }; |
| |
| static const struct voltage_range fts2_range0 = {0, 350000, 1275000, 5000}; |
| static const struct voltage_range fts2_range1 = {0, 700000, 2040000, 10000}; |
| static const struct voltage_range fts2p5_range0 |
| = { 80000, 350000, 1355000, 5000}; |
| static const struct voltage_range fts2p5_range1 |
| = {160000, 700000, 2200000, 10000}; |
| static const struct voltage_range fts426_range = {0, 320000, 1352000, 4000}; |
| static const struct voltage_range ult_hf_range0 = {375000, 375000, 1562500, |
| 12500}; |
| static const struct voltage_range ult_hf_range1 = {750000, 750000, 1525000, |
| 25000}; |
| static const struct voltage_range hf_range0 = {375000, 375000, 1562500, 12500}; |
| static const struct voltage_range hf_range1 = {1550000, 1550000, 3125000, |
| 25000}; |
| |
| #define QPNP_SMPS_REG_TYPE 0x04 |
| #define QPNP_SMPS_REG_SUBTYPE 0x05 |
| #define QPNP_SMPS_REG_VOLTAGE_RANGE 0x40 |
| #define QPNP_SMPS_REG_VOLTAGE_SETPOINT 0x41 |
| #define QPNP_SMPS_REG_MODE 0x45 |
| #define QPNP_SMPS_REG_STEP_CTRL 0x61 |
| #define QPNP_SMPS_REG_UL_LL_CTRL 0x68 |
| |
| /* FTS426 voltage control registers */ |
| #define QPNP_FTS426_REG_VOLTAGE_LB 0x40 |
| #define QPNP_FTS426_REG_VOLTAGE_UB 0x41 |
| #define QPNP_FTS426_REG_VOLTAGE_VALID_LB 0x42 |
| #define QPNP_FTS426_REG_VOLTAGE_VALID_UB 0x43 |
| |
| /* HF voltage limit registers */ |
| #define QPNP_HF_REG_VOLTAGE_ULS 0x69 |
| #define QPNP_HF_REG_VOLTAGE_LLS 0x6B |
| |
| /* FTS voltage limit registers */ |
| #define QPNP_FTS_REG_VOLTAGE_ULS_VALID 0x6A |
| #define QPNP_FTS_REG_VOLTAGE_LLS_VALID 0x6C |
| |
| /* FTS426 voltage limit registers */ |
| #define QPNP_FTS426_REG_VOLTAGE_ULS_LB 0x68 |
| #define QPNP_FTS426_REG_VOLTAGE_ULS_UB 0x69 |
| |
| /* Common regulator UL & LL limits control register layout */ |
| #define QPNP_COMMON_UL_EN_MASK 0x80 |
| #define QPNP_COMMON_LL_EN_MASK 0x40 |
| |
| #define QPNP_SMPS_MODE_PWM 0x80 |
| #define QPNP_SMPS_MODE_AUTO 0x40 |
| #define QPNP_FTS426_MODE_PWM 0x07 |
| #define QPNP_FTS426_MODE_AUTO 0x06 |
| |
| #define QPNP_SMPS_STEP_CTRL_STEP_MASK 0x18 |
| #define QPNP_SMPS_STEP_CTRL_STEP_SHIFT 3 |
| #define QPNP_SMPS_STEP_CTRL_DELAY_MASK 0x07 |
| #define QPNP_SMPS_STEP_CTRL_DELAY_SHIFT 0 |
| #define QPNP_FTS426_STEP_CTRL_DELAY_MASK 0x03 |
| #define QPNP_FTS426_STEP_CTRL_DELAY_SHIFT 0 |
| |
| /* Clock rate in kHz of the FTS2 regulator reference clock. */ |
| #define QPNP_SMPS_CLOCK_RATE 19200 |
| #define QPNP_FTS426_CLOCK_RATE 4800 |
| |
| /* Time to delay in us to ensure that a mode change has completed. */ |
| #define QPNP_FTS2_MODE_CHANGE_DELAY 50 |
| |
| /* Minimum time in us that it takes to complete a single SPMI write. */ |
| #define QPNP_SPMI_WRITE_MIN_DELAY 8 |
| |
| /* Minimum voltage stepper delay for each step. */ |
| #define QPNP_FTS2_STEP_DELAY 8 |
| #define QPNP_HF_STEP_DELAY 20 |
| #define QPNP_FTS426_STEP_DELAY 2 |
| |
| /* Arbitrarily large max step size used to avoid possible numerical overflow */ |
| #define SPM_REGULATOR_MAX_STEP_UV 10000000 |
| |
| /* |
| * The ratio QPNP_FTS2_STEP_MARGIN_NUM/QPNP_FTS2_STEP_MARGIN_DEN is use to |
| * adjust the step rate in order to account for oscillator variance. |
| */ |
| #define QPNP_FTS2_STEP_MARGIN_NUM 4 |
| #define QPNP_FTS2_STEP_MARGIN_DEN 5 |
| #define QPNP_FTS426_STEP_MARGIN_NUM 10 |
| #define QPNP_FTS426_STEP_MARGIN_DEN 11 |
| |
| /* |
| * Settling delay for FTS2.5 |
| * Warm-up=20uS, 0-10% & 90-100% non-linear V-ramp delay = 50uS |
| */ |
| #define FTS2P5_SETTLING_DELAY_US 70 |
| |
| /* VSET value to decide the range of ULT SMPS */ |
| #define ULT_SMPS_RANGE_SPLIT 0x60 |
| |
| struct spm_vreg { |
| struct regulator_desc rdesc; |
| struct regulator_dev *rdev; |
| struct platform_device *pdev; |
| struct regmap *regmap; |
| const struct voltage_range *range; |
| int uV; |
| int last_set_uV; |
| unsigned vlevel; |
| unsigned last_set_vlevel; |
| u32 max_step_uV; |
| bool online; |
| u16 spmi_base_addr; |
| enum qpnp_logical_mode init_mode; |
| enum qpnp_logical_mode mode; |
| int step_rate; |
| enum qpnp_regulator_uniq_type regulator_type; |
| u32 cpu_num; |
| bool bypass_spm; |
| struct regulator_desc avs_rdesc; |
| struct regulator_dev *avs_rdev; |
| int avs_min_uV; |
| int avs_max_uV; |
| bool avs_enabled; |
| u32 recal_cluster_mask; |
| }; |
| |
| static inline bool spm_regulator_using_avs(struct spm_vreg *vreg) |
| { |
| return vreg->avs_rdev && !vreg->bypass_spm; |
| } |
| |
| static int spm_regulator_uv_to_vlevel(struct spm_vreg *vreg, int uV) |
| { |
| int vlevel; |
| |
| if (vreg->regulator_type == QPNP_TYPE_FTS426) |
| return roundup(uV, vreg->range->step_uV) / 1000; |
| |
| vlevel = DIV_ROUND_UP(uV - vreg->range->min_uV, vreg->range->step_uV); |
| |
| /* Fix VSET for ULT HF Buck */ |
| if (vreg->regulator_type == QPNP_TYPE_ULT_HF |
| && vreg->range == &ult_hf_range1) { |
| vlevel &= 0x1F; |
| vlevel |= ULT_SMPS_RANGE_SPLIT; |
| } |
| |
| return vlevel; |
| } |
| |
| static int spm_regulator_vlevel_to_uv(struct spm_vreg *vreg, int vlevel) |
| { |
| if (vreg->regulator_type == QPNP_TYPE_FTS426) |
| return vlevel * 1000; |
| /* |
| * Calculate ULT HF buck VSET based on range: |
| * In case of range 0: VSET is a 7 bit value. |
| * In case of range 1: VSET is a 5 bit value. |
| */ |
| if (vreg->regulator_type == QPNP_TYPE_ULT_HF |
| && vreg->range == &ult_hf_range1) |
| vlevel &= ~ULT_SMPS_RANGE_SPLIT; |
| |
| return vlevel * vreg->range->step_uV + vreg->range->min_uV; |
| } |
| |
| static unsigned spm_regulator_vlevel_to_selector(struct spm_vreg *vreg, |
| unsigned vlevel) |
| { |
| /* Fix VSET for ULT HF Buck */ |
| if (vreg->regulator_type == QPNP_TYPE_ULT_HF |
| && vreg->range == &ult_hf_range1) |
| vlevel &= ~ULT_SMPS_RANGE_SPLIT; |
| |
| return vlevel - (vreg->range->set_point_min_uV - vreg->range->min_uV) |
| / vreg->range->step_uV; |
| } |
| |
| static int qpnp_smps_read_voltage(struct spm_vreg *vreg) |
| { |
| int rc; |
| u8 val[2] = {0}; |
| |
| if (vreg->regulator_type == QPNP_TYPE_FTS426) { |
| rc = regmap_bulk_read(vreg->regmap, |
| vreg->spmi_base_addr + QPNP_FTS426_REG_VOLTAGE_VALID_LB, |
| val, 2); |
| if (rc) { |
| dev_err(&vreg->pdev->dev, "%s: could not read voltage setpoint registers, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| vreg->last_set_vlevel = ((unsigned)val[1] << 8) | val[0]; |
| } else { |
| rc = regmap_bulk_read(vreg->regmap, |
| vreg->spmi_base_addr + QPNP_SMPS_REG_VOLTAGE_SETPOINT, |
| val, 1); |
| if (rc) { |
| dev_err(&vreg->pdev->dev, "%s: could not read voltage setpoint register, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| vreg->last_set_vlevel = val[0]; |
| } |
| |
| vreg->last_set_uV = spm_regulator_vlevel_to_uv(vreg, |
| vreg->last_set_vlevel); |
| return rc; |
| } |
| |
| static int qpnp_smps_write_voltage(struct spm_vreg *vreg, unsigned vlevel) |
| { |
| int rc = 0; |
| u8 reg[2]; |
| |
| /* Set voltage control registers via SPMI. */ |
| reg[0] = vlevel & 0xFF; |
| reg[1] = (vlevel >> 8) & 0xFF; |
| |
| if (vreg->regulator_type == QPNP_TYPE_FTS426) { |
| rc = regmap_bulk_write(vreg->regmap, |
| vreg->spmi_base_addr + QPNP_FTS426_REG_VOLTAGE_LB, |
| reg, 2); |
| } else { |
| rc = regmap_write(vreg->regmap, |
| vreg->spmi_base_addr + QPNP_SMPS_REG_VOLTAGE_SETPOINT, |
| reg[0]); |
| } |
| |
| if (rc) |
| pr_err("%s: regmap_write failed, rc=%d\n", |
| vreg->rdesc.name, rc); |
| |
| return rc; |
| } |
| |
| static inline enum qpnp_logical_mode qpnp_regval_to_mode(struct spm_vreg *vreg, |
| u8 regval) |
| { |
| if (vreg->regulator_type == QPNP_TYPE_FTS426) |
| return (regval == QPNP_FTS426_MODE_PWM) |
| ? QPNP_LOGICAL_MODE_PWM : QPNP_LOGICAL_MODE_AUTO; |
| else |
| return (regval & QPNP_SMPS_MODE_PWM) |
| ? QPNP_LOGICAL_MODE_PWM : QPNP_LOGICAL_MODE_AUTO; |
| } |
| |
| static inline u8 qpnp_mode_to_regval(struct spm_vreg *vreg, |
| enum qpnp_logical_mode mode) |
| { |
| if (vreg->regulator_type == QPNP_TYPE_FTS426) |
| return (mode == QPNP_LOGICAL_MODE_PWM) |
| ? QPNP_FTS426_MODE_PWM : QPNP_FTS426_MODE_AUTO; |
| else |
| return (mode == QPNP_LOGICAL_MODE_PWM) |
| ? QPNP_SMPS_MODE_PWM : QPNP_SMPS_MODE_AUTO; |
| } |
| |
| static int qpnp_smps_set_mode(struct spm_vreg *vreg, u8 mode) |
| { |
| int rc; |
| |
| rc = regmap_write(vreg->regmap, |
| vreg->spmi_base_addr + QPNP_SMPS_REG_MODE, |
| qpnp_mode_to_regval(vreg, mode)); |
| if (rc) |
| dev_err(&vreg->pdev->dev, |
| "%s: could not write to mode register, rc=%d\n", |
| __func__, rc); |
| |
| return rc; |
| } |
| |
| static int spm_regulator_get_voltage(struct regulator_dev *rdev) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| int vlevel, rc; |
| |
| if (spm_regulator_using_avs(vreg)) { |
| vlevel = msm_spm_get_vdd(vreg->cpu_num); |
| |
| if (vlevel < 0) { |
| pr_debug("%s: msm_spm_get_vdd failed, rc=%d; falling back on SPMI read\n", |
| vreg->rdesc.name, vlevel); |
| |
| rc = qpnp_smps_read_voltage(vreg); |
| if (rc) { |
| pr_err("%s: voltage read failed, rc=%d\n", |
| vreg->rdesc.name, rc); |
| return rc; |
| } |
| |
| return vreg->last_set_uV; |
| } |
| |
| vreg->last_set_vlevel = vlevel; |
| vreg->last_set_uV = spm_regulator_vlevel_to_uv(vreg, vlevel); |
| |
| return vreg->last_set_uV; |
| } else { |
| return vreg->uV; |
| } |
| }; |
| |
| static int spm_regulator_write_voltage(struct spm_vreg *vreg, int uV) |
| { |
| unsigned vlevel = spm_regulator_uv_to_vlevel(vreg, uV); |
| bool spm_failed = false; |
| int rc = 0; |
| u32 slew_delay; |
| |
| if (likely(!vreg->bypass_spm)) { |
| /* Set voltage control register via SPM. */ |
| rc = msm_spm_set_vdd(vreg->cpu_num, vlevel); |
| if (rc) { |
| pr_debug("%s: msm_spm_set_vdd failed, rc=%d; falling back on SPMI write\n", |
| vreg->rdesc.name, rc); |
| spm_failed = true; |
| } |
| } |
| |
| if (unlikely(vreg->bypass_spm || spm_failed)) { |
| rc = qpnp_smps_write_voltage(vreg, vlevel); |
| if (rc) { |
| pr_err("%s: voltage write failed, rc=%d\n", |
| vreg->rdesc.name, rc); |
| return rc; |
| } |
| } |
| |
| if (uV > vreg->last_set_uV) { |
| /* Wait for voltage stepping to complete. */ |
| slew_delay = DIV_ROUND_UP(uV - vreg->last_set_uV, |
| vreg->step_rate); |
| if (vreg->regulator_type == QPNP_TYPE_FTS2p5) |
| slew_delay += FTS2P5_SETTLING_DELAY_US; |
| udelay(slew_delay); |
| } else if (vreg->regulator_type == QPNP_TYPE_FTS2p5) { |
| /* add the ramp-down delay */ |
| slew_delay = DIV_ROUND_UP(vreg->last_set_uV - uV, |
| vreg->step_rate) + FTS2P5_SETTLING_DELAY_US; |
| udelay(slew_delay); |
| } |
| |
| vreg->last_set_uV = uV; |
| vreg->last_set_vlevel = vlevel; |
| |
| return rc; |
| } |
| |
| static int spm_regulator_recalibrate(struct spm_vreg *vreg) |
| { |
| struct arm_smccc_res res; |
| |
| if (!vreg->recal_cluster_mask) |
| return 0; |
| |
| arm_smccc_smc(0xC4000020, vreg->recal_cluster_mask, 2, 0, 0, 0, 0, 0, &res); |
| if (res.a0) |
| pr_err("%s: recalibration failed, rc=%ld\n", vreg->rdesc.name, |
| res.a0); |
| |
| return res.a0; |
| } |
| |
| static int _spm_regulator_set_voltage(struct regulator_dev *rdev) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| bool pwm_required; |
| int rc = 0; |
| int uV; |
| |
| rc = spm_regulator_get_voltage(rdev); |
| if (rc < 0) |
| return rc; |
| |
| if (vreg->vlevel == vreg->last_set_vlevel) |
| return 0; |
| |
| pwm_required = (vreg->regulator_type == QPNP_TYPE_FTS2) |
| && (vreg->init_mode != QPNP_LOGICAL_MODE_PWM) |
| && vreg->uV > vreg->last_set_uV; |
| |
| if (pwm_required) { |
| /* Switch to PWM mode so that voltage ramping is fast. */ |
| rc = qpnp_smps_set_mode(vreg, QPNP_LOGICAL_MODE_PWM); |
| if (rc) |
| return rc; |
| } |
| |
| do { |
| uV = vreg->uV > vreg->last_set_uV |
| ? min(vreg->uV, vreg->last_set_uV + (int)vreg->max_step_uV) |
| : max(vreg->uV, vreg->last_set_uV - (int)vreg->max_step_uV); |
| |
| rc = spm_regulator_write_voltage(vreg, uV); |
| if (rc) |
| return rc; |
| } while (vreg->last_set_uV != vreg->uV); |
| |
| if (pwm_required) { |
| /* Wait for mode transition to complete. */ |
| udelay(QPNP_FTS2_MODE_CHANGE_DELAY - QPNP_SPMI_WRITE_MIN_DELAY); |
| /* Switch to AUTO mode so that power consumption is lowered. */ |
| rc = qpnp_smps_set_mode(vreg, QPNP_LOGICAL_MODE_AUTO); |
| if (rc) |
| return rc; |
| } |
| |
| rc = spm_regulator_recalibrate(vreg); |
| |
| return rc; |
| } |
| |
| static int spm_regulator_set_voltage(struct regulator_dev *rdev, int min_uV, |
| int max_uV, unsigned *selector) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| const struct voltage_range *range = vreg->range; |
| int uV = min_uV; |
| unsigned vlevel; |
| |
| if (uV < range->set_point_min_uV && max_uV >= range->set_point_min_uV) |
| uV = range->set_point_min_uV; |
| |
| if (uV < range->set_point_min_uV || uV > range->max_uV) { |
| pr_err("%s: request v=[%d, %d] is outside possible v=[%d, %d]\n", |
| vreg->rdesc.name, min_uV, max_uV, |
| range->set_point_min_uV, range->max_uV); |
| return -EINVAL; |
| } |
| |
| vlevel = spm_regulator_uv_to_vlevel(vreg, uV); |
| uV = spm_regulator_vlevel_to_uv(vreg, vlevel); |
| |
| if (uV > max_uV) { |
| pr_err("%s: request v=[%d, %d] cannot be met by any set point\n", |
| vreg->rdesc.name, min_uV, max_uV); |
| return -EINVAL; |
| } |
| |
| *selector = spm_regulator_vlevel_to_selector(vreg, vlevel); |
| vreg->vlevel = vlevel; |
| vreg->uV = uV; |
| |
| if (!vreg->online) |
| return 0; |
| |
| return _spm_regulator_set_voltage(rdev); |
| } |
| |
| static int spm_regulator_list_voltage(struct regulator_dev *rdev, |
| unsigned selector) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| |
| if (selector >= vreg->rdesc.n_voltages) |
| return 0; |
| |
| return selector * vreg->range->step_uV + vreg->range->set_point_min_uV; |
| } |
| |
| static int spm_regulator_enable(struct regulator_dev *rdev) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| int rc; |
| |
| rc = _spm_regulator_set_voltage(rdev); |
| |
| if (!rc) |
| vreg->online = true; |
| |
| return rc; |
| } |
| |
| static int spm_regulator_disable(struct regulator_dev *rdev) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| |
| vreg->online = false; |
| |
| return 0; |
| } |
| |
| static int spm_regulator_is_enabled(struct regulator_dev *rdev) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| |
| return vreg->online; |
| } |
| |
| static unsigned int spm_regulator_get_mode(struct regulator_dev *rdev) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| |
| return vreg->mode == QPNP_LOGICAL_MODE_PWM |
| ? REGULATOR_MODE_NORMAL : REGULATOR_MODE_IDLE; |
| } |
| |
| static int spm_regulator_set_mode(struct regulator_dev *rdev, unsigned int mode) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| |
| /* |
| * Map REGULATOR_MODE_NORMAL to PWM mode and REGULATOR_MODE_IDLE to |
| * init_mode. This ensures that the regulator always stays in PWM mode |
| * in the case that qcom,mode has been specified as "pwm" in device |
| * tree. |
| */ |
| vreg->mode = (mode == REGULATOR_MODE_NORMAL) ? QPNP_LOGICAL_MODE_PWM |
| : vreg->init_mode; |
| |
| return qpnp_smps_set_mode(vreg, vreg->mode); |
| } |
| |
| static struct regulator_ops spm_regulator_ops = { |
| .get_voltage = spm_regulator_get_voltage, |
| .set_voltage = spm_regulator_set_voltage, |
| .list_voltage = spm_regulator_list_voltage, |
| .get_mode = spm_regulator_get_mode, |
| .set_mode = spm_regulator_set_mode, |
| .enable = spm_regulator_enable, |
| .disable = spm_regulator_disable, |
| .is_enabled = spm_regulator_is_enabled, |
| }; |
| |
| static int spm_regulator_avs_set_voltage(struct regulator_dev *rdev, int min_uV, |
| int max_uV, unsigned *selector) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| const struct voltage_range *range = vreg->range; |
| unsigned vlevel_min, vlevel_max; |
| int uV, avs_min_uV, avs_max_uV, rc; |
| |
| uV = min_uV; |
| |
| if (uV < range->set_point_min_uV && max_uV >= range->set_point_min_uV) |
| uV = range->set_point_min_uV; |
| |
| if (uV < range->set_point_min_uV || uV > range->max_uV) { |
| pr_err("%s: request v=[%d, %d] is outside possible v=[%d, %d]\n", |
| vreg->avs_rdesc.name, min_uV, max_uV, |
| range->set_point_min_uV, range->max_uV); |
| return -EINVAL; |
| } |
| |
| vlevel_min = spm_regulator_uv_to_vlevel(vreg, uV); |
| avs_min_uV = spm_regulator_vlevel_to_uv(vreg, vlevel_min); |
| |
| if (avs_min_uV > max_uV) { |
| pr_err("%s: request v=[%d, %d] cannot be met by any set point\n", |
| vreg->avs_rdesc.name, min_uV, max_uV); |
| return -EINVAL; |
| } |
| |
| uV = max_uV; |
| |
| if (uV > range->max_uV && min_uV <= range->max_uV) |
| uV = range->max_uV; |
| |
| if (uV < range->set_point_min_uV || uV > range->max_uV) { |
| pr_err("%s: request v=[%d, %d] is outside possible v=[%d, %d]\n", |
| vreg->avs_rdesc.name, min_uV, max_uV, |
| range->set_point_min_uV, range->max_uV); |
| return -EINVAL; |
| } |
| |
| vlevel_max = spm_regulator_uv_to_vlevel(vreg, uV); |
| avs_max_uV = spm_regulator_vlevel_to_uv(vreg, vlevel_max); |
| |
| if (avs_max_uV < min_uV) { |
| pr_err("%s: request v=[%d, %d] cannot be met by any set point\n", |
| vreg->avs_rdesc.name, min_uV, max_uV); |
| return -EINVAL; |
| } |
| |
| if (likely(!vreg->bypass_spm)) { |
| rc = msm_spm_avs_set_limit(vreg->cpu_num, vlevel_min, |
| vlevel_max); |
| if (rc) { |
| pr_err("%s: AVS limit setting failed, rc=%d\n", |
| vreg->avs_rdesc.name, rc); |
| return rc; |
| } |
| } |
| |
| *selector = spm_regulator_vlevel_to_selector(vreg, vlevel_min); |
| vreg->avs_min_uV = avs_min_uV; |
| vreg->avs_max_uV = avs_max_uV; |
| |
| return 0; |
| } |
| |
| static int spm_regulator_avs_get_voltage(struct regulator_dev *rdev) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| |
| return vreg->avs_min_uV; |
| } |
| |
| static int spm_regulator_avs_enable(struct regulator_dev *rdev) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| int rc; |
| |
| if (likely(!vreg->bypass_spm)) { |
| rc = msm_spm_avs_enable(vreg->cpu_num); |
| if (rc) { |
| pr_err("%s: AVS enable failed, rc=%d\n", |
| vreg->avs_rdesc.name, rc); |
| return rc; |
| } |
| } |
| |
| vreg->avs_enabled = true; |
| |
| return 0; |
| } |
| |
| static int spm_regulator_avs_disable(struct regulator_dev *rdev) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| int rc; |
| |
| if (likely(!vreg->bypass_spm)) { |
| rc = msm_spm_avs_disable(vreg->cpu_num); |
| if (rc) { |
| pr_err("%s: AVS disable failed, rc=%d\n", |
| vreg->avs_rdesc.name, rc); |
| return rc; |
| } |
| } |
| |
| vreg->avs_enabled = false; |
| |
| return 0; |
| } |
| |
| static int spm_regulator_avs_is_enabled(struct regulator_dev *rdev) |
| { |
| struct spm_vreg *vreg = rdev_get_drvdata(rdev); |
| |
| return vreg->avs_enabled; |
| } |
| |
| static struct regulator_ops spm_regulator_avs_ops = { |
| .get_voltage = spm_regulator_avs_get_voltage, |
| .set_voltage = spm_regulator_avs_set_voltage, |
| .list_voltage = spm_regulator_list_voltage, |
| .enable = spm_regulator_avs_enable, |
| .disable = spm_regulator_avs_disable, |
| .is_enabled = spm_regulator_avs_is_enabled, |
| }; |
| |
| static int qpnp_smps_check_type(struct spm_vreg *vreg) |
| { |
| int rc; |
| u8 type[2]; |
| |
| rc = regmap_bulk_read(vreg->regmap, |
| vreg->spmi_base_addr + QPNP_SMPS_REG_TYPE, |
| type, |
| 2); |
| if (rc) { |
| dev_err(&vreg->pdev->dev, |
| "%s: could not read type register, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| if (type[0] == QPNP_FTS2_TYPE && type[1] == QPNP_FTS2_SUBTYPE) { |
| vreg->regulator_type = QPNP_TYPE_FTS2; |
| } else if (type[0] == QPNP_FTS2p5_TYPE |
| && type[1] == QPNP_FTS2p5_SUBTYPE) { |
| vreg->regulator_type = QPNP_TYPE_FTS2p5; |
| } else if (type[0] == QPNP_FTS426_TYPE |
| && type[1] == QPNP_FTS426_SUBTYPE) { |
| vreg->regulator_type = QPNP_TYPE_FTS426; |
| } else if (type[0] == QPNP_ULT_HF_TYPE |
| && type[1] == QPNP_ULT_HF_SUBTYPE) { |
| vreg->regulator_type = QPNP_TYPE_ULT_HF; |
| } else if (type[0] == QPNP_HF_TYPE |
| && type[1] == QPNP_HF_SUBTYPE) { |
| vreg->regulator_type = QPNP_TYPE_HF; |
| } else { |
| dev_err(&vreg->pdev->dev, |
| "%s: invalid type=0x%02X, subtype=0x%02X register pair\n", |
| __func__, type[0], type[1]); |
| return -ENODEV; |
| }; |
| |
| return rc; |
| } |
| |
| static int qpnp_smps_init_range(struct spm_vreg *vreg, |
| const struct voltage_range *range0, const struct voltage_range *range1) |
| { |
| int rc; |
| u8 reg = 0; |
| uint val; |
| |
| rc = regmap_read(vreg->regmap, |
| vreg->spmi_base_addr + QPNP_SMPS_REG_VOLTAGE_RANGE, |
| &val); |
| if (rc) { |
| dev_err(&vreg->pdev->dev, |
| "%s: could not read voltage range register, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| reg = (u8)val; |
| |
| if (reg == 0x00) { |
| vreg->range = range0; |
| } else if (reg == 0x01) { |
| vreg->range = range1; |
| } else { |
| dev_err(&vreg->pdev->dev, "%s: voltage range=%d is invalid\n", |
| __func__, reg); |
| rc = -EINVAL; |
| } |
| |
| return rc; |
| } |
| |
| static int qpnp_ult_hf_init_range(struct spm_vreg *vreg) |
| { |
| int rc; |
| u8 reg = 0; |
| uint val; |
| |
| rc = regmap_read(vreg->regmap, |
| vreg->spmi_base_addr + QPNP_SMPS_REG_VOLTAGE_SETPOINT, |
| &val); |
| if (rc) { |
| dev_err(&vreg->pdev->dev, |
| "%s: could not read voltage range register, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| reg = (u8)val; |
| |
| vreg->range = (reg < ULT_SMPS_RANGE_SPLIT) ? &ult_hf_range0 : |
| &ult_hf_range1; |
| return rc; |
| } |
| |
| static int qpnp_smps_init_voltage(struct spm_vreg *vreg) |
| { |
| int rc; |
| |
| rc = qpnp_smps_read_voltage(vreg); |
| if (rc) { |
| pr_err("%s: voltage read failed, rc=%d\n", vreg->rdesc.name, |
| rc); |
| return rc; |
| } |
| |
| vreg->vlevel = vreg->last_set_vlevel; |
| vreg->uV = vreg->last_set_uV; |
| |
| /* Initialize SAW voltage control register */ |
| if (!vreg->bypass_spm) { |
| rc = msm_spm_set_vdd(vreg->cpu_num, vreg->vlevel); |
| if (rc) |
| pr_err("%s: msm_spm_set_vdd failed, rc=%d\n", |
| vreg->rdesc.name, rc); |
| } |
| |
| return 0; |
| } |
| |
| static int qpnp_smps_init_mode(struct spm_vreg *vreg) |
| { |
| const char *mode_name; |
| int rc; |
| uint val; |
| |
| rc = of_property_read_string(vreg->pdev->dev.of_node, "qcom,mode", |
| &mode_name); |
| if (!rc) { |
| if (strcmp("pwm", mode_name) == 0) { |
| vreg->init_mode = QPNP_LOGICAL_MODE_PWM; |
| } else if ((strcmp("auto", mode_name) == 0) && |
| (vreg->regulator_type != QPNP_TYPE_ULT_HF)) { |
| vreg->init_mode = QPNP_LOGICAL_MODE_AUTO; |
| } else { |
| dev_err(&vreg->pdev->dev, |
| "%s: unknown regulator mode: %s\n", |
| __func__, mode_name); |
| return -EINVAL; |
| } |
| |
| rc = qpnp_smps_set_mode(vreg, vreg->init_mode); |
| if (rc) |
| return rc; |
| } else { |
| rc = regmap_read(vreg->regmap, |
| vreg->spmi_base_addr + QPNP_SMPS_REG_MODE, |
| &val); |
| if (rc) |
| dev_err(&vreg->pdev->dev, |
| "%s: could not read mode register, rc=%d\n", |
| __func__, rc); |
| vreg->init_mode = qpnp_regval_to_mode(vreg, val); |
| } |
| |
| vreg->mode = vreg->init_mode; |
| |
| return rc; |
| } |
| |
| static int qpnp_smps_init_step_rate(struct spm_vreg *vreg) |
| { |
| int rc; |
| u8 reg = 0; |
| int step = 0, delay; |
| uint val; |
| |
| rc = regmap_read(vreg->regmap, |
| vreg->spmi_base_addr + QPNP_SMPS_REG_STEP_CTRL, &val); |
| if (rc) { |
| dev_err(&vreg->pdev->dev, |
| "%s: could not read stepping control register, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| reg = (u8)val; |
| |
| /* ULT and FTS426 bucks do not support steps */ |
| if (vreg->regulator_type != QPNP_TYPE_ULT_HF && vreg->regulator_type != |
| QPNP_TYPE_FTS426) |
| step = (reg & QPNP_SMPS_STEP_CTRL_STEP_MASK) |
| >> QPNP_SMPS_STEP_CTRL_STEP_SHIFT; |
| |
| if (vreg->regulator_type == QPNP_TYPE_FTS426) { |
| delay = (reg & QPNP_FTS426_STEP_CTRL_DELAY_MASK) |
| >> QPNP_FTS426_STEP_CTRL_DELAY_SHIFT; |
| |
| /* step_rate has units of uV/us. */ |
| vreg->step_rate = QPNP_FTS426_CLOCK_RATE * vreg->range->step_uV; |
| } else { |
| delay = (reg & QPNP_SMPS_STEP_CTRL_DELAY_MASK) |
| >> QPNP_SMPS_STEP_CTRL_DELAY_SHIFT; |
| |
| /* step_rate has units of uV/us. */ |
| vreg->step_rate = QPNP_SMPS_CLOCK_RATE * vreg->range->step_uV |
| * (1 << step); |
| } |
| |
| if ((vreg->regulator_type == QPNP_TYPE_ULT_HF) |
| || (vreg->regulator_type == QPNP_TYPE_HF)) |
| vreg->step_rate /= 1000 * (QPNP_HF_STEP_DELAY << delay); |
| else if (vreg->regulator_type == QPNP_TYPE_FTS426) |
| vreg->step_rate /= 1000 * (QPNP_FTS426_STEP_DELAY << delay); |
| else |
| vreg->step_rate /= 1000 * (QPNP_FTS2_STEP_DELAY << delay); |
| |
| if (vreg->regulator_type == QPNP_TYPE_FTS426) |
| vreg->step_rate = vreg->step_rate * QPNP_FTS426_STEP_MARGIN_NUM |
| / QPNP_FTS426_STEP_MARGIN_DEN; |
| else |
| vreg->step_rate = vreg->step_rate * QPNP_FTS2_STEP_MARGIN_NUM |
| / QPNP_FTS2_STEP_MARGIN_DEN; |
| |
| /* Ensure that the stepping rate is greater than 0. */ |
| vreg->step_rate = max(vreg->step_rate, 1); |
| |
| return rc; |
| } |
| |
| static int qpnp_smps_check_constraints(struct spm_vreg *vreg, |
| struct regulator_init_data *init_data) |
| { |
| int rc = 0, limit_min_uV, limit_max_uV; |
| u16 ul_reg, ll_reg; |
| u8 reg[2]; |
| |
| limit_min_uV = 0; |
| limit_max_uV = INT_MAX; |
| |
| ul_reg = QPNP_FTS_REG_VOLTAGE_ULS_VALID; |
| ll_reg = QPNP_FTS_REG_VOLTAGE_LLS_VALID; |
| |
| switch (vreg->regulator_type) { |
| case QPNP_TYPE_HF: |
| ul_reg = QPNP_HF_REG_VOLTAGE_ULS; |
| ll_reg = QPNP_HF_REG_VOLTAGE_LLS; |
| case QPNP_TYPE_FTS2: |
| case QPNP_TYPE_FTS2p5: |
| rc = regmap_bulk_read(vreg->regmap, vreg->spmi_base_addr |
| + QPNP_SMPS_REG_UL_LL_CTRL, reg, 1); |
| if (rc) { |
| dev_err(&vreg->pdev->dev, "%s: UL_LL register read failed, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| if (reg[0] & QPNP_COMMON_UL_EN_MASK) { |
| rc = regmap_bulk_read(vreg->regmap, vreg->spmi_base_addr |
| + ul_reg, ®[1], 1); |
| if (rc) { |
| dev_err(&vreg->pdev->dev, "%s: ULS register read failed, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| limit_max_uV = spm_regulator_vlevel_to_uv(vreg, reg[1]); |
| } |
| |
| if (reg[0] & QPNP_COMMON_LL_EN_MASK) { |
| rc = regmap_bulk_read(vreg->regmap, vreg->spmi_base_addr |
| + ll_reg, ®[1], 1); |
| if (rc) { |
| dev_err(&vreg->pdev->dev, "%s: LLS register read failed, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| limit_min_uV = spm_regulator_vlevel_to_uv(vreg, reg[1]); |
| } |
| |
| break; |
| case QPNP_TYPE_FTS426: |
| rc = regmap_bulk_read(vreg->regmap, vreg->spmi_base_addr |
| + QPNP_FTS426_REG_VOLTAGE_ULS_LB, |
| reg, 2); |
| if (rc) { |
| dev_err(&vreg->pdev->dev, "%s: could not read voltage limit registers, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| limit_max_uV = spm_regulator_vlevel_to_uv(vreg, |
| ((unsigned)reg[1] << 8) | reg[0]); |
| break; |
| case QPNP_TYPE_ULT_HF: |
| /* no HW voltage limit configuration */ |
| break; |
| } |
| |
| if (init_data->constraints.min_uV < limit_min_uV |
| || init_data->constraints.max_uV > limit_max_uV) { |
| dev_err(&vreg->pdev->dev, "regulator min/max(%d/%d) constraints do not fit within HW configured min/max(%d/%d) constraints\n", |
| init_data->constraints.min_uV, |
| init_data->constraints.max_uV, limit_min_uV, |
| limit_max_uV); |
| return -EINVAL; |
| } |
| |
| return rc; |
| } |
| |
| static bool spm_regulator_using_range0(struct spm_vreg *vreg) |
| { |
| return vreg->range == &fts2_range0 || vreg->range == &fts2p5_range0 |
| || vreg->range == &ult_hf_range0 || vreg->range == &hf_range0 |
| || vreg->range == &fts426_range; |
| } |
| |
| /* Register a regulator to enable/disable AVS and set AVS min/max limits. */ |
| static int spm_regulator_avs_register(struct spm_vreg *vreg, |
| struct device *dev, struct device_node *node) |
| { |
| struct regulator_config reg_config = {}; |
| struct device_node *avs_node = NULL; |
| struct device_node *child_node; |
| struct regulator_init_data *init_data; |
| int rc; |
| |
| /* |
| * Find the first available child node (if any). It corresponds to an |
| * AVS limits regulator. |
| */ |
| for_each_available_child_of_node(node, child_node) { |
| avs_node = child_node; |
| break; |
| } |
| |
| if (!avs_node) |
| return 0; |
| |
| init_data = of_get_regulator_init_data(dev, avs_node, &vreg->avs_rdesc); |
| if (!init_data) { |
| dev_err(dev, "%s: unable to allocate memory\n", __func__); |
| return -ENOMEM; |
| } |
| init_data->constraints.input_uV = init_data->constraints.max_uV; |
| init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS |
| | REGULATOR_CHANGE_VOLTAGE; |
| |
| if (!init_data->constraints.name) { |
| dev_err(dev, "%s: AVS node is missing regulator name\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| vreg->avs_rdesc.name = init_data->constraints.name; |
| vreg->avs_rdesc.type = REGULATOR_VOLTAGE; |
| vreg->avs_rdesc.owner = THIS_MODULE; |
| vreg->avs_rdesc.ops = &spm_regulator_avs_ops; |
| vreg->avs_rdesc.n_voltages |
| = (vreg->range->max_uV - vreg->range->set_point_min_uV) |
| / vreg->range->step_uV + 1; |
| |
| reg_config.dev = dev; |
| reg_config.init_data = init_data; |
| reg_config.driver_data = vreg; |
| reg_config.of_node = avs_node; |
| |
| vreg->avs_rdev = regulator_register(&vreg->avs_rdesc, ®_config); |
| if (IS_ERR(vreg->avs_rdev)) { |
| rc = PTR_ERR(vreg->avs_rdev); |
| dev_err(dev, "%s: AVS regulator_register failed, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| if (vreg->bypass_spm) |
| pr_debug("%s: SPM bypassed so AVS regulator calls are no-ops\n", |
| vreg->avs_rdesc.name); |
| |
| return 0; |
| } |
| |
| static int spm_regulator_probe(struct platform_device *pdev) |
| { |
| struct regulator_config reg_config = {}; |
| struct device_node *node = pdev->dev.of_node; |
| struct regulator_init_data *init_data; |
| struct spm_vreg *vreg; |
| unsigned int base; |
| bool bypass_spm; |
| int rc; |
| |
| if (!node) { |
| dev_err(&pdev->dev, "%s: device node missing\n", __func__); |
| return -ENODEV; |
| } |
| |
| bypass_spm = of_property_read_bool(node, "qcom,bypass-spm"); |
| if (!bypass_spm) { |
| rc = msm_spm_probe_done(); |
| if (rc) { |
| if (rc != -EPROBE_DEFER) |
| dev_err(&pdev->dev, |
| "%s: spm unavailable, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| } |
| |
| vreg = devm_kzalloc(&pdev->dev, sizeof(*vreg), GFP_KERNEL); |
| if (!vreg) { |
| pr_err("allocation failed.\n"); |
| return -ENOMEM; |
| } |
| vreg->regmap = dev_get_regmap(pdev->dev.parent, NULL); |
| if (!vreg->regmap) { |
| dev_err(&pdev->dev, "Couldn't get parent's regmap\n"); |
| return -EINVAL; |
| } |
| vreg->pdev = pdev; |
| vreg->bypass_spm = bypass_spm; |
| |
| rc = of_property_read_u32(pdev->dev.of_node, "reg", &base); |
| if (rc < 0) { |
| dev_err(&pdev->dev, |
| "Couldn't find reg in node = %s rc = %d\n", |
| pdev->dev.of_node->full_name, rc); |
| return rc; |
| } |
| vreg->spmi_base_addr = base; |
| |
| rc = qpnp_smps_check_type(vreg); |
| if (rc) |
| return rc; |
| |
| /* Specify CPU 0 as default in order to handle shared regulator case. */ |
| vreg->cpu_num = 0; |
| of_property_read_u32(vreg->pdev->dev.of_node, "qcom,cpu-num", |
| &vreg->cpu_num); |
| |
| of_property_read_u32(vreg->pdev->dev.of_node, "qcom,recal-mask", |
| &vreg->recal_cluster_mask); |
| |
| /* |
| * The regulator must be initialized to range 0 or range 1 during |
| * PMIC power on sequence. Once it is set, it cannot be changed |
| * dynamically. |
| */ |
| if (vreg->regulator_type == QPNP_TYPE_FTS2) |
| rc = qpnp_smps_init_range(vreg, &fts2_range0, &fts2_range1); |
| else if (vreg->regulator_type == QPNP_TYPE_FTS2p5) |
| rc = qpnp_smps_init_range(vreg, &fts2p5_range0, &fts2p5_range1); |
| else if (vreg->regulator_type == QPNP_TYPE_FTS426) |
| vreg->range = &fts426_range; |
| else if (vreg->regulator_type == QPNP_TYPE_HF) |
| rc = qpnp_smps_init_range(vreg, &hf_range0, &hf_range1); |
| else if (vreg->regulator_type == QPNP_TYPE_ULT_HF) |
| rc = qpnp_ult_hf_init_range(vreg); |
| if (rc) |
| return rc; |
| |
| rc = qpnp_smps_init_voltage(vreg); |
| if (rc) |
| return rc; |
| |
| rc = qpnp_smps_init_mode(vreg); |
| if (rc) |
| return rc; |
| |
| rc = qpnp_smps_init_step_rate(vreg); |
| if (rc) |
| return rc; |
| |
| init_data = of_get_regulator_init_data(&pdev->dev, node, &vreg->rdesc); |
| if (!init_data) { |
| dev_err(&pdev->dev, "%s: unable to allocate memory\n", |
| __func__); |
| return -ENOMEM; |
| } |
| init_data->constraints.input_uV = init_data->constraints.max_uV; |
| init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS |
| | REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_MODE; |
| init_data->constraints.valid_modes_mask |
| = REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE; |
| |
| if (!init_data->constraints.name) { |
| dev_err(&pdev->dev, "%s: node is missing regulator name\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| rc = qpnp_smps_check_constraints(vreg, init_data); |
| if (rc) { |
| dev_err(&pdev->dev, "%s: regulator constraints check failed, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| vreg->rdesc.name = init_data->constraints.name; |
| vreg->rdesc.type = REGULATOR_VOLTAGE; |
| vreg->rdesc.owner = THIS_MODULE; |
| vreg->rdesc.ops = &spm_regulator_ops; |
| vreg->rdesc.n_voltages |
| = (vreg->range->max_uV - vreg->range->set_point_min_uV) |
| / vreg->range->step_uV + 1; |
| |
| vreg->max_step_uV = SPM_REGULATOR_MAX_STEP_UV; |
| of_property_read_u32(vreg->pdev->dev.of_node, |
| "qcom,max-voltage-step", &vreg->max_step_uV); |
| |
| if (vreg->max_step_uV > SPM_REGULATOR_MAX_STEP_UV) |
| vreg->max_step_uV = SPM_REGULATOR_MAX_STEP_UV; |
| |
| vreg->max_step_uV = rounddown(vreg->max_step_uV, vreg->range->step_uV); |
| pr_debug("%s: max single voltage step size=%u uV\n", |
| vreg->rdesc.name, vreg->max_step_uV); |
| |
| reg_config.dev = &pdev->dev; |
| reg_config.init_data = init_data; |
| reg_config.driver_data = vreg; |
| reg_config.of_node = node; |
| vreg->rdev = regulator_register(&vreg->rdesc, ®_config); |
| |
| if (IS_ERR(vreg->rdev)) { |
| rc = PTR_ERR(vreg->rdev); |
| dev_err(&pdev->dev, "%s: regulator_register failed, rc=%d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| rc = spm_regulator_avs_register(vreg, &pdev->dev, node); |
| if (rc) { |
| regulator_unregister(vreg->rdev); |
| return rc; |
| } |
| |
| dev_set_drvdata(&pdev->dev, vreg); |
| |
| pr_info("name=%s, range=%s, voltage=%d uV, mode=%s, step rate=%d uV/us\n", |
| vreg->rdesc.name, |
| spm_regulator_using_range0(vreg) ? "LV" : "MV", |
| vreg->uV, |
| vreg->init_mode == QPNP_LOGICAL_MODE_PWM ? "PWM" : |
| (vreg->init_mode == QPNP_LOGICAL_MODE_AUTO ? "AUTO" : "PFM"), |
| vreg->step_rate); |
| |
| return rc; |
| } |
| |
| static int spm_regulator_remove(struct platform_device *pdev) |
| { |
| struct spm_vreg *vreg = dev_get_drvdata(&pdev->dev); |
| |
| if (vreg->avs_rdev) |
| regulator_unregister(vreg->avs_rdev); |
| regulator_unregister(vreg->rdev); |
| |
| return 0; |
| } |
| |
| static struct of_device_id spm_regulator_match_table[] = { |
| { .compatible = SPM_REGULATOR_DRIVER_NAME, }, |
| {} |
| }; |
| |
| static const struct platform_device_id spm_regulator_id[] = { |
| { SPM_REGULATOR_DRIVER_NAME, 0 }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(spmi, spm_regulator_id); |
| |
| static struct platform_driver spm_regulator_driver = { |
| .driver = { |
| .name = SPM_REGULATOR_DRIVER_NAME, |
| .of_match_table = spm_regulator_match_table, |
| .owner = THIS_MODULE, |
| }, |
| .probe = spm_regulator_probe, |
| .remove = spm_regulator_remove, |
| .id_table = spm_regulator_id, |
| }; |
| |
| /** |
| * spm_regulator_init() - register spmi driver for spm-regulator |
| * |
| * This initialization function should be called in systems in which driver |
| * registration ordering must be controlled precisely. |
| * |
| * Returns 0 on success or errno on failure. |
| */ |
| int __init spm_regulator_init(void) |
| { |
| static bool has_registered; |
| |
| if (has_registered) |
| return 0; |
| else |
| has_registered = true; |
| |
| return platform_driver_register(&spm_regulator_driver); |
| } |
| EXPORT_SYMBOL(spm_regulator_init); |
| |
| static void __exit spm_regulator_exit(void) |
| { |
| platform_driver_unregister(&spm_regulator_driver); |
| } |
| |
| arch_initcall(spm_regulator_init); |
| module_exit(spm_regulator_exit); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("SPM regulator driver"); |
| MODULE_ALIAS("platform:spm-regulator"); |