blob: 9f768b48321ff5da17e79fa36c7aaa67fdea3223 [file] [log] [blame]
/*
* Copyright(c) 2015 - 2017 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/spinlock.h>
#include "hfi.h"
#include "mad.h"
#include "qp.h"
#include "verbs_txreq.h"
#include "trace.h"
/*
* Convert the AETH RNR timeout code into the number of microseconds.
*/
const u32 ib_hfi1_rnr_table[32] = {
655360, /* 00: 655.36 */
10, /* 01: .01 */
20, /* 02 .02 */
30, /* 03: .03 */
40, /* 04: .04 */
60, /* 05: .06 */
80, /* 06: .08 */
120, /* 07: .12 */
160, /* 08: .16 */
240, /* 09: .24 */
320, /* 0A: .32 */
480, /* 0B: .48 */
640, /* 0C: .64 */
960, /* 0D: .96 */
1280, /* 0E: 1.28 */
1920, /* 0F: 1.92 */
2560, /* 10: 2.56 */
3840, /* 11: 3.84 */
5120, /* 12: 5.12 */
7680, /* 13: 7.68 */
10240, /* 14: 10.24 */
15360, /* 15: 15.36 */
20480, /* 16: 20.48 */
30720, /* 17: 30.72 */
40960, /* 18: 40.96 */
61440, /* 19: 61.44 */
81920, /* 1A: 81.92 */
122880, /* 1B: 122.88 */
163840, /* 1C: 163.84 */
245760, /* 1D: 245.76 */
327680, /* 1E: 327.68 */
491520 /* 1F: 491.52 */
};
/*
* Validate a RWQE and fill in the SGE state.
* Return 1 if OK.
*/
static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
{
int i, j, ret;
struct ib_wc wc;
struct rvt_lkey_table *rkt;
struct rvt_pd *pd;
struct rvt_sge_state *ss;
rkt = &to_idev(qp->ibqp.device)->rdi.lkey_table;
pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
ss = &qp->r_sge;
ss->sg_list = qp->r_sg_list;
qp->r_len = 0;
for (i = j = 0; i < wqe->num_sge; i++) {
if (wqe->sg_list[i].length == 0)
continue;
/* Check LKEY */
if (!rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
&wqe->sg_list[i], IB_ACCESS_LOCAL_WRITE))
goto bad_lkey;
qp->r_len += wqe->sg_list[i].length;
j++;
}
ss->num_sge = j;
ss->total_len = qp->r_len;
ret = 1;
goto bail;
bad_lkey:
while (j) {
struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
rvt_put_mr(sge->mr);
}
ss->num_sge = 0;
memset(&wc, 0, sizeof(wc));
wc.wr_id = wqe->wr_id;
wc.status = IB_WC_LOC_PROT_ERR;
wc.opcode = IB_WC_RECV;
wc.qp = &qp->ibqp;
/* Signal solicited completion event. */
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
ret = 0;
bail:
return ret;
}
/**
* hfi1_rvt_get_rwqe - copy the next RWQE into the QP's RWQE
* @qp: the QP
* @wr_id_only: update qp->r_wr_id only, not qp->r_sge
*
* Return -1 if there is a local error, 0 if no RWQE is available,
* otherwise return 1.
*
* Can be called from interrupt level.
*/
int hfi1_rvt_get_rwqe(struct rvt_qp *qp, int wr_id_only)
{
unsigned long flags;
struct rvt_rq *rq;
struct rvt_rwq *wq;
struct rvt_srq *srq;
struct rvt_rwqe *wqe;
void (*handler)(struct ib_event *, void *);
u32 tail;
int ret;
if (qp->ibqp.srq) {
srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
handler = srq->ibsrq.event_handler;
rq = &srq->rq;
} else {
srq = NULL;
handler = NULL;
rq = &qp->r_rq;
}
spin_lock_irqsave(&rq->lock, flags);
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
ret = 0;
goto unlock;
}
wq = rq->wq;
tail = wq->tail;
/* Validate tail before using it since it is user writable. */
if (tail >= rq->size)
tail = 0;
if (unlikely(tail == wq->head)) {
ret = 0;
goto unlock;
}
/* Make sure entry is read after head index is read. */
smp_rmb();
wqe = rvt_get_rwqe_ptr(rq, tail);
/*
* Even though we update the tail index in memory, the verbs
* consumer is not supposed to post more entries until a
* completion is generated.
*/
if (++tail >= rq->size)
tail = 0;
wq->tail = tail;
if (!wr_id_only && !init_sge(qp, wqe)) {
ret = -1;
goto unlock;
}
qp->r_wr_id = wqe->wr_id;
ret = 1;
set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
if (handler) {
u32 n;
/*
* Validate head pointer value and compute
* the number of remaining WQEs.
*/
n = wq->head;
if (n >= rq->size)
n = 0;
if (n < tail)
n += rq->size - tail;
else
n -= tail;
if (n < srq->limit) {
struct ib_event ev;
srq->limit = 0;
spin_unlock_irqrestore(&rq->lock, flags);
ev.device = qp->ibqp.device;
ev.element.srq = qp->ibqp.srq;
ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
handler(&ev, srq->ibsrq.srq_context);
goto bail;
}
}
unlock:
spin_unlock_irqrestore(&rq->lock, flags);
bail:
return ret;
}
static __be64 get_sguid(struct hfi1_ibport *ibp, unsigned index)
{
if (!index) {
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
return cpu_to_be64(ppd->guid);
}
return ibp->guids[index - 1];
}
static int gid_ok(union ib_gid *gid, __be64 gid_prefix, __be64 id)
{
return (gid->global.interface_id == id &&
(gid->global.subnet_prefix == gid_prefix ||
gid->global.subnet_prefix == IB_DEFAULT_GID_PREFIX));
}
/*
*
* This should be called with the QP r_lock held.
*
* The s_lock will be acquired around the hfi1_migrate_qp() call.
*/
int hfi1_ruc_check_hdr(struct hfi1_ibport *ibp, struct ib_header *hdr,
int has_grh, struct rvt_qp *qp, u32 bth0)
{
__be64 guid;
unsigned long flags;
u8 sc5 = ibp->sl_to_sc[qp->remote_ah_attr.sl];
if (qp->s_mig_state == IB_MIG_ARMED && (bth0 & IB_BTH_MIG_REQ)) {
if (!has_grh) {
if (qp->alt_ah_attr.ah_flags & IB_AH_GRH)
goto err;
} else {
if (!(qp->alt_ah_attr.ah_flags & IB_AH_GRH))
goto err;
guid = get_sguid(ibp, qp->alt_ah_attr.grh.sgid_index);
if (!gid_ok(&hdr->u.l.grh.dgid, ibp->rvp.gid_prefix,
guid))
goto err;
if (!gid_ok(
&hdr->u.l.grh.sgid,
qp->alt_ah_attr.grh.dgid.global.subnet_prefix,
qp->alt_ah_attr.grh.dgid.global.interface_id))
goto err;
}
if (unlikely(rcv_pkey_check(ppd_from_ibp(ibp), (u16)bth0,
sc5, be16_to_cpu(hdr->lrh[3])))) {
hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_P_KEY,
(u16)bth0,
(be16_to_cpu(hdr->lrh[0]) >> 4) & 0xF,
0, qp->ibqp.qp_num,
be16_to_cpu(hdr->lrh[3]),
be16_to_cpu(hdr->lrh[1]));
goto err;
}
/* Validate the SLID. See Ch. 9.6.1.5 and 17.2.8 */
if (be16_to_cpu(hdr->lrh[3]) != qp->alt_ah_attr.dlid ||
ppd_from_ibp(ibp)->port != qp->alt_ah_attr.port_num)
goto err;
spin_lock_irqsave(&qp->s_lock, flags);
hfi1_migrate_qp(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
} else {
if (!has_grh) {
if (qp->remote_ah_attr.ah_flags & IB_AH_GRH)
goto err;
} else {
if (!(qp->remote_ah_attr.ah_flags & IB_AH_GRH))
goto err;
guid = get_sguid(ibp,
qp->remote_ah_attr.grh.sgid_index);
if (!gid_ok(&hdr->u.l.grh.dgid, ibp->rvp.gid_prefix,
guid))
goto err;
if (!gid_ok(
&hdr->u.l.grh.sgid,
qp->remote_ah_attr.grh.dgid.global.subnet_prefix,
qp->remote_ah_attr.grh.dgid.global.interface_id))
goto err;
}
if (unlikely(rcv_pkey_check(ppd_from_ibp(ibp), (u16)bth0,
sc5, be16_to_cpu(hdr->lrh[3])))) {
hfi1_bad_pqkey(ibp, OPA_TRAP_BAD_P_KEY,
(u16)bth0,
(be16_to_cpu(hdr->lrh[0]) >> 4) & 0xF,
0, qp->ibqp.qp_num,
be16_to_cpu(hdr->lrh[3]),
be16_to_cpu(hdr->lrh[1]));
goto err;
}
/* Validate the SLID. See Ch. 9.6.1.5 */
if (be16_to_cpu(hdr->lrh[3]) != qp->remote_ah_attr.dlid ||
ppd_from_ibp(ibp)->port != qp->port_num)
goto err;
if (qp->s_mig_state == IB_MIG_REARM &&
!(bth0 & IB_BTH_MIG_REQ))
qp->s_mig_state = IB_MIG_ARMED;
}
return 0;
err:
return 1;
}
/**
* ruc_loopback - handle UC and RC loopback requests
* @sqp: the sending QP
*
* This is called from hfi1_do_send() to
* forward a WQE addressed to the same HFI.
* Note that although we are single threaded due to the send engine, we still
* have to protect against post_send(). We don't have to worry about
* receive interrupts since this is a connected protocol and all packets
* will pass through here.
*/
static void ruc_loopback(struct rvt_qp *sqp)
{
struct hfi1_ibport *ibp = to_iport(sqp->ibqp.device, sqp->port_num);
struct rvt_qp *qp;
struct rvt_swqe *wqe;
struct rvt_sge *sge;
unsigned long flags;
struct ib_wc wc;
u64 sdata;
atomic64_t *maddr;
enum ib_wc_status send_status;
int release;
int ret;
int copy_last = 0;
u32 to;
int local_ops = 0;
rcu_read_lock();
/*
* Note that we check the responder QP state after
* checking the requester's state.
*/
qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), &ibp->rvp,
sqp->remote_qpn);
spin_lock_irqsave(&sqp->s_lock, flags);
/* Return if we are already busy processing a work request. */
if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
goto unlock;
sqp->s_flags |= RVT_S_BUSY;
again:
smp_read_barrier_depends(); /* see post_one_send() */
if (sqp->s_last == ACCESS_ONCE(sqp->s_head))
goto clr_busy;
wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
/* Return if it is not OK to start a new work request. */
if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
goto clr_busy;
/* We are in the error state, flush the work request. */
send_status = IB_WC_WR_FLUSH_ERR;
goto flush_send;
}
/*
* We can rely on the entry not changing without the s_lock
* being held until we update s_last.
* We increment s_cur to indicate s_last is in progress.
*/
if (sqp->s_last == sqp->s_cur) {
if (++sqp->s_cur >= sqp->s_size)
sqp->s_cur = 0;
}
spin_unlock_irqrestore(&sqp->s_lock, flags);
if (!qp || !(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
qp->ibqp.qp_type != sqp->ibqp.qp_type) {
ibp->rvp.n_pkt_drops++;
/*
* For RC, the requester would timeout and retry so
* shortcut the timeouts and just signal too many retries.
*/
if (sqp->ibqp.qp_type == IB_QPT_RC)
send_status = IB_WC_RETRY_EXC_ERR;
else
send_status = IB_WC_SUCCESS;
goto serr;
}
memset(&wc, 0, sizeof(wc));
send_status = IB_WC_SUCCESS;
release = 1;
sqp->s_sge.sge = wqe->sg_list[0];
sqp->s_sge.sg_list = wqe->sg_list + 1;
sqp->s_sge.num_sge = wqe->wr.num_sge;
sqp->s_len = wqe->length;
switch (wqe->wr.opcode) {
case IB_WR_REG_MR:
goto send_comp;
case IB_WR_LOCAL_INV:
if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
if (rvt_invalidate_rkey(sqp,
wqe->wr.ex.invalidate_rkey))
send_status = IB_WC_LOC_PROT_ERR;
local_ops = 1;
}
goto send_comp;
case IB_WR_SEND_WITH_INV:
if (!rvt_invalidate_rkey(qp, wqe->wr.ex.invalidate_rkey)) {
wc.wc_flags = IB_WC_WITH_INVALIDATE;
wc.ex.invalidate_rkey = wqe->wr.ex.invalidate_rkey;
}
goto send;
case IB_WR_SEND_WITH_IMM:
wc.wc_flags = IB_WC_WITH_IMM;
wc.ex.imm_data = wqe->wr.ex.imm_data;
/* FALLTHROUGH */
case IB_WR_SEND:
send:
ret = hfi1_rvt_get_rwqe(qp, 0);
if (ret < 0)
goto op_err;
if (!ret)
goto rnr_nak;
break;
case IB_WR_RDMA_WRITE_WITH_IMM:
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
goto inv_err;
wc.wc_flags = IB_WC_WITH_IMM;
wc.ex.imm_data = wqe->wr.ex.imm_data;
ret = hfi1_rvt_get_rwqe(qp, 1);
if (ret < 0)
goto op_err;
if (!ret)
goto rnr_nak;
/* skip copy_last set and qp_access_flags recheck */
goto do_write;
case IB_WR_RDMA_WRITE:
copy_last = ibpd_to_rvtpd(qp->ibqp.pd)->user;
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
goto inv_err;
do_write:
if (wqe->length == 0)
break;
if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
wqe->rdma_wr.remote_addr,
wqe->rdma_wr.rkey,
IB_ACCESS_REMOTE_WRITE)))
goto acc_err;
qp->r_sge.sg_list = NULL;
qp->r_sge.num_sge = 1;
qp->r_sge.total_len = wqe->length;
break;
case IB_WR_RDMA_READ:
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
goto inv_err;
if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
wqe->rdma_wr.remote_addr,
wqe->rdma_wr.rkey,
IB_ACCESS_REMOTE_READ)))
goto acc_err;
release = 0;
sqp->s_sge.sg_list = NULL;
sqp->s_sge.num_sge = 1;
qp->r_sge.sge = wqe->sg_list[0];
qp->r_sge.sg_list = wqe->sg_list + 1;
qp->r_sge.num_sge = wqe->wr.num_sge;
qp->r_sge.total_len = wqe->length;
break;
case IB_WR_ATOMIC_CMP_AND_SWP:
case IB_WR_ATOMIC_FETCH_AND_ADD:
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
goto inv_err;
if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
wqe->atomic_wr.remote_addr,
wqe->atomic_wr.rkey,
IB_ACCESS_REMOTE_ATOMIC)))
goto acc_err;
/* Perform atomic OP and save result. */
maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
sdata = wqe->atomic_wr.compare_add;
*(u64 *)sqp->s_sge.sge.vaddr =
(wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
(u64)atomic64_add_return(sdata, maddr) - sdata :
(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
sdata, wqe->atomic_wr.swap);
rvt_put_mr(qp->r_sge.sge.mr);
qp->r_sge.num_sge = 0;
goto send_comp;
default:
send_status = IB_WC_LOC_QP_OP_ERR;
goto serr;
}
sge = &sqp->s_sge.sge;
while (sqp->s_len) {
u32 len = sqp->s_len;
if (len > sge->length)
len = sge->length;
if (len > sge->sge_length)
len = sge->sge_length;
WARN_ON_ONCE(len == 0);
hfi1_copy_sge(&qp->r_sge, sge->vaddr, len, release, copy_last);
sge->vaddr += len;
sge->length -= len;
sge->sge_length -= len;
if (sge->sge_length == 0) {
if (!release)
rvt_put_mr(sge->mr);
if (--sqp->s_sge.num_sge)
*sge = *sqp->s_sge.sg_list++;
} else if (sge->length == 0 && sge->mr->lkey) {
if (++sge->n >= RVT_SEGSZ) {
if (++sge->m >= sge->mr->mapsz)
break;
sge->n = 0;
}
sge->vaddr =
sge->mr->map[sge->m]->segs[sge->n].vaddr;
sge->length =
sge->mr->map[sge->m]->segs[sge->n].length;
}
sqp->s_len -= len;
}
if (release)
rvt_put_ss(&qp->r_sge);
if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
goto send_comp;
if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
else
wc.opcode = IB_WC_RECV;
wc.wr_id = qp->r_wr_id;
wc.status = IB_WC_SUCCESS;
wc.byte_len = wqe->length;
wc.qp = &qp->ibqp;
wc.src_qp = qp->remote_qpn;
wc.slid = qp->remote_ah_attr.dlid;
wc.sl = qp->remote_ah_attr.sl;
wc.port_num = 1;
/* Signal completion event if the solicited bit is set. */
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc,
wqe->wr.send_flags & IB_SEND_SOLICITED);
send_comp:
spin_lock_irqsave(&sqp->s_lock, flags);
ibp->rvp.n_loop_pkts++;
flush_send:
sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
hfi1_send_complete(sqp, wqe, send_status);
if (local_ops) {
atomic_dec(&sqp->local_ops_pending);
local_ops = 0;
}
goto again;
rnr_nak:
/* Handle RNR NAK */
if (qp->ibqp.qp_type == IB_QPT_UC)
goto send_comp;
ibp->rvp.n_rnr_naks++;
/*
* Note: we don't need the s_lock held since the BUSY flag
* makes this single threaded.
*/
if (sqp->s_rnr_retry == 0) {
send_status = IB_WC_RNR_RETRY_EXC_ERR;
goto serr;
}
if (sqp->s_rnr_retry_cnt < 7)
sqp->s_rnr_retry--;
spin_lock_irqsave(&sqp->s_lock, flags);
if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
goto clr_busy;
to = ib_hfi1_rnr_table[qp->r_min_rnr_timer];
hfi1_add_rnr_timer(sqp, to);
goto clr_busy;
op_err:
send_status = IB_WC_REM_OP_ERR;
wc.status = IB_WC_LOC_QP_OP_ERR;
goto err;
inv_err:
send_status = IB_WC_REM_INV_REQ_ERR;
wc.status = IB_WC_LOC_QP_OP_ERR;
goto err;
acc_err:
send_status = IB_WC_REM_ACCESS_ERR;
wc.status = IB_WC_LOC_PROT_ERR;
err:
/* responder goes to error state */
hfi1_rc_error(qp, wc.status);
serr:
spin_lock_irqsave(&sqp->s_lock, flags);
hfi1_send_complete(sqp, wqe, send_status);
if (sqp->ibqp.qp_type == IB_QPT_RC) {
int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
sqp->s_flags &= ~RVT_S_BUSY;
spin_unlock_irqrestore(&sqp->s_lock, flags);
if (lastwqe) {
struct ib_event ev;
ev.device = sqp->ibqp.device;
ev.element.qp = &sqp->ibqp;
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
}
goto done;
}
clr_busy:
sqp->s_flags &= ~RVT_S_BUSY;
unlock:
spin_unlock_irqrestore(&sqp->s_lock, flags);
done:
rcu_read_unlock();
}
/**
* hfi1_make_grh - construct a GRH header
* @ibp: a pointer to the IB port
* @hdr: a pointer to the GRH header being constructed
* @grh: the global route address to send to
* @hwords: the number of 32 bit words of header being sent
* @nwords: the number of 32 bit words of data being sent
*
* Return the size of the header in 32 bit words.
*/
u32 hfi1_make_grh(struct hfi1_ibport *ibp, struct ib_grh *hdr,
struct ib_global_route *grh, u32 hwords, u32 nwords)
{
hdr->version_tclass_flow =
cpu_to_be32((IB_GRH_VERSION << IB_GRH_VERSION_SHIFT) |
(grh->traffic_class << IB_GRH_TCLASS_SHIFT) |
(grh->flow_label << IB_GRH_FLOW_SHIFT));
hdr->paylen = cpu_to_be16((hwords - 2 + nwords + SIZE_OF_CRC) << 2);
/* next_hdr is defined by C8-7 in ch. 8.4.1 */
hdr->next_hdr = IB_GRH_NEXT_HDR;
hdr->hop_limit = grh->hop_limit;
/* The SGID is 32-bit aligned. */
hdr->sgid.global.subnet_prefix = ibp->rvp.gid_prefix;
hdr->sgid.global.interface_id =
grh->sgid_index && grh->sgid_index < ARRAY_SIZE(ibp->guids) ?
ibp->guids[grh->sgid_index - 1] :
cpu_to_be64(ppd_from_ibp(ibp)->guid);
hdr->dgid = grh->dgid;
/* GRH header size in 32-bit words. */
return sizeof(struct ib_grh) / sizeof(u32);
}
#define BTH2_OFFSET (offsetof(struct hfi1_sdma_header, hdr.u.oth.bth[2]) / 4)
/**
* build_ahg - create ahg in s_ahg
* @qp: a pointer to QP
* @npsn: the next PSN for the request/response
*
* This routine handles the AHG by allocating an ahg entry and causing the
* copy of the first middle.
*
* Subsequent middles use the copied entry, editing the
* PSN with 1 or 2 edits.
*/
static inline void build_ahg(struct rvt_qp *qp, u32 npsn)
{
struct hfi1_qp_priv *priv = qp->priv;
if (unlikely(qp->s_flags & RVT_S_AHG_CLEAR))
clear_ahg(qp);
if (!(qp->s_flags & RVT_S_AHG_VALID)) {
/* first middle that needs copy */
if (qp->s_ahgidx < 0)
qp->s_ahgidx = sdma_ahg_alloc(priv->s_sde);
if (qp->s_ahgidx >= 0) {
qp->s_ahgpsn = npsn;
priv->s_ahg->tx_flags |= SDMA_TXREQ_F_AHG_COPY;
/* save to protect a change in another thread */
priv->s_ahg->ahgidx = qp->s_ahgidx;
qp->s_flags |= RVT_S_AHG_VALID;
}
} else {
/* subsequent middle after valid */
if (qp->s_ahgidx >= 0) {
priv->s_ahg->tx_flags |= SDMA_TXREQ_F_USE_AHG;
priv->s_ahg->ahgidx = qp->s_ahgidx;
priv->s_ahg->ahgcount++;
priv->s_ahg->ahgdesc[0] =
sdma_build_ahg_descriptor(
(__force u16)cpu_to_be16((u16)npsn),
BTH2_OFFSET,
16,
16);
if ((npsn & 0xffff0000) !=
(qp->s_ahgpsn & 0xffff0000)) {
priv->s_ahg->ahgcount++;
priv->s_ahg->ahgdesc[1] =
sdma_build_ahg_descriptor(
(__force u16)cpu_to_be16(
(u16)(npsn >> 16)),
BTH2_OFFSET,
0,
16);
}
}
}
}
void hfi1_make_ruc_header(struct rvt_qp *qp, struct ib_other_headers *ohdr,
u32 bth0, u32 bth2, int middle,
struct hfi1_pkt_state *ps)
{
struct hfi1_qp_priv *priv = qp->priv;
struct hfi1_ibport *ibp = ps->ibp;
u16 lrh0;
u32 nwords;
u32 extra_bytes;
u32 bth1;
/* Construct the header. */
extra_bytes = -qp->s_cur_size & 3;
nwords = (qp->s_cur_size + extra_bytes) >> 2;
lrh0 = HFI1_LRH_BTH;
if (unlikely(qp->remote_ah_attr.ah_flags & IB_AH_GRH)) {
qp->s_hdrwords += hfi1_make_grh(ibp,
&ps->s_txreq->phdr.hdr.u.l.grh,
&qp->remote_ah_attr.grh,
qp->s_hdrwords, nwords);
lrh0 = HFI1_LRH_GRH;
middle = 0;
}
lrh0 |= (priv->s_sc & 0xf) << 12 | (qp->remote_ah_attr.sl & 0xf) << 4;
/*
* reset s_ahg/AHG fields
*
* This insures that the ahgentry/ahgcount
* are at a non-AHG default to protect
* build_verbs_tx_desc() from using
* an include ahgidx.
*
* build_ahg() will modify as appropriate
* to use the AHG feature.
*/
priv->s_ahg->tx_flags = 0;
priv->s_ahg->ahgcount = 0;
priv->s_ahg->ahgidx = 0;
if (qp->s_mig_state == IB_MIG_MIGRATED)
bth0 |= IB_BTH_MIG_REQ;
else
middle = 0;
if (middle)
build_ahg(qp, bth2);
else
qp->s_flags &= ~RVT_S_AHG_VALID;
ps->s_txreq->phdr.hdr.lrh[0] = cpu_to_be16(lrh0);
ps->s_txreq->phdr.hdr.lrh[1] = cpu_to_be16(qp->remote_ah_attr.dlid);
ps->s_txreq->phdr.hdr.lrh[2] =
cpu_to_be16(qp->s_hdrwords + nwords + SIZE_OF_CRC);
ps->s_txreq->phdr.hdr.lrh[3] = cpu_to_be16(ppd_from_ibp(ibp)->lid |
qp->remote_ah_attr.src_path_bits);
bth0 |= hfi1_get_pkey(ibp, qp->s_pkey_index);
bth0 |= extra_bytes << 20;
ohdr->bth[0] = cpu_to_be32(bth0);
bth1 = qp->remote_qpn;
if (qp->s_flags & RVT_S_ECN) {
qp->s_flags &= ~RVT_S_ECN;
/* we recently received a FECN, so return a BECN */
bth1 |= (HFI1_BECN_MASK << HFI1_BECN_SHIFT);
}
ohdr->bth[1] = cpu_to_be32(bth1);
ohdr->bth[2] = cpu_to_be32(bth2);
}
/* when sending, force a reschedule every one of these periods */
#define SEND_RESCHED_TIMEOUT (5 * HZ) /* 5s in jiffies */
void hfi1_do_send_from_rvt(struct rvt_qp *qp)
{
hfi1_do_send(qp, false);
}
void _hfi1_do_send(struct work_struct *work)
{
struct iowait *wait = container_of(work, struct iowait, iowork);
struct rvt_qp *qp = iowait_to_qp(wait);
hfi1_do_send(qp, true);
}
/**
* hfi1_do_send - perform a send on a QP
* @work: contains a pointer to the QP
* @in_thread: true if in a workqueue thread
*
* Process entries in the send work queue until credit or queue is
* exhausted. Only allow one CPU to send a packet per QP.
* Otherwise, two threads could send packets out of order.
*/
void hfi1_do_send(struct rvt_qp *qp, bool in_thread)
{
struct hfi1_pkt_state ps;
struct hfi1_qp_priv *priv = qp->priv;
int (*make_req)(struct rvt_qp *qp, struct hfi1_pkt_state *ps);
unsigned long timeout;
unsigned long timeout_int;
int cpu;
ps.dev = to_idev(qp->ibqp.device);
ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
ps.ppd = ppd_from_ibp(ps.ibp);
switch (qp->ibqp.qp_type) {
case IB_QPT_RC:
if (!loopback && ((qp->remote_ah_attr.dlid & ~((1 << ps.ppd->lmc
) - 1)) ==
ps.ppd->lid)) {
ruc_loopback(qp);
return;
}
make_req = hfi1_make_rc_req;
timeout_int = (qp->timeout_jiffies);
break;
case IB_QPT_UC:
if (!loopback && ((qp->remote_ah_attr.dlid & ~((1 << ps.ppd->lmc
) - 1)) ==
ps.ppd->lid)) {
ruc_loopback(qp);
return;
}
make_req = hfi1_make_uc_req;
timeout_int = SEND_RESCHED_TIMEOUT;
break;
default:
make_req = hfi1_make_ud_req;
timeout_int = SEND_RESCHED_TIMEOUT;
}
spin_lock_irqsave(&qp->s_lock, ps.flags);
/* Return if we are already busy processing a work request. */
if (!hfi1_send_ok(qp)) {
spin_unlock_irqrestore(&qp->s_lock, ps.flags);
return;
}
qp->s_flags |= RVT_S_BUSY;
timeout = jiffies + (timeout_int) / 8;
cpu = priv->s_sde ? priv->s_sde->cpu :
cpumask_first(cpumask_of_node(ps.ppd->dd->node));
/* insure a pre-built packet is handled */
ps.s_txreq = get_waiting_verbs_txreq(qp);
do {
/* Check for a constructed packet to be sent. */
if (qp->s_hdrwords != 0) {
spin_unlock_irqrestore(&qp->s_lock, ps.flags);
/*
* If the packet cannot be sent now, return and
* the send engine will be woken up later.
*/
if (hfi1_verbs_send(qp, &ps))
return;
/* Record that s_ahg is empty. */
qp->s_hdrwords = 0;
/* allow other tasks to run */
if (unlikely(time_after(jiffies, timeout))) {
if (!in_thread ||
workqueue_congested(
cpu,
ps.ppd->hfi1_wq)) {
spin_lock_irqsave(
&qp->s_lock,
ps.flags);
qp->s_flags &= ~RVT_S_BUSY;
hfi1_schedule_send(qp);
spin_unlock_irqrestore(
&qp->s_lock,
ps.flags);
this_cpu_inc(
*ps.ppd->dd->send_schedule);
return;
}
cond_resched();
this_cpu_inc(
*ps.ppd->dd->send_schedule);
timeout = jiffies + (timeout_int) / 8;
}
spin_lock_irqsave(&qp->s_lock, ps.flags);
}
} while (make_req(qp, &ps));
spin_unlock_irqrestore(&qp->s_lock, ps.flags);
}
/*
* This should be called with s_lock held.
*/
void hfi1_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
enum ib_wc_status status)
{
u32 old_last, last;
unsigned i;
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
return;
last = qp->s_last;
old_last = last;
if (++last >= qp->s_size)
last = 0;
qp->s_last = last;
/* See post_send() */
barrier();
for (i = 0; i < wqe->wr.num_sge; i++) {
struct rvt_sge *sge = &wqe->sg_list[i];
rvt_put_mr(sge->mr);
}
if (qp->ibqp.qp_type == IB_QPT_UD ||
qp->ibqp.qp_type == IB_QPT_SMI ||
qp->ibqp.qp_type == IB_QPT_GSI)
atomic_dec(&ibah_to_rvtah(wqe->ud_wr.ah)->refcount);
/* See ch. 11.2.4.1 and 10.7.3.1 */
if (!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) ||
(wqe->wr.send_flags & IB_SEND_SIGNALED) ||
status != IB_WC_SUCCESS) {
struct ib_wc wc;
memset(&wc, 0, sizeof(wc));
wc.wr_id = wqe->wr.wr_id;
wc.status = status;
wc.opcode = ib_hfi1_wc_opcode[wqe->wr.opcode];
wc.qp = &qp->ibqp;
if (status == IB_WC_SUCCESS)
wc.byte_len = wqe->length;
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.send_cq), &wc,
status != IB_WC_SUCCESS);
}
if (qp->s_acked == old_last)
qp->s_acked = last;
if (qp->s_cur == old_last)
qp->s_cur = last;
if (qp->s_tail == old_last)
qp->s_tail = last;
if (qp->state == IB_QPS_SQD && last == qp->s_cur)
qp->s_draining = 0;
}