| /* |
| * PowerPC memory management structures |
| * |
| * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> |
| * PPC64 rework. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #ifndef _PPC64_MMU_H_ |
| #define _PPC64_MMU_H_ |
| |
| #include <linux/config.h> |
| #include <asm/page.h> |
| |
| /* |
| * Segment table |
| */ |
| |
| #define STE_ESID_V 0x80 |
| #define STE_ESID_KS 0x20 |
| #define STE_ESID_KP 0x10 |
| #define STE_ESID_N 0x08 |
| |
| #define STE_VSID_SHIFT 12 |
| |
| /* Location of cpu0's segment table */ |
| #define STAB0_PAGE 0x9 |
| #define STAB0_PHYS_ADDR (STAB0_PAGE<<PAGE_SHIFT) |
| #define STAB0_VIRT_ADDR (KERNELBASE+STAB0_PHYS_ADDR) |
| |
| /* |
| * SLB |
| */ |
| |
| #define SLB_NUM_BOLTED 3 |
| #define SLB_CACHE_ENTRIES 8 |
| |
| /* Bits in the SLB ESID word */ |
| #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ |
| |
| /* Bits in the SLB VSID word */ |
| #define SLB_VSID_SHIFT 12 |
| #define SLB_VSID_KS ASM_CONST(0x0000000000000800) |
| #define SLB_VSID_KP ASM_CONST(0x0000000000000400) |
| #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ |
| #define SLB_VSID_L ASM_CONST(0x0000000000000100) /* largepage 16M */ |
| #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ |
| |
| #define SLB_VSID_KERNEL (SLB_VSID_KP|SLB_VSID_C) |
| #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS) |
| |
| /* |
| * Hash table |
| */ |
| |
| #define HPTES_PER_GROUP 8 |
| |
| /* Values for PP (assumes Ks=0, Kp=1) */ |
| /* pp0 will always be 0 for linux */ |
| #define PP_RWXX 0 /* Supervisor read/write, User none */ |
| #define PP_RWRX 1 /* Supervisor read/write, User read */ |
| #define PP_RWRW 2 /* Supervisor read/write, User read/write */ |
| #define PP_RXRX 3 /* Supervisor read, User read */ |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* Hardware Page Table Entry */ |
| typedef struct { |
| unsigned long avpn:57; /* vsid | api == avpn */ |
| unsigned long : 2; /* Software use */ |
| unsigned long bolted: 1; /* HPTE is "bolted" */ |
| unsigned long lock: 1; /* lock on pSeries SMP */ |
| unsigned long l: 1; /* Virtual page is large (L=1) or 4 KB (L=0) */ |
| unsigned long h: 1; /* Hash function identifier */ |
| unsigned long v: 1; /* Valid (v=1) or invalid (v=0) */ |
| } Hpte_dword0; |
| |
| typedef struct { |
| unsigned long pp0: 1; /* Page protection bit 0 */ |
| unsigned long ts: 1; /* Tag set bit */ |
| unsigned long rpn: 50; /* Real page number */ |
| unsigned long : 2; /* Reserved */ |
| unsigned long ac: 1; /* Address compare */ |
| unsigned long r: 1; /* Referenced */ |
| unsigned long c: 1; /* Changed */ |
| unsigned long w: 1; /* Write-thru cache mode */ |
| unsigned long i: 1; /* Cache inhibited */ |
| unsigned long m: 1; /* Memory coherence required */ |
| unsigned long g: 1; /* Guarded */ |
| unsigned long n: 1; /* No-execute */ |
| unsigned long pp: 2; /* Page protection bits 1:2 */ |
| } Hpte_dword1; |
| |
| typedef struct { |
| char padding[6]; /* padding */ |
| unsigned long : 6; /* padding */ |
| unsigned long flags: 10; /* HPTE flags */ |
| } Hpte_dword1_flags; |
| |
| typedef struct { |
| union { |
| unsigned long dword0; |
| Hpte_dword0 dw0; |
| } dw0; |
| |
| union { |
| unsigned long dword1; |
| Hpte_dword1 dw1; |
| Hpte_dword1_flags flags; |
| } dw1; |
| } HPTE; |
| |
| extern HPTE * htab_address; |
| extern unsigned long htab_hash_mask; |
| |
| static inline unsigned long hpt_hash(unsigned long vpn, int large) |
| { |
| unsigned long vsid; |
| unsigned long page; |
| |
| if (large) { |
| vsid = vpn >> 4; |
| page = vpn & 0xf; |
| } else { |
| vsid = vpn >> 16; |
| page = vpn & 0xffff; |
| } |
| |
| return (vsid & 0x7fffffffffUL) ^ page; |
| } |
| |
| static inline void __tlbie(unsigned long va, int large) |
| { |
| /* clear top 16 bits, non SLS segment */ |
| va &= ~(0xffffULL << 48); |
| |
| if (large) { |
| va &= HPAGE_MASK; |
| asm volatile("tlbie %0,1" : : "r"(va) : "memory"); |
| } else { |
| va &= PAGE_MASK; |
| asm volatile("tlbie %0,0" : : "r"(va) : "memory"); |
| } |
| } |
| |
| static inline void tlbie(unsigned long va, int large) |
| { |
| asm volatile("ptesync": : :"memory"); |
| __tlbie(va, large); |
| asm volatile("eieio; tlbsync; ptesync": : :"memory"); |
| } |
| |
| static inline void __tlbiel(unsigned long va) |
| { |
| /* clear top 16 bits, non SLS segment */ |
| va &= ~(0xffffULL << 48); |
| va &= PAGE_MASK; |
| |
| /* |
| * Thanks to Alan Modra we are now able to use machine specific |
| * assembly instructions (like tlbiel) by using the gas -many flag. |
| * However we have to support older toolchains so for the moment |
| * we hardwire it. |
| */ |
| #if 0 |
| asm volatile("tlbiel %0" : : "r"(va) : "memory"); |
| #else |
| asm volatile(".long 0x7c000224 | (%0 << 11)" : : "r"(va) : "memory"); |
| #endif |
| } |
| |
| static inline void tlbiel(unsigned long va) |
| { |
| asm volatile("ptesync": : :"memory"); |
| __tlbiel(va); |
| asm volatile("ptesync": : :"memory"); |
| } |
| |
| /* |
| * Handle a fault by adding an HPTE. If the address can't be determined |
| * to be valid via Linux page tables, return 1. If handled return 0 |
| */ |
| extern int __hash_page(unsigned long ea, unsigned long access, |
| unsigned long vsid, pte_t *ptep, unsigned long trap, |
| int local); |
| |
| extern void htab_finish_init(void); |
| |
| extern void hpte_init_native(void); |
| extern void hpte_init_lpar(void); |
| extern void hpte_init_iSeries(void); |
| |
| extern long pSeries_lpar_hpte_insert(unsigned long hpte_group, |
| unsigned long va, unsigned long prpn, |
| int secondary, unsigned long hpteflags, |
| int bolted, int large); |
| extern long native_hpte_insert(unsigned long hpte_group, unsigned long va, |
| unsigned long prpn, int secondary, |
| unsigned long hpteflags, int bolted, int large); |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| /* |
| * VSID allocation |
| * |
| * We first generate a 36-bit "proto-VSID". For kernel addresses this |
| * is equal to the ESID, for user addresses it is: |
| * (context << 15) | (esid & 0x7fff) |
| * |
| * The two forms are distinguishable because the top bit is 0 for user |
| * addresses, whereas the top two bits are 1 for kernel addresses. |
| * Proto-VSIDs with the top two bits equal to 0b10 are reserved for |
| * now. |
| * |
| * The proto-VSIDs are then scrambled into real VSIDs with the |
| * multiplicative hash: |
| * |
| * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS |
| * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7 |
| * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF |
| * |
| * This scramble is only well defined for proto-VSIDs below |
| * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are |
| * reserved. VSID_MULTIPLIER is prime, so in particular it is |
| * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. |
| * Because the modulus is 2^n-1 we can compute it efficiently without |
| * a divide or extra multiply (see below). |
| * |
| * This scheme has several advantages over older methods: |
| * |
| * - We have VSIDs allocated for every kernel address |
| * (i.e. everything above 0xC000000000000000), except the very top |
| * segment, which simplifies several things. |
| * |
| * - We allow for 15 significant bits of ESID and 20 bits of |
| * context for user addresses. i.e. 8T (43 bits) of address space for |
| * up to 1M contexts (although the page table structure and context |
| * allocation will need changes to take advantage of this). |
| * |
| * - The scramble function gives robust scattering in the hash |
| * table (at least based on some initial results). The previous |
| * method was more susceptible to pathological cases giving excessive |
| * hash collisions. |
| */ |
| /* |
| * WARNING - If you change these you must make sure the asm |
| * implementations in slb_allocate (slb_low.S), do_stab_bolted |
| * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly. |
| * |
| * You'll also need to change the precomputed VSID values in head.S |
| * which are used by the iSeries firmware. |
| */ |
| |
| #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */ |
| #define VSID_BITS 36 |
| #define VSID_MODULUS ((1UL<<VSID_BITS)-1) |
| |
| #define CONTEXT_BITS 20 |
| #define USER_ESID_BITS 15 |
| |
| /* |
| * This macro generates asm code to compute the VSID scramble |
| * function. Used in slb_allocate() and do_stab_bolted. The function |
| * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS |
| * |
| * rt = register continaing the proto-VSID and into which the |
| * VSID will be stored |
| * rx = scratch register (clobbered) |
| * |
| * - rt and rx must be different registers |
| * - The answer will end up in the low 36 bits of rt. The higher |
| * bits may contain other garbage, so you may need to mask the |
| * result. |
| */ |
| #define ASM_VSID_SCRAMBLE(rt, rx) \ |
| lis rx,VSID_MULTIPLIER@h; \ |
| ori rx,rx,VSID_MULTIPLIER@l; \ |
| mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \ |
| \ |
| srdi rx,rt,VSID_BITS; \ |
| clrldi rt,rt,(64-VSID_BITS); \ |
| add rt,rt,rx; /* add high and low bits */ \ |
| /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \ |
| * 2^36-1+2^28-1. That in particular means that if r3 >= \ |
| * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ |
| * the bit clear, r3 already has the answer we want, if it \ |
| * doesn't, the answer is the low 36 bits of r3+1. So in all \ |
| * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ |
| addi rx,rt,1; \ |
| srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \ |
| add rt,rt,rx |
| |
| |
| #ifndef __ASSEMBLY__ |
| |
| typedef unsigned long mm_context_id_t; |
| |
| typedef struct { |
| mm_context_id_t id; |
| #ifdef CONFIG_HUGETLB_PAGE |
| pgd_t *huge_pgdir; |
| u16 htlb_segs; /* bitmask */ |
| #endif |
| } mm_context_t; |
| |
| |
| static inline unsigned long vsid_scramble(unsigned long protovsid) |
| { |
| #if 0 |
| /* The code below is equivalent to this function for arguments |
| * < 2^VSID_BITS, which is all this should ever be called |
| * with. However gcc is not clever enough to compute the |
| * modulus (2^n-1) without a second multiply. */ |
| return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS); |
| #else /* 1 */ |
| unsigned long x; |
| |
| x = protovsid * VSID_MULTIPLIER; |
| x = (x >> VSID_BITS) + (x & VSID_MODULUS); |
| return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS; |
| #endif /* 1 */ |
| } |
| |
| /* This is only valid for addresses >= KERNELBASE */ |
| static inline unsigned long get_kernel_vsid(unsigned long ea) |
| { |
| return vsid_scramble(ea >> SID_SHIFT); |
| } |
| |
| /* This is only valid for user addresses (which are below 2^41) */ |
| static inline unsigned long get_vsid(unsigned long context, unsigned long ea) |
| { |
| return vsid_scramble((context << USER_ESID_BITS) |
| | (ea >> SID_SHIFT)); |
| } |
| |
| #endif /* __ASSEMBLY */ |
| |
| #endif /* _PPC64_MMU_H_ */ |