| /* |
| * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| #include "xfs.h" |
| #include <linux/stddef.h> |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/pagemap.h> |
| #include <linux/init.h> |
| #include <linux/vmalloc.h> |
| #include <linux/bio.h> |
| #include <linux/sysctl.h> |
| #include <linux/proc_fs.h> |
| #include <linux/workqueue.h> |
| #include <linux/percpu.h> |
| #include <linux/blkdev.h> |
| #include <linux/hash.h> |
| #include <linux/kthread.h> |
| #include <linux/migrate.h> |
| #include <linux/backing-dev.h> |
| #include <linux/freezer.h> |
| |
| static kmem_zone_t *xfs_buf_zone; |
| STATIC int xfsbufd(void *); |
| STATIC int xfsbufd_wakeup(int, gfp_t); |
| STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int); |
| static struct shrinker xfs_buf_shake = { |
| .shrink = xfsbufd_wakeup, |
| .seeks = DEFAULT_SEEKS, |
| }; |
| |
| static struct workqueue_struct *xfslogd_workqueue; |
| struct workqueue_struct *xfsdatad_workqueue; |
| |
| #ifdef XFS_BUF_TRACE |
| void |
| xfs_buf_trace( |
| xfs_buf_t *bp, |
| char *id, |
| void *data, |
| void *ra) |
| { |
| ktrace_enter(xfs_buf_trace_buf, |
| bp, id, |
| (void *)(unsigned long)bp->b_flags, |
| (void *)(unsigned long)bp->b_hold.counter, |
| (void *)(unsigned long)bp->b_sema.count.counter, |
| (void *)current, |
| data, ra, |
| (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff), |
| (void *)(unsigned long)(bp->b_file_offset & 0xffffffff), |
| (void *)(unsigned long)bp->b_buffer_length, |
| NULL, NULL, NULL, NULL, NULL); |
| } |
| ktrace_t *xfs_buf_trace_buf; |
| #define XFS_BUF_TRACE_SIZE 4096 |
| #define XB_TRACE(bp, id, data) \ |
| xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0)) |
| #else |
| #define XB_TRACE(bp, id, data) do { } while (0) |
| #endif |
| |
| #ifdef XFS_BUF_LOCK_TRACKING |
| # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) |
| # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) |
| # define XB_GET_OWNER(bp) ((bp)->b_last_holder) |
| #else |
| # define XB_SET_OWNER(bp) do { } while (0) |
| # define XB_CLEAR_OWNER(bp) do { } while (0) |
| # define XB_GET_OWNER(bp) do { } while (0) |
| #endif |
| |
| #define xb_to_gfp(flags) \ |
| ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \ |
| ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN) |
| |
| #define xb_to_km(flags) \ |
| (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP) |
| |
| #define xfs_buf_allocate(flags) \ |
| kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags)) |
| #define xfs_buf_deallocate(bp) \ |
| kmem_zone_free(xfs_buf_zone, (bp)); |
| |
| /* |
| * Page Region interfaces. |
| * |
| * For pages in filesystems where the blocksize is smaller than the |
| * pagesize, we use the page->private field (long) to hold a bitmap |
| * of uptodate regions within the page. |
| * |
| * Each such region is "bytes per page / bits per long" bytes long. |
| * |
| * NBPPR == number-of-bytes-per-page-region |
| * BTOPR == bytes-to-page-region (rounded up) |
| * BTOPRT == bytes-to-page-region-truncated (rounded down) |
| */ |
| #if (BITS_PER_LONG == 32) |
| #define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */ |
| #elif (BITS_PER_LONG == 64) |
| #define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */ |
| #else |
| #error BITS_PER_LONG must be 32 or 64 |
| #endif |
| #define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG) |
| #define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT) |
| #define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT)) |
| |
| STATIC unsigned long |
| page_region_mask( |
| size_t offset, |
| size_t length) |
| { |
| unsigned long mask; |
| int first, final; |
| |
| first = BTOPR(offset); |
| final = BTOPRT(offset + length - 1); |
| first = min(first, final); |
| |
| mask = ~0UL; |
| mask <<= BITS_PER_LONG - (final - first); |
| mask >>= BITS_PER_LONG - (final); |
| |
| ASSERT(offset + length <= PAGE_CACHE_SIZE); |
| ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0); |
| |
| return mask; |
| } |
| |
| STATIC_INLINE void |
| set_page_region( |
| struct page *page, |
| size_t offset, |
| size_t length) |
| { |
| set_page_private(page, |
| page_private(page) | page_region_mask(offset, length)); |
| if (page_private(page) == ~0UL) |
| SetPageUptodate(page); |
| } |
| |
| STATIC_INLINE int |
| test_page_region( |
| struct page *page, |
| size_t offset, |
| size_t length) |
| { |
| unsigned long mask = page_region_mask(offset, length); |
| |
| return (mask && (page_private(page) & mask) == mask); |
| } |
| |
| /* |
| * Mapping of multi-page buffers into contiguous virtual space |
| */ |
| |
| typedef struct a_list { |
| void *vm_addr; |
| struct a_list *next; |
| } a_list_t; |
| |
| static a_list_t *as_free_head; |
| static int as_list_len; |
| static DEFINE_SPINLOCK(as_lock); |
| |
| /* |
| * Try to batch vunmaps because they are costly. |
| */ |
| STATIC void |
| free_address( |
| void *addr) |
| { |
| a_list_t *aentry; |
| |
| #ifdef CONFIG_XEN |
| /* |
| * Xen needs to be able to make sure it can get an exclusive |
| * RO mapping of pages it wants to turn into a pagetable. If |
| * a newly allocated page is also still being vmap()ed by xfs, |
| * it will cause pagetable construction to fail. This is a |
| * quick workaround to always eagerly unmap pages so that Xen |
| * is happy. |
| */ |
| vunmap(addr); |
| return; |
| #endif |
| |
| aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT); |
| if (likely(aentry)) { |
| spin_lock(&as_lock); |
| aentry->next = as_free_head; |
| aentry->vm_addr = addr; |
| as_free_head = aentry; |
| as_list_len++; |
| spin_unlock(&as_lock); |
| } else { |
| vunmap(addr); |
| } |
| } |
| |
| STATIC void |
| purge_addresses(void) |
| { |
| a_list_t *aentry, *old; |
| |
| if (as_free_head == NULL) |
| return; |
| |
| spin_lock(&as_lock); |
| aentry = as_free_head; |
| as_free_head = NULL; |
| as_list_len = 0; |
| spin_unlock(&as_lock); |
| |
| while ((old = aentry) != NULL) { |
| vunmap(aentry->vm_addr); |
| aentry = aentry->next; |
| kfree(old); |
| } |
| } |
| |
| /* |
| * Internal xfs_buf_t object manipulation |
| */ |
| |
| STATIC void |
| _xfs_buf_initialize( |
| xfs_buf_t *bp, |
| xfs_buftarg_t *target, |
| xfs_off_t range_base, |
| size_t range_length, |
| xfs_buf_flags_t flags) |
| { |
| /* |
| * We don't want certain flags to appear in b_flags. |
| */ |
| flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD); |
| |
| memset(bp, 0, sizeof(xfs_buf_t)); |
| atomic_set(&bp->b_hold, 1); |
| init_MUTEX_LOCKED(&bp->b_iodonesema); |
| INIT_LIST_HEAD(&bp->b_list); |
| INIT_LIST_HEAD(&bp->b_hash_list); |
| init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */ |
| XB_SET_OWNER(bp); |
| bp->b_target = target; |
| bp->b_file_offset = range_base; |
| /* |
| * Set buffer_length and count_desired to the same value initially. |
| * I/O routines should use count_desired, which will be the same in |
| * most cases but may be reset (e.g. XFS recovery). |
| */ |
| bp->b_buffer_length = bp->b_count_desired = range_length; |
| bp->b_flags = flags; |
| bp->b_bn = XFS_BUF_DADDR_NULL; |
| atomic_set(&bp->b_pin_count, 0); |
| init_waitqueue_head(&bp->b_waiters); |
| |
| XFS_STATS_INC(xb_create); |
| XB_TRACE(bp, "initialize", target); |
| } |
| |
| /* |
| * Allocate a page array capable of holding a specified number |
| * of pages, and point the page buf at it. |
| */ |
| STATIC int |
| _xfs_buf_get_pages( |
| xfs_buf_t *bp, |
| int page_count, |
| xfs_buf_flags_t flags) |
| { |
| /* Make sure that we have a page list */ |
| if (bp->b_pages == NULL) { |
| bp->b_offset = xfs_buf_poff(bp->b_file_offset); |
| bp->b_page_count = page_count; |
| if (page_count <= XB_PAGES) { |
| bp->b_pages = bp->b_page_array; |
| } else { |
| bp->b_pages = kmem_alloc(sizeof(struct page *) * |
| page_count, xb_to_km(flags)); |
| if (bp->b_pages == NULL) |
| return -ENOMEM; |
| } |
| memset(bp->b_pages, 0, sizeof(struct page *) * page_count); |
| } |
| return 0; |
| } |
| |
| /* |
| * Frees b_pages if it was allocated. |
| */ |
| STATIC void |
| _xfs_buf_free_pages( |
| xfs_buf_t *bp) |
| { |
| if (bp->b_pages != bp->b_page_array) { |
| kmem_free(bp->b_pages, |
| bp->b_page_count * sizeof(struct page *)); |
| } |
| } |
| |
| /* |
| * Releases the specified buffer. |
| * |
| * The modification state of any associated pages is left unchanged. |
| * The buffer most not be on any hash - use xfs_buf_rele instead for |
| * hashed and refcounted buffers |
| */ |
| void |
| xfs_buf_free( |
| xfs_buf_t *bp) |
| { |
| XB_TRACE(bp, "free", 0); |
| |
| ASSERT(list_empty(&bp->b_hash_list)); |
| |
| if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) { |
| uint i; |
| |
| if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1)) |
| free_address(bp->b_addr - bp->b_offset); |
| |
| for (i = 0; i < bp->b_page_count; i++) { |
| struct page *page = bp->b_pages[i]; |
| |
| if (bp->b_flags & _XBF_PAGE_CACHE) |
| ASSERT(!PagePrivate(page)); |
| page_cache_release(page); |
| } |
| _xfs_buf_free_pages(bp); |
| } |
| |
| xfs_buf_deallocate(bp); |
| } |
| |
| /* |
| * Finds all pages for buffer in question and builds it's page list. |
| */ |
| STATIC int |
| _xfs_buf_lookup_pages( |
| xfs_buf_t *bp, |
| uint flags) |
| { |
| struct address_space *mapping = bp->b_target->bt_mapping; |
| size_t blocksize = bp->b_target->bt_bsize; |
| size_t size = bp->b_count_desired; |
| size_t nbytes, offset; |
| gfp_t gfp_mask = xb_to_gfp(flags); |
| unsigned short page_count, i; |
| pgoff_t first; |
| xfs_off_t end; |
| int error; |
| |
| end = bp->b_file_offset + bp->b_buffer_length; |
| page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset); |
| |
| error = _xfs_buf_get_pages(bp, page_count, flags); |
| if (unlikely(error)) |
| return error; |
| bp->b_flags |= _XBF_PAGE_CACHE; |
| |
| offset = bp->b_offset; |
| first = bp->b_file_offset >> PAGE_CACHE_SHIFT; |
| |
| for (i = 0; i < bp->b_page_count; i++) { |
| struct page *page; |
| uint retries = 0; |
| |
| retry: |
| page = find_or_create_page(mapping, first + i, gfp_mask); |
| if (unlikely(page == NULL)) { |
| if (flags & XBF_READ_AHEAD) { |
| bp->b_page_count = i; |
| for (i = 0; i < bp->b_page_count; i++) |
| unlock_page(bp->b_pages[i]); |
| return -ENOMEM; |
| } |
| |
| /* |
| * This could deadlock. |
| * |
| * But until all the XFS lowlevel code is revamped to |
| * handle buffer allocation failures we can't do much. |
| */ |
| if (!(++retries % 100)) |
| printk(KERN_ERR |
| "XFS: possible memory allocation " |
| "deadlock in %s (mode:0x%x)\n", |
| __FUNCTION__, gfp_mask); |
| |
| XFS_STATS_INC(xb_page_retries); |
| xfsbufd_wakeup(0, gfp_mask); |
| congestion_wait(WRITE, HZ/50); |
| goto retry; |
| } |
| |
| XFS_STATS_INC(xb_page_found); |
| |
| nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset); |
| size -= nbytes; |
| |
| ASSERT(!PagePrivate(page)); |
| if (!PageUptodate(page)) { |
| page_count--; |
| if (blocksize >= PAGE_CACHE_SIZE) { |
| if (flags & XBF_READ) |
| bp->b_locked = 1; |
| } else if (!PagePrivate(page)) { |
| if (test_page_region(page, offset, nbytes)) |
| page_count++; |
| } |
| } |
| |
| bp->b_pages[i] = page; |
| offset = 0; |
| } |
| |
| if (!bp->b_locked) { |
| for (i = 0; i < bp->b_page_count; i++) |
| unlock_page(bp->b_pages[i]); |
| } |
| |
| if (page_count == bp->b_page_count) |
| bp->b_flags |= XBF_DONE; |
| |
| XB_TRACE(bp, "lookup_pages", (long)page_count); |
| return error; |
| } |
| |
| /* |
| * Map buffer into kernel address-space if nessecary. |
| */ |
| STATIC int |
| _xfs_buf_map_pages( |
| xfs_buf_t *bp, |
| uint flags) |
| { |
| /* A single page buffer is always mappable */ |
| if (bp->b_page_count == 1) { |
| bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; |
| bp->b_flags |= XBF_MAPPED; |
| } else if (flags & XBF_MAPPED) { |
| if (as_list_len > 64) |
| purge_addresses(); |
| bp->b_addr = vmap(bp->b_pages, bp->b_page_count, |
| VM_MAP, PAGE_KERNEL); |
| if (unlikely(bp->b_addr == NULL)) |
| return -ENOMEM; |
| bp->b_addr += bp->b_offset; |
| bp->b_flags |= XBF_MAPPED; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Finding and Reading Buffers |
| */ |
| |
| /* |
| * Look up, and creates if absent, a lockable buffer for |
| * a given range of an inode. The buffer is returned |
| * locked. If other overlapping buffers exist, they are |
| * released before the new buffer is created and locked, |
| * which may imply that this call will block until those buffers |
| * are unlocked. No I/O is implied by this call. |
| */ |
| xfs_buf_t * |
| _xfs_buf_find( |
| xfs_buftarg_t *btp, /* block device target */ |
| xfs_off_t ioff, /* starting offset of range */ |
| size_t isize, /* length of range */ |
| xfs_buf_flags_t flags, |
| xfs_buf_t *new_bp) |
| { |
| xfs_off_t range_base; |
| size_t range_length; |
| xfs_bufhash_t *hash; |
| xfs_buf_t *bp, *n; |
| |
| range_base = (ioff << BBSHIFT); |
| range_length = (isize << BBSHIFT); |
| |
| /* Check for IOs smaller than the sector size / not sector aligned */ |
| ASSERT(!(range_length < (1 << btp->bt_sshift))); |
| ASSERT(!(range_base & (xfs_off_t)btp->bt_smask)); |
| |
| hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)]; |
| |
| spin_lock(&hash->bh_lock); |
| |
| list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) { |
| ASSERT(btp == bp->b_target); |
| if (bp->b_file_offset == range_base && |
| bp->b_buffer_length == range_length) { |
| /* |
| * If we look at something, bring it to the |
| * front of the list for next time. |
| */ |
| atomic_inc(&bp->b_hold); |
| list_move(&bp->b_hash_list, &hash->bh_list); |
| goto found; |
| } |
| } |
| |
| /* No match found */ |
| if (new_bp) { |
| _xfs_buf_initialize(new_bp, btp, range_base, |
| range_length, flags); |
| new_bp->b_hash = hash; |
| list_add(&new_bp->b_hash_list, &hash->bh_list); |
| } else { |
| XFS_STATS_INC(xb_miss_locked); |
| } |
| |
| spin_unlock(&hash->bh_lock); |
| return new_bp; |
| |
| found: |
| spin_unlock(&hash->bh_lock); |
| |
| /* Attempt to get the semaphore without sleeping, |
| * if this does not work then we need to drop the |
| * spinlock and do a hard attempt on the semaphore. |
| */ |
| if (down_trylock(&bp->b_sema)) { |
| if (!(flags & XBF_TRYLOCK)) { |
| /* wait for buffer ownership */ |
| XB_TRACE(bp, "get_lock", 0); |
| xfs_buf_lock(bp); |
| XFS_STATS_INC(xb_get_locked_waited); |
| } else { |
| /* We asked for a trylock and failed, no need |
| * to look at file offset and length here, we |
| * know that this buffer at least overlaps our |
| * buffer and is locked, therefore our buffer |
| * either does not exist, or is this buffer. |
| */ |
| xfs_buf_rele(bp); |
| XFS_STATS_INC(xb_busy_locked); |
| return NULL; |
| } |
| } else { |
| /* trylock worked */ |
| XB_SET_OWNER(bp); |
| } |
| |
| if (bp->b_flags & XBF_STALE) { |
| ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); |
| bp->b_flags &= XBF_MAPPED; |
| } |
| XB_TRACE(bp, "got_lock", 0); |
| XFS_STATS_INC(xb_get_locked); |
| return bp; |
| } |
| |
| /* |
| * Assembles a buffer covering the specified range. |
| * Storage in memory for all portions of the buffer will be allocated, |
| * although backing storage may not be. |
| */ |
| xfs_buf_t * |
| xfs_buf_get_flags( |
| xfs_buftarg_t *target,/* target for buffer */ |
| xfs_off_t ioff, /* starting offset of range */ |
| size_t isize, /* length of range */ |
| xfs_buf_flags_t flags) |
| { |
| xfs_buf_t *bp, *new_bp; |
| int error = 0, i; |
| |
| new_bp = xfs_buf_allocate(flags); |
| if (unlikely(!new_bp)) |
| return NULL; |
| |
| bp = _xfs_buf_find(target, ioff, isize, flags, new_bp); |
| if (bp == new_bp) { |
| error = _xfs_buf_lookup_pages(bp, flags); |
| if (error) |
| goto no_buffer; |
| } else { |
| xfs_buf_deallocate(new_bp); |
| if (unlikely(bp == NULL)) |
| return NULL; |
| } |
| |
| for (i = 0; i < bp->b_page_count; i++) |
| mark_page_accessed(bp->b_pages[i]); |
| |
| if (!(bp->b_flags & XBF_MAPPED)) { |
| error = _xfs_buf_map_pages(bp, flags); |
| if (unlikely(error)) { |
| printk(KERN_WARNING "%s: failed to map pages\n", |
| __FUNCTION__); |
| goto no_buffer; |
| } |
| } |
| |
| XFS_STATS_INC(xb_get); |
| |
| /* |
| * Always fill in the block number now, the mapped cases can do |
| * their own overlay of this later. |
| */ |
| bp->b_bn = ioff; |
| bp->b_count_desired = bp->b_buffer_length; |
| |
| XB_TRACE(bp, "get", (unsigned long)flags); |
| return bp; |
| |
| no_buffer: |
| if (flags & (XBF_LOCK | XBF_TRYLOCK)) |
| xfs_buf_unlock(bp); |
| xfs_buf_rele(bp); |
| return NULL; |
| } |
| |
| xfs_buf_t * |
| xfs_buf_read_flags( |
| xfs_buftarg_t *target, |
| xfs_off_t ioff, |
| size_t isize, |
| xfs_buf_flags_t flags) |
| { |
| xfs_buf_t *bp; |
| |
| flags |= XBF_READ; |
| |
| bp = xfs_buf_get_flags(target, ioff, isize, flags); |
| if (bp) { |
| if (!XFS_BUF_ISDONE(bp)) { |
| XB_TRACE(bp, "read", (unsigned long)flags); |
| XFS_STATS_INC(xb_get_read); |
| xfs_buf_iostart(bp, flags); |
| } else if (flags & XBF_ASYNC) { |
| XB_TRACE(bp, "read_async", (unsigned long)flags); |
| /* |
| * Read ahead call which is already satisfied, |
| * drop the buffer |
| */ |
| goto no_buffer; |
| } else { |
| XB_TRACE(bp, "read_done", (unsigned long)flags); |
| /* We do not want read in the flags */ |
| bp->b_flags &= ~XBF_READ; |
| } |
| } |
| |
| return bp; |
| |
| no_buffer: |
| if (flags & (XBF_LOCK | XBF_TRYLOCK)) |
| xfs_buf_unlock(bp); |
| xfs_buf_rele(bp); |
| return NULL; |
| } |
| |
| /* |
| * If we are not low on memory then do the readahead in a deadlock |
| * safe manner. |
| */ |
| void |
| xfs_buf_readahead( |
| xfs_buftarg_t *target, |
| xfs_off_t ioff, |
| size_t isize, |
| xfs_buf_flags_t flags) |
| { |
| struct backing_dev_info *bdi; |
| |
| bdi = target->bt_mapping->backing_dev_info; |
| if (bdi_read_congested(bdi)) |
| return; |
| |
| flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD); |
| xfs_buf_read_flags(target, ioff, isize, flags); |
| } |
| |
| xfs_buf_t * |
| xfs_buf_get_empty( |
| size_t len, |
| xfs_buftarg_t *target) |
| { |
| xfs_buf_t *bp; |
| |
| bp = xfs_buf_allocate(0); |
| if (bp) |
| _xfs_buf_initialize(bp, target, 0, len, 0); |
| return bp; |
| } |
| |
| static inline struct page * |
| mem_to_page( |
| void *addr) |
| { |
| if (((unsigned long)addr < VMALLOC_START) || |
| ((unsigned long)addr >= VMALLOC_END)) { |
| return virt_to_page(addr); |
| } else { |
| return vmalloc_to_page(addr); |
| } |
| } |
| |
| int |
| xfs_buf_associate_memory( |
| xfs_buf_t *bp, |
| void *mem, |
| size_t len) |
| { |
| int rval; |
| int i = 0; |
| unsigned long pageaddr; |
| unsigned long offset; |
| size_t buflen; |
| int page_count; |
| |
| pageaddr = (unsigned long)mem & PAGE_CACHE_MASK; |
| offset = (unsigned long)mem - pageaddr; |
| buflen = PAGE_CACHE_ALIGN(len + offset); |
| page_count = buflen >> PAGE_CACHE_SHIFT; |
| |
| /* Free any previous set of page pointers */ |
| if (bp->b_pages) |
| _xfs_buf_free_pages(bp); |
| |
| bp->b_pages = NULL; |
| bp->b_addr = mem; |
| |
| rval = _xfs_buf_get_pages(bp, page_count, 0); |
| if (rval) |
| return rval; |
| |
| bp->b_offset = offset; |
| |
| for (i = 0; i < bp->b_page_count; i++) { |
| bp->b_pages[i] = mem_to_page((void *)pageaddr); |
| pageaddr += PAGE_CACHE_SIZE; |
| } |
| bp->b_locked = 0; |
| |
| bp->b_count_desired = len; |
| bp->b_buffer_length = buflen; |
| bp->b_flags |= XBF_MAPPED; |
| |
| return 0; |
| } |
| |
| xfs_buf_t * |
| xfs_buf_get_noaddr( |
| size_t len, |
| xfs_buftarg_t *target) |
| { |
| unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT; |
| int error, i; |
| xfs_buf_t *bp; |
| |
| bp = xfs_buf_allocate(0); |
| if (unlikely(bp == NULL)) |
| goto fail; |
| _xfs_buf_initialize(bp, target, 0, len, 0); |
| |
| error = _xfs_buf_get_pages(bp, page_count, 0); |
| if (error) |
| goto fail_free_buf; |
| |
| for (i = 0; i < page_count; i++) { |
| bp->b_pages[i] = alloc_page(GFP_KERNEL); |
| if (!bp->b_pages[i]) |
| goto fail_free_mem; |
| } |
| bp->b_flags |= _XBF_PAGES; |
| |
| error = _xfs_buf_map_pages(bp, XBF_MAPPED); |
| if (unlikely(error)) { |
| printk(KERN_WARNING "%s: failed to map pages\n", |
| __FUNCTION__); |
| goto fail_free_mem; |
| } |
| |
| xfs_buf_unlock(bp); |
| |
| XB_TRACE(bp, "no_daddr", len); |
| return bp; |
| |
| fail_free_mem: |
| while (--i >= 0) |
| __free_page(bp->b_pages[i]); |
| _xfs_buf_free_pages(bp); |
| fail_free_buf: |
| xfs_buf_deallocate(bp); |
| fail: |
| return NULL; |
| } |
| |
| /* |
| * Increment reference count on buffer, to hold the buffer concurrently |
| * with another thread which may release (free) the buffer asynchronously. |
| * Must hold the buffer already to call this function. |
| */ |
| void |
| xfs_buf_hold( |
| xfs_buf_t *bp) |
| { |
| atomic_inc(&bp->b_hold); |
| XB_TRACE(bp, "hold", 0); |
| } |
| |
| /* |
| * Releases a hold on the specified buffer. If the |
| * the hold count is 1, calls xfs_buf_free. |
| */ |
| void |
| xfs_buf_rele( |
| xfs_buf_t *bp) |
| { |
| xfs_bufhash_t *hash = bp->b_hash; |
| |
| XB_TRACE(bp, "rele", bp->b_relse); |
| |
| if (unlikely(!hash)) { |
| ASSERT(!bp->b_relse); |
| if (atomic_dec_and_test(&bp->b_hold)) |
| xfs_buf_free(bp); |
| return; |
| } |
| |
| if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) { |
| if (bp->b_relse) { |
| atomic_inc(&bp->b_hold); |
| spin_unlock(&hash->bh_lock); |
| (*(bp->b_relse)) (bp); |
| } else if (bp->b_flags & XBF_FS_MANAGED) { |
| spin_unlock(&hash->bh_lock); |
| } else { |
| ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q))); |
| list_del_init(&bp->b_hash_list); |
| spin_unlock(&hash->bh_lock); |
| xfs_buf_free(bp); |
| } |
| } else { |
| /* |
| * Catch reference count leaks |
| */ |
| ASSERT(atomic_read(&bp->b_hold) >= 0); |
| } |
| } |
| |
| |
| /* |
| * Mutual exclusion on buffers. Locking model: |
| * |
| * Buffers associated with inodes for which buffer locking |
| * is not enabled are not protected by semaphores, and are |
| * assumed to be exclusively owned by the caller. There is a |
| * spinlock in the buffer, used by the caller when concurrent |
| * access is possible. |
| */ |
| |
| /* |
| * Locks a buffer object, if it is not already locked. |
| * Note that this in no way locks the underlying pages, so it is only |
| * useful for synchronizing concurrent use of buffer objects, not for |
| * synchronizing independent access to the underlying pages. |
| */ |
| int |
| xfs_buf_cond_lock( |
| xfs_buf_t *bp) |
| { |
| int locked; |
| |
| locked = down_trylock(&bp->b_sema) == 0; |
| if (locked) { |
| XB_SET_OWNER(bp); |
| } |
| XB_TRACE(bp, "cond_lock", (long)locked); |
| return locked ? 0 : -EBUSY; |
| } |
| |
| #if defined(DEBUG) || defined(XFS_BLI_TRACE) |
| int |
| xfs_buf_lock_value( |
| xfs_buf_t *bp) |
| { |
| return atomic_read(&bp->b_sema.count); |
| } |
| #endif |
| |
| /* |
| * Locks a buffer object. |
| * Note that this in no way locks the underlying pages, so it is only |
| * useful for synchronizing concurrent use of buffer objects, not for |
| * synchronizing independent access to the underlying pages. |
| */ |
| void |
| xfs_buf_lock( |
| xfs_buf_t *bp) |
| { |
| XB_TRACE(bp, "lock", 0); |
| if (atomic_read(&bp->b_io_remaining)) |
| blk_run_address_space(bp->b_target->bt_mapping); |
| down(&bp->b_sema); |
| XB_SET_OWNER(bp); |
| XB_TRACE(bp, "locked", 0); |
| } |
| |
| /* |
| * Releases the lock on the buffer object. |
| * If the buffer is marked delwri but is not queued, do so before we |
| * unlock the buffer as we need to set flags correctly. We also need to |
| * take a reference for the delwri queue because the unlocker is going to |
| * drop their's and they don't know we just queued it. |
| */ |
| void |
| xfs_buf_unlock( |
| xfs_buf_t *bp) |
| { |
| if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) { |
| atomic_inc(&bp->b_hold); |
| bp->b_flags |= XBF_ASYNC; |
| xfs_buf_delwri_queue(bp, 0); |
| } |
| |
| XB_CLEAR_OWNER(bp); |
| up(&bp->b_sema); |
| XB_TRACE(bp, "unlock", 0); |
| } |
| |
| |
| /* |
| * Pinning Buffer Storage in Memory |
| * Ensure that no attempt to force a buffer to disk will succeed. |
| */ |
| void |
| xfs_buf_pin( |
| xfs_buf_t *bp) |
| { |
| atomic_inc(&bp->b_pin_count); |
| XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter); |
| } |
| |
| void |
| xfs_buf_unpin( |
| xfs_buf_t *bp) |
| { |
| if (atomic_dec_and_test(&bp->b_pin_count)) |
| wake_up_all(&bp->b_waiters); |
| XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter); |
| } |
| |
| int |
| xfs_buf_ispin( |
| xfs_buf_t *bp) |
| { |
| return atomic_read(&bp->b_pin_count); |
| } |
| |
| STATIC void |
| xfs_buf_wait_unpin( |
| xfs_buf_t *bp) |
| { |
| DECLARE_WAITQUEUE (wait, current); |
| |
| if (atomic_read(&bp->b_pin_count) == 0) |
| return; |
| |
| add_wait_queue(&bp->b_waiters, &wait); |
| for (;;) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| if (atomic_read(&bp->b_pin_count) == 0) |
| break; |
| if (atomic_read(&bp->b_io_remaining)) |
| blk_run_address_space(bp->b_target->bt_mapping); |
| schedule(); |
| } |
| remove_wait_queue(&bp->b_waiters, &wait); |
| set_current_state(TASK_RUNNING); |
| } |
| |
| /* |
| * Buffer Utility Routines |
| */ |
| |
| STATIC void |
| xfs_buf_iodone_work( |
| struct work_struct *work) |
| { |
| xfs_buf_t *bp = |
| container_of(work, xfs_buf_t, b_iodone_work); |
| |
| /* |
| * We can get an EOPNOTSUPP to ordered writes. Here we clear the |
| * ordered flag and reissue them. Because we can't tell the higher |
| * layers directly that they should not issue ordered I/O anymore, they |
| * need to check if the ordered flag was cleared during I/O completion. |
| */ |
| if ((bp->b_error == EOPNOTSUPP) && |
| (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) { |
| XB_TRACE(bp, "ordered_retry", bp->b_iodone); |
| bp->b_flags &= ~XBF_ORDERED; |
| xfs_buf_iorequest(bp); |
| } else if (bp->b_iodone) |
| (*(bp->b_iodone))(bp); |
| else if (bp->b_flags & XBF_ASYNC) |
| xfs_buf_relse(bp); |
| } |
| |
| void |
| xfs_buf_ioend( |
| xfs_buf_t *bp, |
| int schedule) |
| { |
| bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); |
| if (bp->b_error == 0) |
| bp->b_flags |= XBF_DONE; |
| |
| XB_TRACE(bp, "iodone", bp->b_iodone); |
| |
| if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) { |
| if (schedule) { |
| INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); |
| queue_work(xfslogd_workqueue, &bp->b_iodone_work); |
| } else { |
| xfs_buf_iodone_work(&bp->b_iodone_work); |
| } |
| } else { |
| up(&bp->b_iodonesema); |
| } |
| } |
| |
| void |
| xfs_buf_ioerror( |
| xfs_buf_t *bp, |
| int error) |
| { |
| ASSERT(error >= 0 && error <= 0xffff); |
| bp->b_error = (unsigned short)error; |
| XB_TRACE(bp, "ioerror", (unsigned long)error); |
| } |
| |
| /* |
| * Initiate I/O on a buffer, based on the flags supplied. |
| * The b_iodone routine in the buffer supplied will only be called |
| * when all of the subsidiary I/O requests, if any, have been completed. |
| */ |
| int |
| xfs_buf_iostart( |
| xfs_buf_t *bp, |
| xfs_buf_flags_t flags) |
| { |
| int status = 0; |
| |
| XB_TRACE(bp, "iostart", (unsigned long)flags); |
| |
| if (flags & XBF_DELWRI) { |
| bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC); |
| bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC); |
| xfs_buf_delwri_queue(bp, 1); |
| return status; |
| } |
| |
| bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \ |
| XBF_READ_AHEAD | _XBF_RUN_QUEUES); |
| bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \ |
| XBF_READ_AHEAD | _XBF_RUN_QUEUES); |
| |
| BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL); |
| |
| /* For writes allow an alternate strategy routine to precede |
| * the actual I/O request (which may not be issued at all in |
| * a shutdown situation, for example). |
| */ |
| status = (flags & XBF_WRITE) ? |
| xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp); |
| |
| /* Wait for I/O if we are not an async request. |
| * Note: async I/O request completion will release the buffer, |
| * and that can already be done by this point. So using the |
| * buffer pointer from here on, after async I/O, is invalid. |
| */ |
| if (!status && !(flags & XBF_ASYNC)) |
| status = xfs_buf_iowait(bp); |
| |
| return status; |
| } |
| |
| STATIC_INLINE int |
| _xfs_buf_iolocked( |
| xfs_buf_t *bp) |
| { |
| ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE)); |
| if (bp->b_flags & XBF_READ) |
| return bp->b_locked; |
| return 0; |
| } |
| |
| STATIC_INLINE void |
| _xfs_buf_ioend( |
| xfs_buf_t *bp, |
| int schedule) |
| { |
| if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { |
| bp->b_locked = 0; |
| xfs_buf_ioend(bp, schedule); |
| } |
| } |
| |
| STATIC void |
| xfs_buf_bio_end_io( |
| struct bio *bio, |
| int error) |
| { |
| xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; |
| unsigned int blocksize = bp->b_target->bt_bsize; |
| struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| |
| if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) |
| bp->b_error = EIO; |
| |
| do { |
| struct page *page = bvec->bv_page; |
| |
| ASSERT(!PagePrivate(page)); |
| if (unlikely(bp->b_error)) { |
| if (bp->b_flags & XBF_READ) |
| ClearPageUptodate(page); |
| } else if (blocksize >= PAGE_CACHE_SIZE) { |
| SetPageUptodate(page); |
| } else if (!PagePrivate(page) && |
| (bp->b_flags & _XBF_PAGE_CACHE)) { |
| set_page_region(page, bvec->bv_offset, bvec->bv_len); |
| } |
| |
| if (--bvec >= bio->bi_io_vec) |
| prefetchw(&bvec->bv_page->flags); |
| |
| if (_xfs_buf_iolocked(bp)) { |
| unlock_page(page); |
| } |
| } while (bvec >= bio->bi_io_vec); |
| |
| _xfs_buf_ioend(bp, 1); |
| bio_put(bio); |
| } |
| |
| STATIC void |
| _xfs_buf_ioapply( |
| xfs_buf_t *bp) |
| { |
| int i, rw, map_i, total_nr_pages, nr_pages; |
| struct bio *bio; |
| int offset = bp->b_offset; |
| int size = bp->b_count_desired; |
| sector_t sector = bp->b_bn; |
| unsigned int blocksize = bp->b_target->bt_bsize; |
| int locking = _xfs_buf_iolocked(bp); |
| |
| total_nr_pages = bp->b_page_count; |
| map_i = 0; |
| |
| if (bp->b_flags & XBF_ORDERED) { |
| ASSERT(!(bp->b_flags & XBF_READ)); |
| rw = WRITE_BARRIER; |
| } else if (bp->b_flags & _XBF_RUN_QUEUES) { |
| ASSERT(!(bp->b_flags & XBF_READ_AHEAD)); |
| bp->b_flags &= ~_XBF_RUN_QUEUES; |
| rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC; |
| } else { |
| rw = (bp->b_flags & XBF_WRITE) ? WRITE : |
| (bp->b_flags & XBF_READ_AHEAD) ? READA : READ; |
| } |
| |
| /* Special code path for reading a sub page size buffer in -- |
| * we populate up the whole page, and hence the other metadata |
| * in the same page. This optimization is only valid when the |
| * filesystem block size is not smaller than the page size. |
| */ |
| if ((bp->b_buffer_length < PAGE_CACHE_SIZE) && |
| (bp->b_flags & XBF_READ) && locking && |
| (blocksize >= PAGE_CACHE_SIZE)) { |
| bio = bio_alloc(GFP_NOIO, 1); |
| |
| bio->bi_bdev = bp->b_target->bt_bdev; |
| bio->bi_sector = sector - (offset >> BBSHIFT); |
| bio->bi_end_io = xfs_buf_bio_end_io; |
| bio->bi_private = bp; |
| |
| bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0); |
| size = 0; |
| |
| atomic_inc(&bp->b_io_remaining); |
| |
| goto submit_io; |
| } |
| |
| /* Lock down the pages which we need to for the request */ |
| if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) { |
| for (i = 0; size; i++) { |
| int nbytes = PAGE_CACHE_SIZE - offset; |
| struct page *page = bp->b_pages[i]; |
| |
| if (nbytes > size) |
| nbytes = size; |
| |
| lock_page(page); |
| |
| size -= nbytes; |
| offset = 0; |
| } |
| offset = bp->b_offset; |
| size = bp->b_count_desired; |
| } |
| |
| next_chunk: |
| atomic_inc(&bp->b_io_remaining); |
| nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); |
| if (nr_pages > total_nr_pages) |
| nr_pages = total_nr_pages; |
| |
| bio = bio_alloc(GFP_NOIO, nr_pages); |
| bio->bi_bdev = bp->b_target->bt_bdev; |
| bio->bi_sector = sector; |
| bio->bi_end_io = xfs_buf_bio_end_io; |
| bio->bi_private = bp; |
| |
| for (; size && nr_pages; nr_pages--, map_i++) { |
| int rbytes, nbytes = PAGE_CACHE_SIZE - offset; |
| |
| if (nbytes > size) |
| nbytes = size; |
| |
| rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset); |
| if (rbytes < nbytes) |
| break; |
| |
| offset = 0; |
| sector += nbytes >> BBSHIFT; |
| size -= nbytes; |
| total_nr_pages--; |
| } |
| |
| submit_io: |
| if (likely(bio->bi_size)) { |
| submit_bio(rw, bio); |
| if (size) |
| goto next_chunk; |
| } else { |
| bio_put(bio); |
| xfs_buf_ioerror(bp, EIO); |
| } |
| } |
| |
| int |
| xfs_buf_iorequest( |
| xfs_buf_t *bp) |
| { |
| XB_TRACE(bp, "iorequest", 0); |
| |
| if (bp->b_flags & XBF_DELWRI) { |
| xfs_buf_delwri_queue(bp, 1); |
| return 0; |
| } |
| |
| if (bp->b_flags & XBF_WRITE) { |
| xfs_buf_wait_unpin(bp); |
| } |
| |
| xfs_buf_hold(bp); |
| |
| /* Set the count to 1 initially, this will stop an I/O |
| * completion callout which happens before we have started |
| * all the I/O from calling xfs_buf_ioend too early. |
| */ |
| atomic_set(&bp->b_io_remaining, 1); |
| _xfs_buf_ioapply(bp); |
| _xfs_buf_ioend(bp, 0); |
| |
| xfs_buf_rele(bp); |
| return 0; |
| } |
| |
| /* |
| * Waits for I/O to complete on the buffer supplied. |
| * It returns immediately if no I/O is pending. |
| * It returns the I/O error code, if any, or 0 if there was no error. |
| */ |
| int |
| xfs_buf_iowait( |
| xfs_buf_t *bp) |
| { |
| XB_TRACE(bp, "iowait", 0); |
| if (atomic_read(&bp->b_io_remaining)) |
| blk_run_address_space(bp->b_target->bt_mapping); |
| down(&bp->b_iodonesema); |
| XB_TRACE(bp, "iowaited", (long)bp->b_error); |
| return bp->b_error; |
| } |
| |
| xfs_caddr_t |
| xfs_buf_offset( |
| xfs_buf_t *bp, |
| size_t offset) |
| { |
| struct page *page; |
| |
| if (bp->b_flags & XBF_MAPPED) |
| return XFS_BUF_PTR(bp) + offset; |
| |
| offset += bp->b_offset; |
| page = bp->b_pages[offset >> PAGE_CACHE_SHIFT]; |
| return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1)); |
| } |
| |
| /* |
| * Move data into or out of a buffer. |
| */ |
| void |
| xfs_buf_iomove( |
| xfs_buf_t *bp, /* buffer to process */ |
| size_t boff, /* starting buffer offset */ |
| size_t bsize, /* length to copy */ |
| caddr_t data, /* data address */ |
| xfs_buf_rw_t mode) /* read/write/zero flag */ |
| { |
| size_t bend, cpoff, csize; |
| struct page *page; |
| |
| bend = boff + bsize; |
| while (boff < bend) { |
| page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)]; |
| cpoff = xfs_buf_poff(boff + bp->b_offset); |
| csize = min_t(size_t, |
| PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff); |
| |
| ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE)); |
| |
| switch (mode) { |
| case XBRW_ZERO: |
| memset(page_address(page) + cpoff, 0, csize); |
| break; |
| case XBRW_READ: |
| memcpy(data, page_address(page) + cpoff, csize); |
| break; |
| case XBRW_WRITE: |
| memcpy(page_address(page) + cpoff, data, csize); |
| } |
| |
| boff += csize; |
| data += csize; |
| } |
| } |
| |
| /* |
| * Handling of buffer targets (buftargs). |
| */ |
| |
| /* |
| * Wait for any bufs with callbacks that have been submitted but |
| * have not yet returned... walk the hash list for the target. |
| */ |
| void |
| xfs_wait_buftarg( |
| xfs_buftarg_t *btp) |
| { |
| xfs_buf_t *bp, *n; |
| xfs_bufhash_t *hash; |
| uint i; |
| |
| for (i = 0; i < (1 << btp->bt_hashshift); i++) { |
| hash = &btp->bt_hash[i]; |
| again: |
| spin_lock(&hash->bh_lock); |
| list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) { |
| ASSERT(btp == bp->b_target); |
| if (!(bp->b_flags & XBF_FS_MANAGED)) { |
| spin_unlock(&hash->bh_lock); |
| /* |
| * Catch superblock reference count leaks |
| * immediately |
| */ |
| BUG_ON(bp->b_bn == 0); |
| delay(100); |
| goto again; |
| } |
| } |
| spin_unlock(&hash->bh_lock); |
| } |
| } |
| |
| /* |
| * Allocate buffer hash table for a given target. |
| * For devices containing metadata (i.e. not the log/realtime devices) |
| * we need to allocate a much larger hash table. |
| */ |
| STATIC void |
| xfs_alloc_bufhash( |
| xfs_buftarg_t *btp, |
| int external) |
| { |
| unsigned int i; |
| |
| btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */ |
| btp->bt_hashmask = (1 << btp->bt_hashshift) - 1; |
| btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) * |
| sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE); |
| for (i = 0; i < (1 << btp->bt_hashshift); i++) { |
| spin_lock_init(&btp->bt_hash[i].bh_lock); |
| INIT_LIST_HEAD(&btp->bt_hash[i].bh_list); |
| } |
| } |
| |
| STATIC void |
| xfs_free_bufhash( |
| xfs_buftarg_t *btp) |
| { |
| kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t)); |
| btp->bt_hash = NULL; |
| } |
| |
| /* |
| * buftarg list for delwrite queue processing |
| */ |
| static LIST_HEAD(xfs_buftarg_list); |
| static DEFINE_SPINLOCK(xfs_buftarg_lock); |
| |
| STATIC void |
| xfs_register_buftarg( |
| xfs_buftarg_t *btp) |
| { |
| spin_lock(&xfs_buftarg_lock); |
| list_add(&btp->bt_list, &xfs_buftarg_list); |
| spin_unlock(&xfs_buftarg_lock); |
| } |
| |
| STATIC void |
| xfs_unregister_buftarg( |
| xfs_buftarg_t *btp) |
| { |
| spin_lock(&xfs_buftarg_lock); |
| list_del(&btp->bt_list); |
| spin_unlock(&xfs_buftarg_lock); |
| } |
| |
| void |
| xfs_free_buftarg( |
| xfs_buftarg_t *btp, |
| int external) |
| { |
| xfs_flush_buftarg(btp, 1); |
| xfs_blkdev_issue_flush(btp); |
| if (external) |
| xfs_blkdev_put(btp->bt_bdev); |
| xfs_free_bufhash(btp); |
| iput(btp->bt_mapping->host); |
| |
| /* Unregister the buftarg first so that we don't get a |
| * wakeup finding a non-existent task |
| */ |
| xfs_unregister_buftarg(btp); |
| kthread_stop(btp->bt_task); |
| |
| kmem_free(btp, sizeof(*btp)); |
| } |
| |
| STATIC int |
| xfs_setsize_buftarg_flags( |
| xfs_buftarg_t *btp, |
| unsigned int blocksize, |
| unsigned int sectorsize, |
| int verbose) |
| { |
| btp->bt_bsize = blocksize; |
| btp->bt_sshift = ffs(sectorsize) - 1; |
| btp->bt_smask = sectorsize - 1; |
| |
| if (set_blocksize(btp->bt_bdev, sectorsize)) { |
| printk(KERN_WARNING |
| "XFS: Cannot set_blocksize to %u on device %s\n", |
| sectorsize, XFS_BUFTARG_NAME(btp)); |
| return EINVAL; |
| } |
| |
| if (verbose && |
| (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) { |
| printk(KERN_WARNING |
| "XFS: %u byte sectors in use on device %s. " |
| "This is suboptimal; %u or greater is ideal.\n", |
| sectorsize, XFS_BUFTARG_NAME(btp), |
| (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * When allocating the initial buffer target we have not yet |
| * read in the superblock, so don't know what sized sectors |
| * are being used is at this early stage. Play safe. |
| */ |
| STATIC int |
| xfs_setsize_buftarg_early( |
| xfs_buftarg_t *btp, |
| struct block_device *bdev) |
| { |
| return xfs_setsize_buftarg_flags(btp, |
| PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0); |
| } |
| |
| int |
| xfs_setsize_buftarg( |
| xfs_buftarg_t *btp, |
| unsigned int blocksize, |
| unsigned int sectorsize) |
| { |
| return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); |
| } |
| |
| STATIC int |
| xfs_mapping_buftarg( |
| xfs_buftarg_t *btp, |
| struct block_device *bdev) |
| { |
| struct backing_dev_info *bdi; |
| struct inode *inode; |
| struct address_space *mapping; |
| static const struct address_space_operations mapping_aops = { |
| .sync_page = block_sync_page, |
| .migratepage = fail_migrate_page, |
| }; |
| |
| inode = new_inode(bdev->bd_inode->i_sb); |
| if (!inode) { |
| printk(KERN_WARNING |
| "XFS: Cannot allocate mapping inode for device %s\n", |
| XFS_BUFTARG_NAME(btp)); |
| return ENOMEM; |
| } |
| inode->i_mode = S_IFBLK; |
| inode->i_bdev = bdev; |
| inode->i_rdev = bdev->bd_dev; |
| bdi = blk_get_backing_dev_info(bdev); |
| if (!bdi) |
| bdi = &default_backing_dev_info; |
| mapping = &inode->i_data; |
| mapping->a_ops = &mapping_aops; |
| mapping->backing_dev_info = bdi; |
| mapping_set_gfp_mask(mapping, GFP_NOFS); |
| btp->bt_mapping = mapping; |
| return 0; |
| } |
| |
| STATIC int |
| xfs_alloc_delwrite_queue( |
| xfs_buftarg_t *btp) |
| { |
| int error = 0; |
| |
| INIT_LIST_HEAD(&btp->bt_list); |
| INIT_LIST_HEAD(&btp->bt_delwrite_queue); |
| spinlock_init(&btp->bt_delwrite_lock, "delwri_lock"); |
| btp->bt_flags = 0; |
| btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd"); |
| if (IS_ERR(btp->bt_task)) { |
| error = PTR_ERR(btp->bt_task); |
| goto out_error; |
| } |
| xfs_register_buftarg(btp); |
| out_error: |
| return error; |
| } |
| |
| xfs_buftarg_t * |
| xfs_alloc_buftarg( |
| struct block_device *bdev, |
| int external) |
| { |
| xfs_buftarg_t *btp; |
| |
| btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); |
| |
| btp->bt_dev = bdev->bd_dev; |
| btp->bt_bdev = bdev; |
| if (xfs_setsize_buftarg_early(btp, bdev)) |
| goto error; |
| if (xfs_mapping_buftarg(btp, bdev)) |
| goto error; |
| if (xfs_alloc_delwrite_queue(btp)) |
| goto error; |
| xfs_alloc_bufhash(btp, external); |
| return btp; |
| |
| error: |
| kmem_free(btp, sizeof(*btp)); |
| return NULL; |
| } |
| |
| |
| /* |
| * Delayed write buffer handling |
| */ |
| STATIC void |
| xfs_buf_delwri_queue( |
| xfs_buf_t *bp, |
| int unlock) |
| { |
| struct list_head *dwq = &bp->b_target->bt_delwrite_queue; |
| spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock; |
| |
| XB_TRACE(bp, "delwri_q", (long)unlock); |
| ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC)); |
| |
| spin_lock(dwlk); |
| /* If already in the queue, dequeue and place at tail */ |
| if (!list_empty(&bp->b_list)) { |
| ASSERT(bp->b_flags & _XBF_DELWRI_Q); |
| if (unlock) |
| atomic_dec(&bp->b_hold); |
| list_del(&bp->b_list); |
| } |
| |
| bp->b_flags |= _XBF_DELWRI_Q; |
| list_add_tail(&bp->b_list, dwq); |
| bp->b_queuetime = jiffies; |
| spin_unlock(dwlk); |
| |
| if (unlock) |
| xfs_buf_unlock(bp); |
| } |
| |
| void |
| xfs_buf_delwri_dequeue( |
| xfs_buf_t *bp) |
| { |
| spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock; |
| int dequeued = 0; |
| |
| spin_lock(dwlk); |
| if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) { |
| ASSERT(bp->b_flags & _XBF_DELWRI_Q); |
| list_del_init(&bp->b_list); |
| dequeued = 1; |
| } |
| bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q); |
| spin_unlock(dwlk); |
| |
| if (dequeued) |
| xfs_buf_rele(bp); |
| |
| XB_TRACE(bp, "delwri_dq", (long)dequeued); |
| } |
| |
| STATIC void |
| xfs_buf_runall_queues( |
| struct workqueue_struct *queue) |
| { |
| flush_workqueue(queue); |
| } |
| |
| STATIC int |
| xfsbufd_wakeup( |
| int priority, |
| gfp_t mask) |
| { |
| xfs_buftarg_t *btp; |
| |
| spin_lock(&xfs_buftarg_lock); |
| list_for_each_entry(btp, &xfs_buftarg_list, bt_list) { |
| if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags)) |
| continue; |
| set_bit(XBT_FORCE_FLUSH, &btp->bt_flags); |
| wake_up_process(btp->bt_task); |
| } |
| spin_unlock(&xfs_buftarg_lock); |
| return 0; |
| } |
| |
| /* |
| * Move as many buffers as specified to the supplied list |
| * idicating if we skipped any buffers to prevent deadlocks. |
| */ |
| STATIC int |
| xfs_buf_delwri_split( |
| xfs_buftarg_t *target, |
| struct list_head *list, |
| unsigned long age) |
| { |
| xfs_buf_t *bp, *n; |
| struct list_head *dwq = &target->bt_delwrite_queue; |
| spinlock_t *dwlk = &target->bt_delwrite_lock; |
| int skipped = 0; |
| int force; |
| |
| force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags); |
| INIT_LIST_HEAD(list); |
| spin_lock(dwlk); |
| list_for_each_entry_safe(bp, n, dwq, b_list) { |
| XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp)); |
| ASSERT(bp->b_flags & XBF_DELWRI); |
| |
| if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) { |
| if (!force && |
| time_before(jiffies, bp->b_queuetime + age)) { |
| xfs_buf_unlock(bp); |
| break; |
| } |
| |
| bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q| |
| _XBF_RUN_QUEUES); |
| bp->b_flags |= XBF_WRITE; |
| list_move_tail(&bp->b_list, list); |
| } else |
| skipped++; |
| } |
| spin_unlock(dwlk); |
| |
| return skipped; |
| |
| } |
| |
| STATIC int |
| xfsbufd( |
| void *data) |
| { |
| struct list_head tmp; |
| xfs_buftarg_t *target = (xfs_buftarg_t *)data; |
| int count; |
| xfs_buf_t *bp; |
| |
| current->flags |= PF_MEMALLOC; |
| |
| set_freezable(); |
| |
| do { |
| if (unlikely(freezing(current))) { |
| set_bit(XBT_FORCE_SLEEP, &target->bt_flags); |
| refrigerator(); |
| } else { |
| clear_bit(XBT_FORCE_SLEEP, &target->bt_flags); |
| } |
| |
| schedule_timeout_interruptible( |
| xfs_buf_timer_centisecs * msecs_to_jiffies(10)); |
| |
| xfs_buf_delwri_split(target, &tmp, |
| xfs_buf_age_centisecs * msecs_to_jiffies(10)); |
| |
| count = 0; |
| while (!list_empty(&tmp)) { |
| bp = list_entry(tmp.next, xfs_buf_t, b_list); |
| ASSERT(target == bp->b_target); |
| |
| list_del_init(&bp->b_list); |
| xfs_buf_iostrategy(bp); |
| count++; |
| } |
| |
| if (as_list_len > 0) |
| purge_addresses(); |
| if (count) |
| blk_run_address_space(target->bt_mapping); |
| |
| } while (!kthread_should_stop()); |
| |
| return 0; |
| } |
| |
| /* |
| * Go through all incore buffers, and release buffers if they belong to |
| * the given device. This is used in filesystem error handling to |
| * preserve the consistency of its metadata. |
| */ |
| int |
| xfs_flush_buftarg( |
| xfs_buftarg_t *target, |
| int wait) |
| { |
| struct list_head tmp; |
| xfs_buf_t *bp, *n; |
| int pincount = 0; |
| |
| xfs_buf_runall_queues(xfsdatad_workqueue); |
| xfs_buf_runall_queues(xfslogd_workqueue); |
| |
| set_bit(XBT_FORCE_FLUSH, &target->bt_flags); |
| pincount = xfs_buf_delwri_split(target, &tmp, 0); |
| |
| /* |
| * Dropped the delayed write list lock, now walk the temporary list |
| */ |
| list_for_each_entry_safe(bp, n, &tmp, b_list) { |
| ASSERT(target == bp->b_target); |
| if (wait) |
| bp->b_flags &= ~XBF_ASYNC; |
| else |
| list_del_init(&bp->b_list); |
| |
| xfs_buf_iostrategy(bp); |
| } |
| |
| if (wait) |
| blk_run_address_space(target->bt_mapping); |
| |
| /* |
| * Remaining list items must be flushed before returning |
| */ |
| while (!list_empty(&tmp)) { |
| bp = list_entry(tmp.next, xfs_buf_t, b_list); |
| |
| list_del_init(&bp->b_list); |
| xfs_iowait(bp); |
| xfs_buf_relse(bp); |
| } |
| |
| return pincount; |
| } |
| |
| int __init |
| xfs_buf_init(void) |
| { |
| #ifdef XFS_BUF_TRACE |
| xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP); |
| #endif |
| |
| xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", |
| KM_ZONE_HWALIGN, NULL); |
| if (!xfs_buf_zone) |
| goto out_free_trace_buf; |
| |
| xfslogd_workqueue = create_workqueue("xfslogd"); |
| if (!xfslogd_workqueue) |
| goto out_free_buf_zone; |
| |
| xfsdatad_workqueue = create_workqueue("xfsdatad"); |
| if (!xfsdatad_workqueue) |
| goto out_destroy_xfslogd_workqueue; |
| |
| register_shrinker(&xfs_buf_shake); |
| return 0; |
| |
| out_destroy_xfslogd_workqueue: |
| destroy_workqueue(xfslogd_workqueue); |
| out_free_buf_zone: |
| kmem_zone_destroy(xfs_buf_zone); |
| out_free_trace_buf: |
| #ifdef XFS_BUF_TRACE |
| ktrace_free(xfs_buf_trace_buf); |
| #endif |
| return -ENOMEM; |
| } |
| |
| void |
| xfs_buf_terminate(void) |
| { |
| unregister_shrinker(&xfs_buf_shake); |
| destroy_workqueue(xfsdatad_workqueue); |
| destroy_workqueue(xfslogd_workqueue); |
| kmem_zone_destroy(xfs_buf_zone); |
| #ifdef XFS_BUF_TRACE |
| ktrace_free(xfs_buf_trace_buf); |
| #endif |
| } |
| |
| #ifdef CONFIG_KDB_MODULES |
| struct list_head * |
| xfs_get_buftarg_list(void) |
| { |
| return &xfs_buftarg_list; |
| } |
| #endif |