| #ifndef _LINUX_SCHED_H |
| #define _LINUX_SCHED_H |
| |
| #include <uapi/linux/sched.h> |
| |
| #include <linux/sched/prio.h> |
| |
| |
| struct sched_param { |
| int sched_priority; |
| }; |
| |
| #include <asm/param.h> /* for HZ */ |
| |
| #include <linux/capability.h> |
| #include <linux/threads.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/timex.h> |
| #include <linux/jiffies.h> |
| #include <linux/plist.h> |
| #include <linux/rbtree.h> |
| #include <linux/thread_info.h> |
| #include <linux/cpumask.h> |
| #include <linux/errno.h> |
| #include <linux/nodemask.h> |
| #include <linux/mm_types.h> |
| #include <linux/preempt.h> |
| |
| #include <asm/page.h> |
| #include <asm/ptrace.h> |
| #include <linux/cputime.h> |
| |
| #include <linux/smp.h> |
| #include <linux/sem.h> |
| #include <linux/shm.h> |
| #include <linux/signal.h> |
| #include <linux/compiler.h> |
| #include <linux/completion.h> |
| #include <linux/pid.h> |
| #include <linux/percpu.h> |
| #include <linux/topology.h> |
| #include <linux/proportions.h> |
| #include <linux/seccomp.h> |
| #include <linux/rcupdate.h> |
| #include <linux/rculist.h> |
| #include <linux/rtmutex.h> |
| |
| #include <linux/time.h> |
| #include <linux/param.h> |
| #include <linux/resource.h> |
| #include <linux/timer.h> |
| #include <linux/hrtimer.h> |
| #include <linux/kcov.h> |
| #include <linux/task_io_accounting.h> |
| #include <linux/latencytop.h> |
| #include <linux/cred.h> |
| #include <linux/llist.h> |
| #include <linux/uidgid.h> |
| #include <linux/gfp.h> |
| #include <linux/magic.h> |
| #include <linux/cgroup-defs.h> |
| |
| #include <asm/processor.h> |
| |
| #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ |
| |
| /* |
| * Extended scheduling parameters data structure. |
| * |
| * This is needed because the original struct sched_param can not be |
| * altered without introducing ABI issues with legacy applications |
| * (e.g., in sched_getparam()). |
| * |
| * However, the possibility of specifying more than just a priority for |
| * the tasks may be useful for a wide variety of application fields, e.g., |
| * multimedia, streaming, automation and control, and many others. |
| * |
| * This variant (sched_attr) is meant at describing a so-called |
| * sporadic time-constrained task. In such model a task is specified by: |
| * - the activation period or minimum instance inter-arrival time; |
| * - the maximum (or average, depending on the actual scheduling |
| * discipline) computation time of all instances, a.k.a. runtime; |
| * - the deadline (relative to the actual activation time) of each |
| * instance. |
| * Very briefly, a periodic (sporadic) task asks for the execution of |
| * some specific computation --which is typically called an instance-- |
| * (at most) every period. Moreover, each instance typically lasts no more |
| * than the runtime and must be completed by time instant t equal to |
| * the instance activation time + the deadline. |
| * |
| * This is reflected by the actual fields of the sched_attr structure: |
| * |
| * @size size of the structure, for fwd/bwd compat. |
| * |
| * @sched_policy task's scheduling policy |
| * @sched_flags for customizing the scheduler behaviour |
| * @sched_nice task's nice value (SCHED_NORMAL/BATCH) |
| * @sched_priority task's static priority (SCHED_FIFO/RR) |
| * @sched_deadline representative of the task's deadline |
| * @sched_runtime representative of the task's runtime |
| * @sched_period representative of the task's period |
| * |
| * Given this task model, there are a multiplicity of scheduling algorithms |
| * and policies, that can be used to ensure all the tasks will make their |
| * timing constraints. |
| * |
| * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the |
| * only user of this new interface. More information about the algorithm |
| * available in the scheduling class file or in Documentation/. |
| */ |
| struct sched_attr { |
| u32 size; |
| |
| u32 sched_policy; |
| u64 sched_flags; |
| |
| /* SCHED_NORMAL, SCHED_BATCH */ |
| s32 sched_nice; |
| |
| /* SCHED_FIFO, SCHED_RR */ |
| u32 sched_priority; |
| |
| /* SCHED_DEADLINE */ |
| u64 sched_runtime; |
| u64 sched_deadline; |
| u64 sched_period; |
| }; |
| |
| struct futex_pi_state; |
| struct robust_list_head; |
| struct bio_list; |
| struct fs_struct; |
| struct perf_event_context; |
| struct blk_plug; |
| struct filename; |
| struct nameidata; |
| |
| #define VMACACHE_BITS 2 |
| #define VMACACHE_SIZE (1U << VMACACHE_BITS) |
| #define VMACACHE_MASK (VMACACHE_SIZE - 1) |
| |
| /* |
| * These are the constant used to fake the fixed-point load-average |
| * counting. Some notes: |
| * - 11 bit fractions expand to 22 bits by the multiplies: this gives |
| * a load-average precision of 10 bits integer + 11 bits fractional |
| * - if you want to count load-averages more often, you need more |
| * precision, or rounding will get you. With 2-second counting freq, |
| * the EXP_n values would be 1981, 2034 and 2043 if still using only |
| * 11 bit fractions. |
| */ |
| extern unsigned long avenrun[]; /* Load averages */ |
| extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); |
| |
| #define FSHIFT 11 /* nr of bits of precision */ |
| #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ |
| #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ |
| #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ |
| #define EXP_5 2014 /* 1/exp(5sec/5min) */ |
| #define EXP_15 2037 /* 1/exp(5sec/15min) */ |
| |
| #define CALC_LOAD(load,exp,n) \ |
| load *= exp; \ |
| load += n*(FIXED_1-exp); \ |
| load >>= FSHIFT; |
| |
| extern unsigned long total_forks; |
| extern int nr_threads; |
| DECLARE_PER_CPU(unsigned long, process_counts); |
| extern int nr_processes(void); |
| extern unsigned long nr_running(void); |
| extern bool single_task_running(void); |
| extern unsigned long nr_iowait(void); |
| extern unsigned long nr_iowait_cpu(int cpu); |
| extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); |
| |
| extern void calc_global_load(unsigned long ticks); |
| |
| #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
| extern void update_cpu_load_nohz(int active); |
| #else |
| static inline void update_cpu_load_nohz(int active) { } |
| #endif |
| |
| extern void dump_cpu_task(int cpu); |
| |
| struct seq_file; |
| struct cfs_rq; |
| struct task_group; |
| #ifdef CONFIG_SCHED_DEBUG |
| extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); |
| extern void proc_sched_set_task(struct task_struct *p); |
| #endif |
| |
| /* |
| * Task state bitmask. NOTE! These bits are also |
| * encoded in fs/proc/array.c: get_task_state(). |
| * |
| * We have two separate sets of flags: task->state |
| * is about runnability, while task->exit_state are |
| * about the task exiting. Confusing, but this way |
| * modifying one set can't modify the other one by |
| * mistake. |
| */ |
| #define TASK_RUNNING 0 |
| #define TASK_INTERRUPTIBLE 1 |
| #define TASK_UNINTERRUPTIBLE 2 |
| #define __TASK_STOPPED 4 |
| #define __TASK_TRACED 8 |
| /* in tsk->exit_state */ |
| #define EXIT_DEAD 16 |
| #define EXIT_ZOMBIE 32 |
| #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) |
| /* in tsk->state again */ |
| #define TASK_DEAD 64 |
| #define TASK_WAKEKILL 128 |
| #define TASK_WAKING 256 |
| #define TASK_PARKED 512 |
| #define TASK_NOLOAD 1024 |
| #define TASK_STATE_MAX 2048 |
| |
| #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" |
| |
| extern char ___assert_task_state[1 - 2*!!( |
| sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; |
| |
| /* Convenience macros for the sake of set_task_state */ |
| #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) |
| #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) |
| #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) |
| |
| #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) |
| |
| /* Convenience macros for the sake of wake_up */ |
| #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) |
| #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) |
| |
| /* get_task_state() */ |
| #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ |
| TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ |
| __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) |
| |
| #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) |
| #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) |
| #define task_is_stopped_or_traced(task) \ |
| ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) |
| #define task_contributes_to_load(task) \ |
| ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ |
| (task->flags & PF_FROZEN) == 0 && \ |
| (task->state & TASK_NOLOAD) == 0) |
| |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| |
| #define __set_task_state(tsk, state_value) \ |
| do { \ |
| (tsk)->task_state_change = _THIS_IP_; \ |
| (tsk)->state = (state_value); \ |
| } while (0) |
| #define set_task_state(tsk, state_value) \ |
| do { \ |
| (tsk)->task_state_change = _THIS_IP_; \ |
| smp_store_mb((tsk)->state, (state_value)); \ |
| } while (0) |
| |
| /* |
| * set_current_state() includes a barrier so that the write of current->state |
| * is correctly serialised wrt the caller's subsequent test of whether to |
| * actually sleep: |
| * |
| * set_current_state(TASK_UNINTERRUPTIBLE); |
| * if (do_i_need_to_sleep()) |
| * schedule(); |
| * |
| * If the caller does not need such serialisation then use __set_current_state() |
| */ |
| #define __set_current_state(state_value) \ |
| do { \ |
| current->task_state_change = _THIS_IP_; \ |
| current->state = (state_value); \ |
| } while (0) |
| #define set_current_state(state_value) \ |
| do { \ |
| current->task_state_change = _THIS_IP_; \ |
| smp_store_mb(current->state, (state_value)); \ |
| } while (0) |
| |
| #else |
| |
| #define __set_task_state(tsk, state_value) \ |
| do { (tsk)->state = (state_value); } while (0) |
| #define set_task_state(tsk, state_value) \ |
| smp_store_mb((tsk)->state, (state_value)) |
| |
| /* |
| * set_current_state() includes a barrier so that the write of current->state |
| * is correctly serialised wrt the caller's subsequent test of whether to |
| * actually sleep: |
| * |
| * set_current_state(TASK_UNINTERRUPTIBLE); |
| * if (do_i_need_to_sleep()) |
| * schedule(); |
| * |
| * If the caller does not need such serialisation then use __set_current_state() |
| */ |
| #define __set_current_state(state_value) \ |
| do { current->state = (state_value); } while (0) |
| #define set_current_state(state_value) \ |
| smp_store_mb(current->state, (state_value)) |
| |
| #endif |
| |
| /* Task command name length */ |
| #define TASK_COMM_LEN 16 |
| |
| #include <linux/spinlock.h> |
| |
| /* |
| * This serializes "schedule()" and also protects |
| * the run-queue from deletions/modifications (but |
| * _adding_ to the beginning of the run-queue has |
| * a separate lock). |
| */ |
| extern rwlock_t tasklist_lock; |
| extern spinlock_t mmlist_lock; |
| |
| struct task_struct; |
| |
| #ifdef CONFIG_PROVE_RCU |
| extern int lockdep_tasklist_lock_is_held(void); |
| #endif /* #ifdef CONFIG_PROVE_RCU */ |
| |
| extern void sched_init(void); |
| extern void sched_init_smp(void); |
| extern asmlinkage void schedule_tail(struct task_struct *prev); |
| extern void init_idle(struct task_struct *idle, int cpu); |
| extern void init_idle_bootup_task(struct task_struct *idle); |
| |
| extern cpumask_var_t cpu_isolated_map; |
| |
| extern int runqueue_is_locked(int cpu); |
| |
| #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
| extern void nohz_balance_enter_idle(int cpu); |
| extern void set_cpu_sd_state_idle(void); |
| extern int get_nohz_timer_target(void); |
| #else |
| static inline void nohz_balance_enter_idle(int cpu) { } |
| static inline void set_cpu_sd_state_idle(void) { } |
| #endif |
| |
| /* |
| * Only dump TASK_* tasks. (0 for all tasks) |
| */ |
| extern void show_state_filter(unsigned long state_filter); |
| |
| static inline void show_state(void) |
| { |
| show_state_filter(0); |
| } |
| |
| extern void show_regs(struct pt_regs *); |
| |
| /* |
| * TASK is a pointer to the task whose backtrace we want to see (or NULL for current |
| * task), SP is the stack pointer of the first frame that should be shown in the back |
| * trace (or NULL if the entire call-chain of the task should be shown). |
| */ |
| extern void show_stack(struct task_struct *task, unsigned long *sp); |
| |
| extern void cpu_init (void); |
| extern void trap_init(void); |
| extern void update_process_times(int user); |
| extern void scheduler_tick(void); |
| |
| extern void sched_show_task(struct task_struct *p); |
| |
| #ifdef CONFIG_LOCKUP_DETECTOR |
| extern void touch_softlockup_watchdog_sched(void); |
| extern void touch_softlockup_watchdog(void); |
| extern void touch_softlockup_watchdog_sync(void); |
| extern void touch_all_softlockup_watchdogs(void); |
| extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, |
| void __user *buffer, |
| size_t *lenp, loff_t *ppos); |
| extern unsigned int softlockup_panic; |
| extern unsigned int hardlockup_panic; |
| void lockup_detector_init(void); |
| #else |
| static inline void touch_softlockup_watchdog_sched(void) |
| { |
| } |
| static inline void touch_softlockup_watchdog(void) |
| { |
| } |
| static inline void touch_softlockup_watchdog_sync(void) |
| { |
| } |
| static inline void touch_all_softlockup_watchdogs(void) |
| { |
| } |
| static inline void lockup_detector_init(void) |
| { |
| } |
| #endif |
| |
| #ifdef CONFIG_DETECT_HUNG_TASK |
| void reset_hung_task_detector(void); |
| #else |
| static inline void reset_hung_task_detector(void) |
| { |
| } |
| #endif |
| |
| /* Attach to any functions which should be ignored in wchan output. */ |
| #define __sched __attribute__((__section__(".sched.text"))) |
| |
| /* Linker adds these: start and end of __sched functions */ |
| extern char __sched_text_start[], __sched_text_end[]; |
| |
| /* Is this address in the __sched functions? */ |
| extern int in_sched_functions(unsigned long addr); |
| |
| #define MAX_SCHEDULE_TIMEOUT LONG_MAX |
| extern signed long schedule_timeout(signed long timeout); |
| extern signed long schedule_timeout_interruptible(signed long timeout); |
| extern signed long schedule_timeout_killable(signed long timeout); |
| extern signed long schedule_timeout_uninterruptible(signed long timeout); |
| extern signed long schedule_timeout_idle(signed long timeout); |
| asmlinkage void schedule(void); |
| extern void schedule_preempt_disabled(void); |
| |
| extern long io_schedule_timeout(long timeout); |
| |
| static inline void io_schedule(void) |
| { |
| io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); |
| } |
| |
| struct nsproxy; |
| struct user_namespace; |
| |
| #ifdef CONFIG_MMU |
| extern void arch_pick_mmap_layout(struct mm_struct *mm); |
| extern unsigned long |
| arch_get_unmapped_area(struct file *, unsigned long, unsigned long, |
| unsigned long, unsigned long); |
| extern unsigned long |
| arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, |
| unsigned long len, unsigned long pgoff, |
| unsigned long flags); |
| #else |
| static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} |
| #endif |
| |
| #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ |
| #define SUID_DUMP_USER 1 /* Dump as user of process */ |
| #define SUID_DUMP_ROOT 2 /* Dump as root */ |
| |
| /* mm flags */ |
| |
| /* for SUID_DUMP_* above */ |
| #define MMF_DUMPABLE_BITS 2 |
| #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) |
| |
| extern void set_dumpable(struct mm_struct *mm, int value); |
| /* |
| * This returns the actual value of the suid_dumpable flag. For things |
| * that are using this for checking for privilege transitions, it must |
| * test against SUID_DUMP_USER rather than treating it as a boolean |
| * value. |
| */ |
| static inline int __get_dumpable(unsigned long mm_flags) |
| { |
| return mm_flags & MMF_DUMPABLE_MASK; |
| } |
| |
| static inline int get_dumpable(struct mm_struct *mm) |
| { |
| return __get_dumpable(mm->flags); |
| } |
| |
| /* coredump filter bits */ |
| #define MMF_DUMP_ANON_PRIVATE 2 |
| #define MMF_DUMP_ANON_SHARED 3 |
| #define MMF_DUMP_MAPPED_PRIVATE 4 |
| #define MMF_DUMP_MAPPED_SHARED 5 |
| #define MMF_DUMP_ELF_HEADERS 6 |
| #define MMF_DUMP_HUGETLB_PRIVATE 7 |
| #define MMF_DUMP_HUGETLB_SHARED 8 |
| #define MMF_DUMP_DAX_PRIVATE 9 |
| #define MMF_DUMP_DAX_SHARED 10 |
| |
| #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS |
| #define MMF_DUMP_FILTER_BITS 9 |
| #define MMF_DUMP_FILTER_MASK \ |
| (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) |
| #define MMF_DUMP_FILTER_DEFAULT \ |
| ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ |
| (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) |
| |
| #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS |
| # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) |
| #else |
| # define MMF_DUMP_MASK_DEFAULT_ELF 0 |
| #endif |
| /* leave room for more dump flags */ |
| #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ |
| #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ |
| #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ |
| |
| #define MMF_HAS_UPROBES 19 /* has uprobes */ |
| #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ |
| |
| #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) |
| |
| struct sighand_struct { |
| atomic_t count; |
| struct k_sigaction action[_NSIG]; |
| spinlock_t siglock; |
| wait_queue_head_t signalfd_wqh; |
| }; |
| |
| struct pacct_struct { |
| int ac_flag; |
| long ac_exitcode; |
| unsigned long ac_mem; |
| cputime_t ac_utime, ac_stime; |
| unsigned long ac_minflt, ac_majflt; |
| }; |
| |
| struct cpu_itimer { |
| cputime_t expires; |
| cputime_t incr; |
| u32 error; |
| u32 incr_error; |
| }; |
| |
| /** |
| * struct prev_cputime - snaphsot of system and user cputime |
| * @utime: time spent in user mode |
| * @stime: time spent in system mode |
| * @lock: protects the above two fields |
| * |
| * Stores previous user/system time values such that we can guarantee |
| * monotonicity. |
| */ |
| struct prev_cputime { |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| cputime_t utime; |
| cputime_t stime; |
| raw_spinlock_t lock; |
| #endif |
| }; |
| |
| static inline void prev_cputime_init(struct prev_cputime *prev) |
| { |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| prev->utime = prev->stime = 0; |
| raw_spin_lock_init(&prev->lock); |
| #endif |
| } |
| |
| /** |
| * struct task_cputime - collected CPU time counts |
| * @utime: time spent in user mode, in &cputime_t units |
| * @stime: time spent in kernel mode, in &cputime_t units |
| * @sum_exec_runtime: total time spent on the CPU, in nanoseconds |
| * |
| * This structure groups together three kinds of CPU time that are tracked for |
| * threads and thread groups. Most things considering CPU time want to group |
| * these counts together and treat all three of them in parallel. |
| */ |
| struct task_cputime { |
| cputime_t utime; |
| cputime_t stime; |
| unsigned long long sum_exec_runtime; |
| }; |
| |
| /* Alternate field names when used to cache expirations. */ |
| #define virt_exp utime |
| #define prof_exp stime |
| #define sched_exp sum_exec_runtime |
| |
| #define INIT_CPUTIME \ |
| (struct task_cputime) { \ |
| .utime = 0, \ |
| .stime = 0, \ |
| .sum_exec_runtime = 0, \ |
| } |
| |
| /* |
| * This is the atomic variant of task_cputime, which can be used for |
| * storing and updating task_cputime statistics without locking. |
| */ |
| struct task_cputime_atomic { |
| atomic64_t utime; |
| atomic64_t stime; |
| atomic64_t sum_exec_runtime; |
| }; |
| |
| #define INIT_CPUTIME_ATOMIC \ |
| (struct task_cputime_atomic) { \ |
| .utime = ATOMIC64_INIT(0), \ |
| .stime = ATOMIC64_INIT(0), \ |
| .sum_exec_runtime = ATOMIC64_INIT(0), \ |
| } |
| |
| #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) |
| |
| /* |
| * Disable preemption until the scheduler is running -- use an unconditional |
| * value so that it also works on !PREEMPT_COUNT kernels. |
| * |
| * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). |
| */ |
| #define INIT_PREEMPT_COUNT PREEMPT_OFFSET |
| |
| /* |
| * Initial preempt_count value; reflects the preempt_count schedule invariant |
| * which states that during context switches: |
| * |
| * preempt_count() == 2*PREEMPT_DISABLE_OFFSET |
| * |
| * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. |
| * Note: See finish_task_switch(). |
| */ |
| #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) |
| |
| /** |
| * struct thread_group_cputimer - thread group interval timer counts |
| * @cputime_atomic: atomic thread group interval timers. |
| * @running: true when there are timers running and |
| * @cputime_atomic receives updates. |
| * @checking_timer: true when a thread in the group is in the |
| * process of checking for thread group timers. |
| * |
| * This structure contains the version of task_cputime, above, that is |
| * used for thread group CPU timer calculations. |
| */ |
| struct thread_group_cputimer { |
| struct task_cputime_atomic cputime_atomic; |
| bool running; |
| bool checking_timer; |
| }; |
| |
| #include <linux/rwsem.h> |
| struct autogroup; |
| |
| /* |
| * NOTE! "signal_struct" does not have its own |
| * locking, because a shared signal_struct always |
| * implies a shared sighand_struct, so locking |
| * sighand_struct is always a proper superset of |
| * the locking of signal_struct. |
| */ |
| struct signal_struct { |
| atomic_t sigcnt; |
| atomic_t live; |
| int nr_threads; |
| struct list_head thread_head; |
| |
| wait_queue_head_t wait_chldexit; /* for wait4() */ |
| |
| /* current thread group signal load-balancing target: */ |
| struct task_struct *curr_target; |
| |
| /* shared signal handling: */ |
| struct sigpending shared_pending; |
| |
| /* thread group exit support */ |
| int group_exit_code; |
| /* overloaded: |
| * - notify group_exit_task when ->count is equal to notify_count |
| * - everyone except group_exit_task is stopped during signal delivery |
| * of fatal signals, group_exit_task processes the signal. |
| */ |
| int notify_count; |
| struct task_struct *group_exit_task; |
| |
| /* thread group stop support, overloads group_exit_code too */ |
| int group_stop_count; |
| unsigned int flags; /* see SIGNAL_* flags below */ |
| |
| /* |
| * PR_SET_CHILD_SUBREAPER marks a process, like a service |
| * manager, to re-parent orphan (double-forking) child processes |
| * to this process instead of 'init'. The service manager is |
| * able to receive SIGCHLD signals and is able to investigate |
| * the process until it calls wait(). All children of this |
| * process will inherit a flag if they should look for a |
| * child_subreaper process at exit. |
| */ |
| unsigned int is_child_subreaper:1; |
| unsigned int has_child_subreaper:1; |
| |
| /* POSIX.1b Interval Timers */ |
| int posix_timer_id; |
| struct list_head posix_timers; |
| |
| /* ITIMER_REAL timer for the process */ |
| struct hrtimer real_timer; |
| struct pid *leader_pid; |
| ktime_t it_real_incr; |
| |
| /* |
| * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use |
| * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these |
| * values are defined to 0 and 1 respectively |
| */ |
| struct cpu_itimer it[2]; |
| |
| /* |
| * Thread group totals for process CPU timers. |
| * See thread_group_cputimer(), et al, for details. |
| */ |
| struct thread_group_cputimer cputimer; |
| |
| /* Earliest-expiration cache. */ |
| struct task_cputime cputime_expires; |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| atomic_t tick_dep_mask; |
| #endif |
| |
| struct list_head cpu_timers[3]; |
| |
| struct pid *tty_old_pgrp; |
| |
| /* boolean value for session group leader */ |
| int leader; |
| |
| struct tty_struct *tty; /* NULL if no tty */ |
| |
| #ifdef CONFIG_SCHED_AUTOGROUP |
| struct autogroup *autogroup; |
| #endif |
| /* |
| * Cumulative resource counters for dead threads in the group, |
| * and for reaped dead child processes forked by this group. |
| * Live threads maintain their own counters and add to these |
| * in __exit_signal, except for the group leader. |
| */ |
| seqlock_t stats_lock; |
| cputime_t utime, stime, cutime, cstime; |
| cputime_t gtime; |
| cputime_t cgtime; |
| struct prev_cputime prev_cputime; |
| unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; |
| unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; |
| unsigned long inblock, oublock, cinblock, coublock; |
| unsigned long maxrss, cmaxrss; |
| struct task_io_accounting ioac; |
| |
| /* |
| * Cumulative ns of schedule CPU time fo dead threads in the |
| * group, not including a zombie group leader, (This only differs |
| * from jiffies_to_ns(utime + stime) if sched_clock uses something |
| * other than jiffies.) |
| */ |
| unsigned long long sum_sched_runtime; |
| |
| /* |
| * We don't bother to synchronize most readers of this at all, |
| * because there is no reader checking a limit that actually needs |
| * to get both rlim_cur and rlim_max atomically, and either one |
| * alone is a single word that can safely be read normally. |
| * getrlimit/setrlimit use task_lock(current->group_leader) to |
| * protect this instead of the siglock, because they really |
| * have no need to disable irqs. |
| */ |
| struct rlimit rlim[RLIM_NLIMITS]; |
| |
| #ifdef CONFIG_BSD_PROCESS_ACCT |
| struct pacct_struct pacct; /* per-process accounting information */ |
| #endif |
| #ifdef CONFIG_TASKSTATS |
| struct taskstats *stats; |
| #endif |
| #ifdef CONFIG_AUDIT |
| unsigned audit_tty; |
| struct tty_audit_buf *tty_audit_buf; |
| #endif |
| |
| oom_flags_t oom_flags; |
| short oom_score_adj; /* OOM kill score adjustment */ |
| short oom_score_adj_min; /* OOM kill score adjustment min value. |
| * Only settable by CAP_SYS_RESOURCE. */ |
| |
| struct mutex cred_guard_mutex; /* guard against foreign influences on |
| * credential calculations |
| * (notably. ptrace) */ |
| }; |
| |
| /* |
| * Bits in flags field of signal_struct. |
| */ |
| #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ |
| #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ |
| #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ |
| #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ |
| /* |
| * Pending notifications to parent. |
| */ |
| #define SIGNAL_CLD_STOPPED 0x00000010 |
| #define SIGNAL_CLD_CONTINUED 0x00000020 |
| #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) |
| |
| #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ |
| |
| /* If true, all threads except ->group_exit_task have pending SIGKILL */ |
| static inline int signal_group_exit(const struct signal_struct *sig) |
| { |
| return (sig->flags & SIGNAL_GROUP_EXIT) || |
| (sig->group_exit_task != NULL); |
| } |
| |
| /* |
| * Some day this will be a full-fledged user tracking system.. |
| */ |
| struct user_struct { |
| atomic_t __count; /* reference count */ |
| atomic_t processes; /* How many processes does this user have? */ |
| atomic_t sigpending; /* How many pending signals does this user have? */ |
| #ifdef CONFIG_INOTIFY_USER |
| atomic_t inotify_watches; /* How many inotify watches does this user have? */ |
| atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ |
| #endif |
| #ifdef CONFIG_FANOTIFY |
| atomic_t fanotify_listeners; |
| #endif |
| #ifdef CONFIG_EPOLL |
| atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ |
| #endif |
| #ifdef CONFIG_POSIX_MQUEUE |
| /* protected by mq_lock */ |
| unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ |
| #endif |
| unsigned long locked_shm; /* How many pages of mlocked shm ? */ |
| unsigned long unix_inflight; /* How many files in flight in unix sockets */ |
| atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ |
| |
| #ifdef CONFIG_KEYS |
| struct key *uid_keyring; /* UID specific keyring */ |
| struct key *session_keyring; /* UID's default session keyring */ |
| #endif |
| |
| /* Hash table maintenance information */ |
| struct hlist_node uidhash_node; |
| kuid_t uid; |
| |
| #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) |
| atomic_long_t locked_vm; |
| #endif |
| }; |
| |
| extern int uids_sysfs_init(void); |
| |
| extern struct user_struct *find_user(kuid_t); |
| |
| extern struct user_struct root_user; |
| #define INIT_USER (&root_user) |
| |
| |
| struct backing_dev_info; |
| struct reclaim_state; |
| |
| #ifdef CONFIG_SCHED_INFO |
| struct sched_info { |
| /* cumulative counters */ |
| unsigned long pcount; /* # of times run on this cpu */ |
| unsigned long long run_delay; /* time spent waiting on a runqueue */ |
| |
| /* timestamps */ |
| unsigned long long last_arrival,/* when we last ran on a cpu */ |
| last_queued; /* when we were last queued to run */ |
| }; |
| #endif /* CONFIG_SCHED_INFO */ |
| |
| #ifdef CONFIG_TASK_DELAY_ACCT |
| struct task_delay_info { |
| spinlock_t lock; |
| unsigned int flags; /* Private per-task flags */ |
| |
| /* For each stat XXX, add following, aligned appropriately |
| * |
| * struct timespec XXX_start, XXX_end; |
| * u64 XXX_delay; |
| * u32 XXX_count; |
| * |
| * Atomicity of updates to XXX_delay, XXX_count protected by |
| * single lock above (split into XXX_lock if contention is an issue). |
| */ |
| |
| /* |
| * XXX_count is incremented on every XXX operation, the delay |
| * associated with the operation is added to XXX_delay. |
| * XXX_delay contains the accumulated delay time in nanoseconds. |
| */ |
| u64 blkio_start; /* Shared by blkio, swapin */ |
| u64 blkio_delay; /* wait for sync block io completion */ |
| u64 swapin_delay; /* wait for swapin block io completion */ |
| u32 blkio_count; /* total count of the number of sync block */ |
| /* io operations performed */ |
| u32 swapin_count; /* total count of the number of swapin block */ |
| /* io operations performed */ |
| |
| u64 freepages_start; |
| u64 freepages_delay; /* wait for memory reclaim */ |
| u32 freepages_count; /* total count of memory reclaim */ |
| }; |
| #endif /* CONFIG_TASK_DELAY_ACCT */ |
| |
| static inline int sched_info_on(void) |
| { |
| #ifdef CONFIG_SCHEDSTATS |
| return 1; |
| #elif defined(CONFIG_TASK_DELAY_ACCT) |
| extern int delayacct_on; |
| return delayacct_on; |
| #else |
| return 0; |
| #endif |
| } |
| |
| #ifdef CONFIG_SCHEDSTATS |
| void force_schedstat_enabled(void); |
| #endif |
| |
| enum cpu_idle_type { |
| CPU_IDLE, |
| CPU_NOT_IDLE, |
| CPU_NEWLY_IDLE, |
| CPU_MAX_IDLE_TYPES |
| }; |
| |
| /* |
| * Increase resolution of cpu_capacity calculations |
| */ |
| #define SCHED_CAPACITY_SHIFT 10 |
| #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) |
| |
| /* |
| * Wake-queues are lists of tasks with a pending wakeup, whose |
| * callers have already marked the task as woken internally, |
| * and can thus carry on. A common use case is being able to |
| * do the wakeups once the corresponding user lock as been |
| * released. |
| * |
| * We hold reference to each task in the list across the wakeup, |
| * thus guaranteeing that the memory is still valid by the time |
| * the actual wakeups are performed in wake_up_q(). |
| * |
| * One per task suffices, because there's never a need for a task to be |
| * in two wake queues simultaneously; it is forbidden to abandon a task |
| * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is |
| * already in a wake queue, the wakeup will happen soon and the second |
| * waker can just skip it. |
| * |
| * The WAKE_Q macro declares and initializes the list head. |
| * wake_up_q() does NOT reinitialize the list; it's expected to be |
| * called near the end of a function, where the fact that the queue is |
| * not used again will be easy to see by inspection. |
| * |
| * Note that this can cause spurious wakeups. schedule() callers |
| * must ensure the call is done inside a loop, confirming that the |
| * wakeup condition has in fact occurred. |
| */ |
| struct wake_q_node { |
| struct wake_q_node *next; |
| }; |
| |
| struct wake_q_head { |
| struct wake_q_node *first; |
| struct wake_q_node **lastp; |
| }; |
| |
| #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) |
| |
| #define WAKE_Q(name) \ |
| struct wake_q_head name = { WAKE_Q_TAIL, &name.first } |
| |
| extern void wake_q_add(struct wake_q_head *head, |
| struct task_struct *task); |
| extern void wake_up_q(struct wake_q_head *head); |
| |
| /* |
| * sched-domains (multiprocessor balancing) declarations: |
| */ |
| #ifdef CONFIG_SMP |
| #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ |
| #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ |
| #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ |
| #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ |
| #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ |
| #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ |
| #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ |
| #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ |
| #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ |
| #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ |
| #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ |
| #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ |
| #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ |
| #define SD_NUMA 0x4000 /* cross-node balancing */ |
| |
| #ifdef CONFIG_SCHED_SMT |
| static inline int cpu_smt_flags(void) |
| { |
| return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; |
| } |
| #endif |
| |
| #ifdef CONFIG_SCHED_MC |
| static inline int cpu_core_flags(void) |
| { |
| return SD_SHARE_PKG_RESOURCES; |
| } |
| #endif |
| |
| #ifdef CONFIG_NUMA |
| static inline int cpu_numa_flags(void) |
| { |
| return SD_NUMA; |
| } |
| #endif |
| |
| struct sched_domain_attr { |
| int relax_domain_level; |
| }; |
| |
| #define SD_ATTR_INIT (struct sched_domain_attr) { \ |
| .relax_domain_level = -1, \ |
| } |
| |
| extern int sched_domain_level_max; |
| |
| struct sched_group; |
| |
| struct sched_domain { |
| /* These fields must be setup */ |
| struct sched_domain *parent; /* top domain must be null terminated */ |
| struct sched_domain *child; /* bottom domain must be null terminated */ |
| struct sched_group *groups; /* the balancing groups of the domain */ |
| unsigned long min_interval; /* Minimum balance interval ms */ |
| unsigned long max_interval; /* Maximum balance interval ms */ |
| unsigned int busy_factor; /* less balancing by factor if busy */ |
| unsigned int imbalance_pct; /* No balance until over watermark */ |
| unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ |
| unsigned int busy_idx; |
| unsigned int idle_idx; |
| unsigned int newidle_idx; |
| unsigned int wake_idx; |
| unsigned int forkexec_idx; |
| unsigned int smt_gain; |
| |
| int nohz_idle; /* NOHZ IDLE status */ |
| int flags; /* See SD_* */ |
| int level; |
| |
| /* Runtime fields. */ |
| unsigned long last_balance; /* init to jiffies. units in jiffies */ |
| unsigned int balance_interval; /* initialise to 1. units in ms. */ |
| unsigned int nr_balance_failed; /* initialise to 0 */ |
| |
| /* idle_balance() stats */ |
| u64 max_newidle_lb_cost; |
| unsigned long next_decay_max_lb_cost; |
| |
| #ifdef CONFIG_SCHEDSTATS |
| /* load_balance() stats */ |
| unsigned int lb_count[CPU_MAX_IDLE_TYPES]; |
| unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; |
| unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; |
| unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; |
| unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; |
| unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; |
| unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; |
| unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; |
| |
| /* Active load balancing */ |
| unsigned int alb_count; |
| unsigned int alb_failed; |
| unsigned int alb_pushed; |
| |
| /* SD_BALANCE_EXEC stats */ |
| unsigned int sbe_count; |
| unsigned int sbe_balanced; |
| unsigned int sbe_pushed; |
| |
| /* SD_BALANCE_FORK stats */ |
| unsigned int sbf_count; |
| unsigned int sbf_balanced; |
| unsigned int sbf_pushed; |
| |
| /* try_to_wake_up() stats */ |
| unsigned int ttwu_wake_remote; |
| unsigned int ttwu_move_affine; |
| unsigned int ttwu_move_balance; |
| #endif |
| #ifdef CONFIG_SCHED_DEBUG |
| char *name; |
| #endif |
| union { |
| void *private; /* used during construction */ |
| struct rcu_head rcu; /* used during destruction */ |
| }; |
| |
| unsigned int span_weight; |
| /* |
| * Span of all CPUs in this domain. |
| * |
| * NOTE: this field is variable length. (Allocated dynamically |
| * by attaching extra space to the end of the structure, |
| * depending on how many CPUs the kernel has booted up with) |
| */ |
| unsigned long span[0]; |
| }; |
| |
| static inline struct cpumask *sched_domain_span(struct sched_domain *sd) |
| { |
| return to_cpumask(sd->span); |
| } |
| |
| extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
| struct sched_domain_attr *dattr_new); |
| |
| /* Allocate an array of sched domains, for partition_sched_domains(). */ |
| cpumask_var_t *alloc_sched_domains(unsigned int ndoms); |
| void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); |
| |
| bool cpus_share_cache(int this_cpu, int that_cpu); |
| |
| typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); |
| typedef int (*sched_domain_flags_f)(void); |
| |
| #define SDTL_OVERLAP 0x01 |
| |
| struct sd_data { |
| struct sched_domain **__percpu sd; |
| struct sched_group **__percpu sg; |
| struct sched_group_capacity **__percpu sgc; |
| }; |
| |
| struct sched_domain_topology_level { |
| sched_domain_mask_f mask; |
| sched_domain_flags_f sd_flags; |
| int flags; |
| int numa_level; |
| struct sd_data data; |
| #ifdef CONFIG_SCHED_DEBUG |
| char *name; |
| #endif |
| }; |
| |
| extern void set_sched_topology(struct sched_domain_topology_level *tl); |
| extern void wake_up_if_idle(int cpu); |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| # define SD_INIT_NAME(type) .name = #type |
| #else |
| # define SD_INIT_NAME(type) |
| #endif |
| |
| #else /* CONFIG_SMP */ |
| |
| struct sched_domain_attr; |
| |
| static inline void |
| partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], |
| struct sched_domain_attr *dattr_new) |
| { |
| } |
| |
| static inline bool cpus_share_cache(int this_cpu, int that_cpu) |
| { |
| return true; |
| } |
| |
| #endif /* !CONFIG_SMP */ |
| |
| |
| struct io_context; /* See blkdev.h */ |
| |
| |
| #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK |
| extern void prefetch_stack(struct task_struct *t); |
| #else |
| static inline void prefetch_stack(struct task_struct *t) { } |
| #endif |
| |
| struct audit_context; /* See audit.c */ |
| struct mempolicy; |
| struct pipe_inode_info; |
| struct uts_namespace; |
| |
| struct load_weight { |
| unsigned long weight; |
| u32 inv_weight; |
| }; |
| |
| /* |
| * The load_avg/util_avg accumulates an infinite geometric series. |
| * 1) load_avg factors frequency scaling into the amount of time that a |
| * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the |
| * aggregated such weights of all runnable and blocked sched_entities. |
| * 2) util_avg factors frequency and cpu scaling into the amount of time |
| * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE]. |
| * For cfs_rq, it is the aggregated such times of all runnable and |
| * blocked sched_entities. |
| * The 64 bit load_sum can: |
| * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with |
| * the highest weight (=88761) always runnable, we should not overflow |
| * 2) for entity, support any load.weight always runnable |
| */ |
| struct sched_avg { |
| u64 last_update_time, load_sum; |
| u32 util_sum, period_contrib; |
| unsigned long load_avg, util_avg; |
| }; |
| |
| #ifdef CONFIG_SCHEDSTATS |
| struct sched_statistics { |
| u64 wait_start; |
| u64 wait_max; |
| u64 wait_count; |
| u64 wait_sum; |
| u64 iowait_count; |
| u64 iowait_sum; |
| |
| u64 sleep_start; |
| u64 sleep_max; |
| s64 sum_sleep_runtime; |
| |
| u64 block_start; |
| u64 block_max; |
| u64 exec_max; |
| u64 slice_max; |
| |
| u64 nr_migrations_cold; |
| u64 nr_failed_migrations_affine; |
| u64 nr_failed_migrations_running; |
| u64 nr_failed_migrations_hot; |
| u64 nr_forced_migrations; |
| |
| u64 nr_wakeups; |
| u64 nr_wakeups_sync; |
| u64 nr_wakeups_migrate; |
| u64 nr_wakeups_local; |
| u64 nr_wakeups_remote; |
| u64 nr_wakeups_affine; |
| u64 nr_wakeups_affine_attempts; |
| u64 nr_wakeups_passive; |
| u64 nr_wakeups_idle; |
| }; |
| #endif |
| |
| struct sched_entity { |
| struct load_weight load; /* for load-balancing */ |
| struct rb_node run_node; |
| struct list_head group_node; |
| unsigned int on_rq; |
| |
| u64 exec_start; |
| u64 sum_exec_runtime; |
| u64 vruntime; |
| u64 prev_sum_exec_runtime; |
| |
| u64 nr_migrations; |
| |
| #ifdef CONFIG_SCHEDSTATS |
| struct sched_statistics statistics; |
| #endif |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| int depth; |
| struct sched_entity *parent; |
| /* rq on which this entity is (to be) queued: */ |
| struct cfs_rq *cfs_rq; |
| /* rq "owned" by this entity/group: */ |
| struct cfs_rq *my_q; |
| #endif |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Per entity load average tracking. |
| * |
| * Put into separate cache line so it does not |
| * collide with read-mostly values above. |
| */ |
| struct sched_avg avg ____cacheline_aligned_in_smp; |
| #endif |
| }; |
| |
| struct sched_rt_entity { |
| struct list_head run_list; |
| unsigned long timeout; |
| unsigned long watchdog_stamp; |
| unsigned int time_slice; |
| unsigned short on_rq; |
| unsigned short on_list; |
| |
| struct sched_rt_entity *back; |
| #ifdef CONFIG_RT_GROUP_SCHED |
| struct sched_rt_entity *parent; |
| /* rq on which this entity is (to be) queued: */ |
| struct rt_rq *rt_rq; |
| /* rq "owned" by this entity/group: */ |
| struct rt_rq *my_q; |
| #endif |
| }; |
| |
| struct sched_dl_entity { |
| struct rb_node rb_node; |
| |
| /* |
| * Original scheduling parameters. Copied here from sched_attr |
| * during sched_setattr(), they will remain the same until |
| * the next sched_setattr(). |
| */ |
| u64 dl_runtime; /* maximum runtime for each instance */ |
| u64 dl_deadline; /* relative deadline of each instance */ |
| u64 dl_period; /* separation of two instances (period) */ |
| u64 dl_bw; /* dl_runtime / dl_deadline */ |
| |
| /* |
| * Actual scheduling parameters. Initialized with the values above, |
| * they are continously updated during task execution. Note that |
| * the remaining runtime could be < 0 in case we are in overrun. |
| */ |
| s64 runtime; /* remaining runtime for this instance */ |
| u64 deadline; /* absolute deadline for this instance */ |
| unsigned int flags; /* specifying the scheduler behaviour */ |
| |
| /* |
| * Some bool flags: |
| * |
| * @dl_throttled tells if we exhausted the runtime. If so, the |
| * task has to wait for a replenishment to be performed at the |
| * next firing of dl_timer. |
| * |
| * @dl_boosted tells if we are boosted due to DI. If so we are |
| * outside bandwidth enforcement mechanism (but only until we |
| * exit the critical section); |
| * |
| * @dl_yielded tells if task gave up the cpu before consuming |
| * all its available runtime during the last job. |
| */ |
| int dl_throttled, dl_boosted, dl_yielded; |
| |
| /* |
| * Bandwidth enforcement timer. Each -deadline task has its |
| * own bandwidth to be enforced, thus we need one timer per task. |
| */ |
| struct hrtimer dl_timer; |
| }; |
| |
| union rcu_special { |
| struct { |
| u8 blocked; |
| u8 need_qs; |
| u8 exp_need_qs; |
| u8 pad; /* Otherwise the compiler can store garbage here. */ |
| } b; /* Bits. */ |
| u32 s; /* Set of bits. */ |
| }; |
| struct rcu_node; |
| |
| enum perf_event_task_context { |
| perf_invalid_context = -1, |
| perf_hw_context = 0, |
| perf_sw_context, |
| perf_nr_task_contexts, |
| }; |
| |
| /* Track pages that require TLB flushes */ |
| struct tlbflush_unmap_batch { |
| /* |
| * Each bit set is a CPU that potentially has a TLB entry for one of |
| * the PFNs being flushed. See set_tlb_ubc_flush_pending(). |
| */ |
| struct cpumask cpumask; |
| |
| /* True if any bit in cpumask is set */ |
| bool flush_required; |
| |
| /* |
| * If true then the PTE was dirty when unmapped. The entry must be |
| * flushed before IO is initiated or a stale TLB entry potentially |
| * allows an update without redirtying the page. |
| */ |
| bool writable; |
| }; |
| |
| struct task_struct { |
| volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ |
| void *stack; |
| atomic_t usage; |
| unsigned int flags; /* per process flags, defined below */ |
| unsigned int ptrace; |
| |
| #ifdef CONFIG_SMP |
| struct llist_node wake_entry; |
| int on_cpu; |
| unsigned int wakee_flips; |
| unsigned long wakee_flip_decay_ts; |
| struct task_struct *last_wakee; |
| |
| int wake_cpu; |
| #endif |
| int on_rq; |
| |
| int prio, static_prio, normal_prio; |
| unsigned int rt_priority; |
| const struct sched_class *sched_class; |
| struct sched_entity se; |
| struct sched_rt_entity rt; |
| #ifdef CONFIG_CGROUP_SCHED |
| struct task_group *sched_task_group; |
| #endif |
| struct sched_dl_entity dl; |
| |
| #ifdef CONFIG_PREEMPT_NOTIFIERS |
| /* list of struct preempt_notifier: */ |
| struct hlist_head preempt_notifiers; |
| #endif |
| |
| #ifdef CONFIG_BLK_DEV_IO_TRACE |
| unsigned int btrace_seq; |
| #endif |
| |
| unsigned int policy; |
| int nr_cpus_allowed; |
| cpumask_t cpus_allowed; |
| |
| #ifdef CONFIG_PREEMPT_RCU |
| int rcu_read_lock_nesting; |
| union rcu_special rcu_read_unlock_special; |
| struct list_head rcu_node_entry; |
| struct rcu_node *rcu_blocked_node; |
| #endif /* #ifdef CONFIG_PREEMPT_RCU */ |
| #ifdef CONFIG_TASKS_RCU |
| unsigned long rcu_tasks_nvcsw; |
| bool rcu_tasks_holdout; |
| struct list_head rcu_tasks_holdout_list; |
| int rcu_tasks_idle_cpu; |
| #endif /* #ifdef CONFIG_TASKS_RCU */ |
| |
| #ifdef CONFIG_SCHED_INFO |
| struct sched_info sched_info; |
| #endif |
| |
| struct list_head tasks; |
| #ifdef CONFIG_SMP |
| struct plist_node pushable_tasks; |
| struct rb_node pushable_dl_tasks; |
| #endif |
| |
| struct mm_struct *mm, *active_mm; |
| /* per-thread vma caching */ |
| u32 vmacache_seqnum; |
| struct vm_area_struct *vmacache[VMACACHE_SIZE]; |
| #if defined(SPLIT_RSS_COUNTING) |
| struct task_rss_stat rss_stat; |
| #endif |
| /* task state */ |
| int exit_state; |
| int exit_code, exit_signal; |
| int pdeath_signal; /* The signal sent when the parent dies */ |
| unsigned long jobctl; /* JOBCTL_*, siglock protected */ |
| |
| /* Used for emulating ABI behavior of previous Linux versions */ |
| unsigned int personality; |
| |
| /* scheduler bits, serialized by scheduler locks */ |
| unsigned sched_reset_on_fork:1; |
| unsigned sched_contributes_to_load:1; |
| unsigned sched_migrated:1; |
| unsigned :0; /* force alignment to the next boundary */ |
| |
| /* unserialized, strictly 'current' */ |
| unsigned in_execve:1; /* bit to tell LSMs we're in execve */ |
| unsigned in_iowait:1; |
| #ifdef CONFIG_MEMCG |
| unsigned memcg_may_oom:1; |
| #ifndef CONFIG_SLOB |
| unsigned memcg_kmem_skip_account:1; |
| #endif |
| #endif |
| #ifdef CONFIG_COMPAT_BRK |
| unsigned brk_randomized:1; |
| #endif |
| |
| unsigned long atomic_flags; /* Flags needing atomic access. */ |
| |
| struct restart_block restart_block; |
| |
| pid_t pid; |
| pid_t tgid; |
| |
| #ifdef CONFIG_CC_STACKPROTECTOR |
| /* Canary value for the -fstack-protector gcc feature */ |
| unsigned long stack_canary; |
| #endif |
| /* |
| * pointers to (original) parent process, youngest child, younger sibling, |
| * older sibling, respectively. (p->father can be replaced with |
| * p->real_parent->pid) |
| */ |
| struct task_struct __rcu *real_parent; /* real parent process */ |
| struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ |
| /* |
| * children/sibling forms the list of my natural children |
| */ |
| struct list_head children; /* list of my children */ |
| struct list_head sibling; /* linkage in my parent's children list */ |
| struct task_struct *group_leader; /* threadgroup leader */ |
| |
| /* |
| * ptraced is the list of tasks this task is using ptrace on. |
| * This includes both natural children and PTRACE_ATTACH targets. |
| * p->ptrace_entry is p's link on the p->parent->ptraced list. |
| */ |
| struct list_head ptraced; |
| struct list_head ptrace_entry; |
| |
| /* PID/PID hash table linkage. */ |
| struct pid_link pids[PIDTYPE_MAX]; |
| struct list_head thread_group; |
| struct list_head thread_node; |
| |
| struct completion *vfork_done; /* for vfork() */ |
| int __user *set_child_tid; /* CLONE_CHILD_SETTID */ |
| int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ |
| |
| cputime_t utime, stime, utimescaled, stimescaled; |
| cputime_t gtime; |
| struct prev_cputime prev_cputime; |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN |
| seqcount_t vtime_seqcount; |
| unsigned long long vtime_snap; |
| enum { |
| /* Task is sleeping or running in a CPU with VTIME inactive */ |
| VTIME_INACTIVE = 0, |
| /* Task runs in userspace in a CPU with VTIME active */ |
| VTIME_USER, |
| /* Task runs in kernelspace in a CPU with VTIME active */ |
| VTIME_SYS, |
| } vtime_snap_whence; |
| #endif |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| atomic_t tick_dep_mask; |
| #endif |
| unsigned long nvcsw, nivcsw; /* context switch counts */ |
| u64 start_time; /* monotonic time in nsec */ |
| u64 real_start_time; /* boot based time in nsec */ |
| /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ |
| unsigned long min_flt, maj_flt; |
| |
| struct task_cputime cputime_expires; |
| struct list_head cpu_timers[3]; |
| |
| /* process credentials */ |
| const struct cred __rcu *real_cred; /* objective and real subjective task |
| * credentials (COW) */ |
| const struct cred __rcu *cred; /* effective (overridable) subjective task |
| * credentials (COW) */ |
| char comm[TASK_COMM_LEN]; /* executable name excluding path |
| - access with [gs]et_task_comm (which lock |
| it with task_lock()) |
| - initialized normally by setup_new_exec */ |
| /* file system info */ |
| struct nameidata *nameidata; |
| #ifdef CONFIG_SYSVIPC |
| /* ipc stuff */ |
| struct sysv_sem sysvsem; |
| struct sysv_shm sysvshm; |
| #endif |
| #ifdef CONFIG_DETECT_HUNG_TASK |
| /* hung task detection */ |
| unsigned long last_switch_count; |
| #endif |
| /* filesystem information */ |
| struct fs_struct *fs; |
| /* open file information */ |
| struct files_struct *files; |
| /* namespaces */ |
| struct nsproxy *nsproxy; |
| /* signal handlers */ |
| struct signal_struct *signal; |
| struct sighand_struct *sighand; |
| |
| sigset_t blocked, real_blocked; |
| sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ |
| struct sigpending pending; |
| |
| unsigned long sas_ss_sp; |
| size_t sas_ss_size; |
| |
| struct callback_head *task_works; |
| |
| struct audit_context *audit_context; |
| #ifdef CONFIG_AUDITSYSCALL |
| kuid_t loginuid; |
| unsigned int sessionid; |
| #endif |
| struct seccomp seccomp; |
| |
| /* Thread group tracking */ |
| u32 parent_exec_id; |
| u32 self_exec_id; |
| /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, |
| * mempolicy */ |
| spinlock_t alloc_lock; |
| |
| /* Protection of the PI data structures: */ |
| raw_spinlock_t pi_lock; |
| |
| struct wake_q_node wake_q; |
| |
| #ifdef CONFIG_RT_MUTEXES |
| /* PI waiters blocked on a rt_mutex held by this task */ |
| struct rb_root pi_waiters; |
| struct rb_node *pi_waiters_leftmost; |
| /* Deadlock detection and priority inheritance handling */ |
| struct rt_mutex_waiter *pi_blocked_on; |
| #endif |
| |
| #ifdef CONFIG_DEBUG_MUTEXES |
| /* mutex deadlock detection */ |
| struct mutex_waiter *blocked_on; |
| #endif |
| #ifdef CONFIG_TRACE_IRQFLAGS |
| unsigned int irq_events; |
| unsigned long hardirq_enable_ip; |
| unsigned long hardirq_disable_ip; |
| unsigned int hardirq_enable_event; |
| unsigned int hardirq_disable_event; |
| int hardirqs_enabled; |
| int hardirq_context; |
| unsigned long softirq_disable_ip; |
| unsigned long softirq_enable_ip; |
| unsigned int softirq_disable_event; |
| unsigned int softirq_enable_event; |
| int softirqs_enabled; |
| int softirq_context; |
| #endif |
| #ifdef CONFIG_LOCKDEP |
| # define MAX_LOCK_DEPTH 48UL |
| u64 curr_chain_key; |
| int lockdep_depth; |
| unsigned int lockdep_recursion; |
| struct held_lock held_locks[MAX_LOCK_DEPTH]; |
| gfp_t lockdep_reclaim_gfp; |
| #endif |
| #ifdef CONFIG_UBSAN |
| unsigned int in_ubsan; |
| #endif |
| |
| /* journalling filesystem info */ |
| void *journal_info; |
| |
| /* stacked block device info */ |
| struct bio_list *bio_list; |
| |
| #ifdef CONFIG_BLOCK |
| /* stack plugging */ |
| struct blk_plug *plug; |
| #endif |
| |
| /* VM state */ |
| struct reclaim_state *reclaim_state; |
| |
| struct backing_dev_info *backing_dev_info; |
| |
| struct io_context *io_context; |
| |
| unsigned long ptrace_message; |
| siginfo_t *last_siginfo; /* For ptrace use. */ |
| struct task_io_accounting ioac; |
| #if defined(CONFIG_TASK_XACCT) |
| u64 acct_rss_mem1; /* accumulated rss usage */ |
| u64 acct_vm_mem1; /* accumulated virtual memory usage */ |
| cputime_t acct_timexpd; /* stime + utime since last update */ |
| #endif |
| #ifdef CONFIG_CPUSETS |
| nodemask_t mems_allowed; /* Protected by alloc_lock */ |
| seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ |
| int cpuset_mem_spread_rotor; |
| int cpuset_slab_spread_rotor; |
| #endif |
| #ifdef CONFIG_CGROUPS |
| /* Control Group info protected by css_set_lock */ |
| struct css_set __rcu *cgroups; |
| /* cg_list protected by css_set_lock and tsk->alloc_lock */ |
| struct list_head cg_list; |
| #endif |
| #ifdef CONFIG_FUTEX |
| struct robust_list_head __user *robust_list; |
| #ifdef CONFIG_COMPAT |
| struct compat_robust_list_head __user *compat_robust_list; |
| #endif |
| struct list_head pi_state_list; |
| struct futex_pi_state *pi_state_cache; |
| #endif |
| #ifdef CONFIG_PERF_EVENTS |
| struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; |
| struct mutex perf_event_mutex; |
| struct list_head perf_event_list; |
| #endif |
| #ifdef CONFIG_DEBUG_PREEMPT |
| unsigned long preempt_disable_ip; |
| #endif |
| #ifdef CONFIG_NUMA |
| struct mempolicy *mempolicy; /* Protected by alloc_lock */ |
| short il_next; |
| short pref_node_fork; |
| #endif |
| #ifdef CONFIG_NUMA_BALANCING |
| int numa_scan_seq; |
| unsigned int numa_scan_period; |
| unsigned int numa_scan_period_max; |
| int numa_preferred_nid; |
| unsigned long numa_migrate_retry; |
| u64 node_stamp; /* migration stamp */ |
| u64 last_task_numa_placement; |
| u64 last_sum_exec_runtime; |
| struct callback_head numa_work; |
| |
| struct list_head numa_entry; |
| struct numa_group *numa_group; |
| |
| /* |
| * numa_faults is an array split into four regions: |
| * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer |
| * in this precise order. |
| * |
| * faults_memory: Exponential decaying average of faults on a per-node |
| * basis. Scheduling placement decisions are made based on these |
| * counts. The values remain static for the duration of a PTE scan. |
| * faults_cpu: Track the nodes the process was running on when a NUMA |
| * hinting fault was incurred. |
| * faults_memory_buffer and faults_cpu_buffer: Record faults per node |
| * during the current scan window. When the scan completes, the counts |
| * in faults_memory and faults_cpu decay and these values are copied. |
| */ |
| unsigned long *numa_faults; |
| unsigned long total_numa_faults; |
| |
| /* |
| * numa_faults_locality tracks if faults recorded during the last |
| * scan window were remote/local or failed to migrate. The task scan |
| * period is adapted based on the locality of the faults with different |
| * weights depending on whether they were shared or private faults |
| */ |
| unsigned long numa_faults_locality[3]; |
| |
| unsigned long numa_pages_migrated; |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
| struct tlbflush_unmap_batch tlb_ubc; |
| #endif |
| |
| struct rcu_head rcu; |
| |
| /* |
| * cache last used pipe for splice |
| */ |
| struct pipe_inode_info *splice_pipe; |
| |
| struct page_frag task_frag; |
| |
| #ifdef CONFIG_TASK_DELAY_ACCT |
| struct task_delay_info *delays; |
| #endif |
| #ifdef CONFIG_FAULT_INJECTION |
| int make_it_fail; |
| #endif |
| /* |
| * when (nr_dirtied >= nr_dirtied_pause), it's time to call |
| * balance_dirty_pages() for some dirty throttling pause |
| */ |
| int nr_dirtied; |
| int nr_dirtied_pause; |
| unsigned long dirty_paused_when; /* start of a write-and-pause period */ |
| |
| #ifdef CONFIG_LATENCYTOP |
| int latency_record_count; |
| struct latency_record latency_record[LT_SAVECOUNT]; |
| #endif |
| /* |
| * time slack values; these are used to round up poll() and |
| * select() etc timeout values. These are in nanoseconds. |
| */ |
| u64 timer_slack_ns; |
| u64 default_timer_slack_ns; |
| |
| #ifdef CONFIG_KASAN |
| unsigned int kasan_depth; |
| #endif |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| /* Index of current stored address in ret_stack */ |
| int curr_ret_stack; |
| /* Stack of return addresses for return function tracing */ |
| struct ftrace_ret_stack *ret_stack; |
| /* time stamp for last schedule */ |
| unsigned long long ftrace_timestamp; |
| /* |
| * Number of functions that haven't been traced |
| * because of depth overrun. |
| */ |
| atomic_t trace_overrun; |
| /* Pause for the tracing */ |
| atomic_t tracing_graph_pause; |
| #endif |
| #ifdef CONFIG_TRACING |
| /* state flags for use by tracers */ |
| unsigned long trace; |
| /* bitmask and counter of trace recursion */ |
| unsigned long trace_recursion; |
| #endif /* CONFIG_TRACING */ |
| #ifdef CONFIG_KCOV |
| /* Coverage collection mode enabled for this task (0 if disabled). */ |
| enum kcov_mode kcov_mode; |
| /* Size of the kcov_area. */ |
| unsigned kcov_size; |
| /* Buffer for coverage collection. */ |
| void *kcov_area; |
| /* kcov desciptor wired with this task or NULL. */ |
| struct kcov *kcov; |
| #endif |
| #ifdef CONFIG_MEMCG |
| struct mem_cgroup *memcg_in_oom; |
| gfp_t memcg_oom_gfp_mask; |
| int memcg_oom_order; |
| |
| /* number of pages to reclaim on returning to userland */ |
| unsigned int memcg_nr_pages_over_high; |
| #endif |
| #ifdef CONFIG_UPROBES |
| struct uprobe_task *utask; |
| #endif |
| #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) |
| unsigned int sequential_io; |
| unsigned int sequential_io_avg; |
| #endif |
| #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| unsigned long task_state_change; |
| #endif |
| int pagefault_disabled; |
| #ifdef CONFIG_MMU |
| struct task_struct *oom_reaper_list; |
| #endif |
| /* CPU-specific state of this task */ |
| struct thread_struct thread; |
| /* |
| * WARNING: on x86, 'thread_struct' contains a variable-sized |
| * structure. It *MUST* be at the end of 'task_struct'. |
| * |
| * Do not put anything below here! |
| */ |
| }; |
| |
| #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT |
| extern int arch_task_struct_size __read_mostly; |
| #else |
| # define arch_task_struct_size (sizeof(struct task_struct)) |
| #endif |
| |
| /* Future-safe accessor for struct task_struct's cpus_allowed. */ |
| #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) |
| |
| #define TNF_MIGRATED 0x01 |
| #define TNF_NO_GROUP 0x02 |
| #define TNF_SHARED 0x04 |
| #define TNF_FAULT_LOCAL 0x08 |
| #define TNF_MIGRATE_FAIL 0x10 |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| extern void task_numa_fault(int last_node, int node, int pages, int flags); |
| extern pid_t task_numa_group_id(struct task_struct *p); |
| extern void set_numabalancing_state(bool enabled); |
| extern void task_numa_free(struct task_struct *p); |
| extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, |
| int src_nid, int dst_cpu); |
| #else |
| static inline void task_numa_fault(int last_node, int node, int pages, |
| int flags) |
| { |
| } |
| static inline pid_t task_numa_group_id(struct task_struct *p) |
| { |
| return 0; |
| } |
| static inline void set_numabalancing_state(bool enabled) |
| { |
| } |
| static inline void task_numa_free(struct task_struct *p) |
| { |
| } |
| static inline bool should_numa_migrate_memory(struct task_struct *p, |
| struct page *page, int src_nid, int dst_cpu) |
| { |
| return true; |
| } |
| #endif |
| |
| static inline struct pid *task_pid(struct task_struct *task) |
| { |
| return task->pids[PIDTYPE_PID].pid; |
| } |
| |
| static inline struct pid *task_tgid(struct task_struct *task) |
| { |
| return task->group_leader->pids[PIDTYPE_PID].pid; |
| } |
| |
| /* |
| * Without tasklist or rcu lock it is not safe to dereference |
| * the result of task_pgrp/task_session even if task == current, |
| * we can race with another thread doing sys_setsid/sys_setpgid. |
| */ |
| static inline struct pid *task_pgrp(struct task_struct *task) |
| { |
| return task->group_leader->pids[PIDTYPE_PGID].pid; |
| } |
| |
| static inline struct pid *task_session(struct task_struct *task) |
| { |
| return task->group_leader->pids[PIDTYPE_SID].pid; |
| } |
| |
| struct pid_namespace; |
| |
| /* |
| * the helpers to get the task's different pids as they are seen |
| * from various namespaces |
| * |
| * task_xid_nr() : global id, i.e. the id seen from the init namespace; |
| * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of |
| * current. |
| * task_xid_nr_ns() : id seen from the ns specified; |
| * |
| * set_task_vxid() : assigns a virtual id to a task; |
| * |
| * see also pid_nr() etc in include/linux/pid.h |
| */ |
| pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, |
| struct pid_namespace *ns); |
| |
| static inline pid_t task_pid_nr(struct task_struct *tsk) |
| { |
| return tsk->pid; |
| } |
| |
| static inline pid_t task_pid_nr_ns(struct task_struct *tsk, |
| struct pid_namespace *ns) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); |
| } |
| |
| static inline pid_t task_pid_vnr(struct task_struct *tsk) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); |
| } |
| |
| |
| static inline pid_t task_tgid_nr(struct task_struct *tsk) |
| { |
| return tsk->tgid; |
| } |
| |
| pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); |
| |
| static inline pid_t task_tgid_vnr(struct task_struct *tsk) |
| { |
| return pid_vnr(task_tgid(tsk)); |
| } |
| |
| |
| static inline int pid_alive(const struct task_struct *p); |
| static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) |
| { |
| pid_t pid = 0; |
| |
| rcu_read_lock(); |
| if (pid_alive(tsk)) |
| pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); |
| rcu_read_unlock(); |
| |
| return pid; |
| } |
| |
| static inline pid_t task_ppid_nr(const struct task_struct *tsk) |
| { |
| return task_ppid_nr_ns(tsk, &init_pid_ns); |
| } |
| |
| static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, |
| struct pid_namespace *ns) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); |
| } |
| |
| static inline pid_t task_pgrp_vnr(struct task_struct *tsk) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); |
| } |
| |
| |
| static inline pid_t task_session_nr_ns(struct task_struct *tsk, |
| struct pid_namespace *ns) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); |
| } |
| |
| static inline pid_t task_session_vnr(struct task_struct *tsk) |
| { |
| return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); |
| } |
| |
| /* obsolete, do not use */ |
| static inline pid_t task_pgrp_nr(struct task_struct *tsk) |
| { |
| return task_pgrp_nr_ns(tsk, &init_pid_ns); |
| } |
| |
| /** |
| * pid_alive - check that a task structure is not stale |
| * @p: Task structure to be checked. |
| * |
| * Test if a process is not yet dead (at most zombie state) |
| * If pid_alive fails, then pointers within the task structure |
| * can be stale and must not be dereferenced. |
| * |
| * Return: 1 if the process is alive. 0 otherwise. |
| */ |
| static inline int pid_alive(const struct task_struct *p) |
| { |
| return p->pids[PIDTYPE_PID].pid != NULL; |
| } |
| |
| /** |
| * is_global_init - check if a task structure is init. Since init |
| * is free to have sub-threads we need to check tgid. |
| * @tsk: Task structure to be checked. |
| * |
| * Check if a task structure is the first user space task the kernel created. |
| * |
| * Return: 1 if the task structure is init. 0 otherwise. |
| */ |
| static inline int is_global_init(struct task_struct *tsk) |
| { |
| return task_tgid_nr(tsk) == 1; |
| } |
| |
| extern struct pid *cad_pid; |
| |
| extern void free_task(struct task_struct *tsk); |
| #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) |
| |
| extern void __put_task_struct(struct task_struct *t); |
| |
| static inline void put_task_struct(struct task_struct *t) |
| { |
| if (atomic_dec_and_test(&t->usage)) |
| __put_task_struct(t); |
| } |
| |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN |
| extern void task_cputime(struct task_struct *t, |
| cputime_t *utime, cputime_t *stime); |
| extern void task_cputime_scaled(struct task_struct *t, |
| cputime_t *utimescaled, cputime_t *stimescaled); |
| extern cputime_t task_gtime(struct task_struct *t); |
| #else |
| static inline void task_cputime(struct task_struct *t, |
| cputime_t *utime, cputime_t *stime) |
| { |
| if (utime) |
| *utime = t->utime; |
| if (stime) |
| *stime = t->stime; |
| } |
| |
| static inline void task_cputime_scaled(struct task_struct *t, |
| cputime_t *utimescaled, |
| cputime_t *stimescaled) |
| { |
| if (utimescaled) |
| *utimescaled = t->utimescaled; |
| if (stimescaled) |
| *stimescaled = t->stimescaled; |
| } |
| |
| static inline cputime_t task_gtime(struct task_struct *t) |
| { |
| return t->gtime; |
| } |
| #endif |
| extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); |
| extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); |
| |
| /* |
| * Per process flags |
| */ |
| #define PF_EXITING 0x00000004 /* getting shut down */ |
| #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ |
| #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ |
| #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ |
| #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ |
| #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ |
| #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ |
| #define PF_DUMPCORE 0x00000200 /* dumped core */ |
| #define PF_SIGNALED 0x00000400 /* killed by a signal */ |
| #define PF_MEMALLOC 0x00000800 /* Allocating memory */ |
| #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ |
| #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ |
| #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ |
| #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ |
| #define PF_FROZEN 0x00010000 /* frozen for system suspend */ |
| #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ |
| #define PF_KSWAPD 0x00040000 /* I am kswapd */ |
| #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ |
| #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ |
| #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ |
| #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ |
| #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ |
| #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ |
| #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ |
| #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ |
| #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ |
| #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ |
| |
| /* |
| * Only the _current_ task can read/write to tsk->flags, but other |
| * tasks can access tsk->flags in readonly mode for example |
| * with tsk_used_math (like during threaded core dumping). |
| * There is however an exception to this rule during ptrace |
| * or during fork: the ptracer task is allowed to write to the |
| * child->flags of its traced child (same goes for fork, the parent |
| * can write to the child->flags), because we're guaranteed the |
| * child is not running and in turn not changing child->flags |
| * at the same time the parent does it. |
| */ |
| #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) |
| #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) |
| #define clear_used_math() clear_stopped_child_used_math(current) |
| #define set_used_math() set_stopped_child_used_math(current) |
| #define conditional_stopped_child_used_math(condition, child) \ |
| do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) |
| #define conditional_used_math(condition) \ |
| conditional_stopped_child_used_math(condition, current) |
| #define copy_to_stopped_child_used_math(child) \ |
| do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) |
| /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ |
| #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) |
| #define used_math() tsk_used_math(current) |
| |
| /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags |
| * __GFP_FS is also cleared as it implies __GFP_IO. |
| */ |
| static inline gfp_t memalloc_noio_flags(gfp_t flags) |
| { |
| if (unlikely(current->flags & PF_MEMALLOC_NOIO)) |
| flags &= ~(__GFP_IO | __GFP_FS); |
| return flags; |
| } |
| |
| static inline unsigned int memalloc_noio_save(void) |
| { |
| unsigned int flags = current->flags & PF_MEMALLOC_NOIO; |
| current->flags |= PF_MEMALLOC_NOIO; |
| return flags; |
| } |
| |
| static inline void memalloc_noio_restore(unsigned int flags) |
| { |
| current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; |
| } |
| |
| /* Per-process atomic flags. */ |
| #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ |
| #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ |
| #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ |
| #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */ |
| |
| |
| #define TASK_PFA_TEST(name, func) \ |
| static inline bool task_##func(struct task_struct *p) \ |
| { return test_bit(PFA_##name, &p->atomic_flags); } |
| #define TASK_PFA_SET(name, func) \ |
| static inline void task_set_##func(struct task_struct *p) \ |
| { set_bit(PFA_##name, &p->atomic_flags); } |
| #define TASK_PFA_CLEAR(name, func) \ |
| static inline void task_clear_##func(struct task_struct *p) \ |
| { clear_bit(PFA_##name, &p->atomic_flags); } |
| |
| TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) |
| TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) |
| |
| TASK_PFA_TEST(SPREAD_PAGE, spread_page) |
| TASK_PFA_SET(SPREAD_PAGE, spread_page) |
| TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) |
| |
| TASK_PFA_TEST(SPREAD_SLAB, spread_slab) |
| TASK_PFA_SET(SPREAD_SLAB, spread_slab) |
| TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) |
| |
| TASK_PFA_TEST(LMK_WAITING, lmk_waiting) |
| TASK_PFA_SET(LMK_WAITING, lmk_waiting) |
| |
| /* |
| * task->jobctl flags |
| */ |
| #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ |
| |
| #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ |
| #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ |
| #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ |
| #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ |
| #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ |
| #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ |
| #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ |
| |
| #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) |
| #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) |
| #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) |
| #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) |
| #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) |
| #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) |
| #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) |
| |
| #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) |
| #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) |
| |
| extern bool task_set_jobctl_pending(struct task_struct *task, |
| unsigned long mask); |
| extern void task_clear_jobctl_trapping(struct task_struct *task); |
| extern void task_clear_jobctl_pending(struct task_struct *task, |
| unsigned long mask); |
| |
| static inline void rcu_copy_process(struct task_struct *p) |
| { |
| #ifdef CONFIG_PREEMPT_RCU |
| p->rcu_read_lock_nesting = 0; |
| p->rcu_read_unlock_special.s = 0; |
| p->rcu_blocked_node = NULL; |
| INIT_LIST_HEAD(&p->rcu_node_entry); |
| #endif /* #ifdef CONFIG_PREEMPT_RCU */ |
| #ifdef CONFIG_TASKS_RCU |
| p->rcu_tasks_holdout = false; |
| INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); |
| p->rcu_tasks_idle_cpu = -1; |
| #endif /* #ifdef CONFIG_TASKS_RCU */ |
| } |
| |
| static inline void tsk_restore_flags(struct task_struct *task, |
| unsigned long orig_flags, unsigned long flags) |
| { |
| task->flags &= ~flags; |
| task->flags |= orig_flags & flags; |
| } |
| |
| extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, |
| const struct cpumask *trial); |
| extern int task_can_attach(struct task_struct *p, |
| const struct cpumask *cs_cpus_allowed); |
| #ifdef CONFIG_SMP |
| extern void do_set_cpus_allowed(struct task_struct *p, |
| const struct cpumask *new_mask); |
| |
| extern int set_cpus_allowed_ptr(struct task_struct *p, |
| const struct cpumask *new_mask); |
| #else |
| static inline void do_set_cpus_allowed(struct task_struct *p, |
| const struct cpumask *new_mask) |
| { |
| } |
| static inline int set_cpus_allowed_ptr(struct task_struct *p, |
| const struct cpumask *new_mask) |
| { |
| if (!cpumask_test_cpu(0, new_mask)) |
| return -EINVAL; |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_NO_HZ_COMMON |
| void calc_load_enter_idle(void); |
| void calc_load_exit_idle(void); |
| #else |
| static inline void calc_load_enter_idle(void) { } |
| static inline void calc_load_exit_idle(void) { } |
| #endif /* CONFIG_NO_HZ_COMMON */ |
| |
| /* |
| * Do not use outside of architecture code which knows its limitations. |
| * |
| * sched_clock() has no promise of monotonicity or bounded drift between |
| * CPUs, use (which you should not) requires disabling IRQs. |
| * |
| * Please use one of the three interfaces below. |
| */ |
| extern unsigned long long notrace sched_clock(void); |
| /* |
| * See the comment in kernel/sched/clock.c |
| */ |
| extern u64 cpu_clock(int cpu); |
| extern u64 local_clock(void); |
| extern u64 running_clock(void); |
| extern u64 sched_clock_cpu(int cpu); |
| |
| |
| extern void sched_clock_init(void); |
| |
| #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK |
| static inline void sched_clock_tick(void) |
| { |
| } |
| |
| static inline void sched_clock_idle_sleep_event(void) |
| { |
| } |
| |
| static inline void sched_clock_idle_wakeup_event(u64 delta_ns) |
| { |
| } |
| #else |
| /* |
| * Architectures can set this to 1 if they have specified |
| * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, |
| * but then during bootup it turns out that sched_clock() |
| * is reliable after all: |
| */ |
| extern int sched_clock_stable(void); |
| extern void set_sched_clock_stable(void); |
| extern void clear_sched_clock_stable(void); |
| |
| extern void sched_clock_tick(void); |
| extern void sched_clock_idle_sleep_event(void); |
| extern void sched_clock_idle_wakeup_event(u64 delta_ns); |
| #endif |
| |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| /* |
| * An i/f to runtime opt-in for irq time accounting based off of sched_clock. |
| * The reason for this explicit opt-in is not to have perf penalty with |
| * slow sched_clocks. |
| */ |
| extern void enable_sched_clock_irqtime(void); |
| extern void disable_sched_clock_irqtime(void); |
| #else |
| static inline void enable_sched_clock_irqtime(void) {} |
| static inline void disable_sched_clock_irqtime(void) {} |
| #endif |
| |
| extern unsigned long long |
| task_sched_runtime(struct task_struct *task); |
| |
| /* sched_exec is called by processes performing an exec */ |
| #ifdef CONFIG_SMP |
| extern void sched_exec(void); |
| #else |
| #define sched_exec() {} |
| #endif |
| |
| extern void sched_clock_idle_sleep_event(void); |
| extern void sched_clock_idle_wakeup_event(u64 delta_ns); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| extern void idle_task_exit(void); |
| #else |
| static inline void idle_task_exit(void) {} |
| #endif |
| |
| #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) |
| extern void wake_up_nohz_cpu(int cpu); |
| #else |
| static inline void wake_up_nohz_cpu(int cpu) { } |
| #endif |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| extern u64 scheduler_tick_max_deferment(void); |
| #endif |
| |
| #ifdef CONFIG_SCHED_AUTOGROUP |
| extern void sched_autogroup_create_attach(struct task_struct *p); |
| extern void sched_autogroup_detach(struct task_struct *p); |
| extern void sched_autogroup_fork(struct signal_struct *sig); |
| extern void sched_autogroup_exit(struct signal_struct *sig); |
| #ifdef CONFIG_PROC_FS |
| extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); |
| extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); |
| #endif |
| #else |
| static inline void sched_autogroup_create_attach(struct task_struct *p) { } |
| static inline void sched_autogroup_detach(struct task_struct *p) { } |
| static inline void sched_autogroup_fork(struct signal_struct *sig) { } |
| static inline void sched_autogroup_exit(struct signal_struct *sig) { } |
| #endif |
| |
| extern int yield_to(struct task_struct *p, bool preempt); |
| extern void set_user_nice(struct task_struct *p, long nice); |
| extern int task_prio(const struct task_struct *p); |
| /** |
| * task_nice - return the nice value of a given task. |
| * @p: the task in question. |
| * |
| * Return: The nice value [ -20 ... 0 ... 19 ]. |
| */ |
| static inline int task_nice(const struct task_struct *p) |
| { |
| return PRIO_TO_NICE((p)->static_prio); |
| } |
| extern int can_nice(const struct task_struct *p, const int nice); |
| extern int task_curr(const struct task_struct *p); |
| extern int idle_cpu(int cpu); |
| extern int sched_setscheduler(struct task_struct *, int, |
| const struct sched_param *); |
| extern int sched_setscheduler_nocheck(struct task_struct *, int, |
| const struct sched_param *); |
| extern int sched_setattr(struct task_struct *, |
| const struct sched_attr *); |
| extern struct task_struct *idle_task(int cpu); |
| /** |
| * is_idle_task - is the specified task an idle task? |
| * @p: the task in question. |
| * |
| * Return: 1 if @p is an idle task. 0 otherwise. |
| */ |
| static inline bool is_idle_task(const struct task_struct *p) |
| { |
| return p->pid == 0; |
| } |
| extern struct task_struct *curr_task(int cpu); |
| extern void set_curr_task(int cpu, struct task_struct *p); |
| |
| void yield(void); |
| |
| union thread_union { |
| struct thread_info thread_info; |
| unsigned long stack[THREAD_SIZE/sizeof(long)]; |
| }; |
| |
| #ifndef __HAVE_ARCH_KSTACK_END |
| static inline int kstack_end(void *addr) |
| { |
| /* Reliable end of stack detection: |
| * Some APM bios versions misalign the stack |
| */ |
| return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); |
| } |
| #endif |
| |
| extern union thread_union init_thread_union; |
| extern struct task_struct init_task; |
| |
| extern struct mm_struct init_mm; |
| |
| extern struct pid_namespace init_pid_ns; |
| |
| /* |
| * find a task by one of its numerical ids |
| * |
| * find_task_by_pid_ns(): |
| * finds a task by its pid in the specified namespace |
| * find_task_by_vpid(): |
| * finds a task by its virtual pid |
| * |
| * see also find_vpid() etc in include/linux/pid.h |
| */ |
| |
| extern struct task_struct *find_task_by_vpid(pid_t nr); |
| extern struct task_struct *find_task_by_pid_ns(pid_t nr, |
| struct pid_namespace *ns); |
| |
| /* per-UID process charging. */ |
| extern struct user_struct * alloc_uid(kuid_t); |
| static inline struct user_struct *get_uid(struct user_struct *u) |
| { |
| atomic_inc(&u->__count); |
| return u; |
| } |
| extern void free_uid(struct user_struct *); |
| |
| #include <asm/current.h> |
| |
| extern void xtime_update(unsigned long ticks); |
| |
| extern int wake_up_state(struct task_struct *tsk, unsigned int state); |
| extern int wake_up_process(struct task_struct *tsk); |
| extern void wake_up_new_task(struct task_struct *tsk); |
| #ifdef CONFIG_SMP |
| extern void kick_process(struct task_struct *tsk); |
| #else |
| static inline void kick_process(struct task_struct *tsk) { } |
| #endif |
| extern int sched_fork(unsigned long clone_flags, struct task_struct *p); |
| extern void sched_dead(struct task_struct *p); |
| |
| extern void proc_caches_init(void); |
| extern void flush_signals(struct task_struct *); |
| extern void ignore_signals(struct task_struct *); |
| extern void flush_signal_handlers(struct task_struct *, int force_default); |
| extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); |
| |
| static inline int kernel_dequeue_signal(siginfo_t *info) |
| { |
| struct task_struct *tsk = current; |
| siginfo_t __info; |
| int ret; |
| |
| spin_lock_irq(&tsk->sighand->siglock); |
| ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); |
| spin_unlock_irq(&tsk->sighand->siglock); |
| |
| return ret; |
| } |
| |
| static inline void kernel_signal_stop(void) |
| { |
| spin_lock_irq(¤t->sighand->siglock); |
| if (current->jobctl & JOBCTL_STOP_DEQUEUED) |
| __set_current_state(TASK_STOPPED); |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| schedule(); |
| } |
| |
| extern void release_task(struct task_struct * p); |
| extern int send_sig_info(int, struct siginfo *, struct task_struct *); |
| extern int force_sigsegv(int, struct task_struct *); |
| extern int force_sig_info(int, struct siginfo *, struct task_struct *); |
| extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); |
| extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); |
| extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, |
| const struct cred *, u32); |
| extern int kill_pgrp(struct pid *pid, int sig, int priv); |
| extern int kill_pid(struct pid *pid, int sig, int priv); |
| extern int kill_proc_info(int, struct siginfo *, pid_t); |
| extern __must_check bool do_notify_parent(struct task_struct *, int); |
| extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); |
| extern void force_sig(int, struct task_struct *); |
| extern int send_sig(int, struct task_struct *, int); |
| extern int zap_other_threads(struct task_struct *p); |
| extern struct sigqueue *sigqueue_alloc(void); |
| extern void sigqueue_free(struct sigqueue *); |
| extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); |
| extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); |
| |
| static inline void restore_saved_sigmask(void) |
| { |
| if (test_and_clear_restore_sigmask()) |
| __set_current_blocked(¤t->saved_sigmask); |
| } |
| |
| static inline sigset_t *sigmask_to_save(void) |
| { |
| sigset_t *res = ¤t->blocked; |
| if (unlikely(test_restore_sigmask())) |
| res = ¤t->saved_sigmask; |
| return res; |
| } |
| |
| static inline int kill_cad_pid(int sig, int priv) |
| { |
| return kill_pid(cad_pid, sig, priv); |
| } |
| |
| /* These can be the second arg to send_sig_info/send_group_sig_info. */ |
| #define SEND_SIG_NOINFO ((struct siginfo *) 0) |
| #define SEND_SIG_PRIV ((struct siginfo *) 1) |
| #define SEND_SIG_FORCED ((struct siginfo *) 2) |
| |
| /* |
| * True if we are on the alternate signal stack. |
| */ |
| static inline int on_sig_stack(unsigned long sp) |
| { |
| #ifdef CONFIG_STACK_GROWSUP |
| return sp >= current->sas_ss_sp && |
| sp - current->sas_ss_sp < current->sas_ss_size; |
| #else |
| return sp > current->sas_ss_sp && |
| sp - current->sas_ss_sp <= current->sas_ss_size; |
| #endif |
| } |
| |
| static inline int sas_ss_flags(unsigned long sp) |
| { |
| if (!current->sas_ss_size) |
| return SS_DISABLE; |
| |
| return on_sig_stack(sp) ? SS_ONSTACK : 0; |
| } |
| |
| static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) |
| { |
| if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) |
| #ifdef CONFIG_STACK_GROWSUP |
| return current->sas_ss_sp; |
| #else |
| return current->sas_ss_sp + current->sas_ss_size; |
| #endif |
| return sp; |
| } |
| |
| /* |
| * Routines for handling mm_structs |
| */ |
| extern struct mm_struct * mm_alloc(void); |
| |
| /* mmdrop drops the mm and the page tables */ |
| extern void __mmdrop(struct mm_struct *); |
| static inline void mmdrop(struct mm_struct * mm) |
| { |
| if (unlikely(atomic_dec_and_test(&mm->mm_count))) |
| __mmdrop(mm); |
| } |
| |
| /* mmput gets rid of the mappings and all user-space */ |
| extern void mmput(struct mm_struct *); |
| /* Grab a reference to a task's mm, if it is not already going away */ |
| extern struct mm_struct *get_task_mm(struct task_struct *task); |
| /* |
| * Grab a reference to a task's mm, if it is not already going away |
| * and ptrace_may_access with the mode parameter passed to it |
| * succeeds. |
| */ |
| extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); |
| /* Remove the current tasks stale references to the old mm_struct */ |
| extern void mm_release(struct task_struct *, struct mm_struct *); |
| |
| #ifdef CONFIG_HAVE_COPY_THREAD_TLS |
| extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, |
| struct task_struct *, unsigned long); |
| #else |
| extern int copy_thread(unsigned long, unsigned long, unsigned long, |
| struct task_struct *); |
| |
| /* Architectures that haven't opted into copy_thread_tls get the tls argument |
| * via pt_regs, so ignore the tls argument passed via C. */ |
| static inline int copy_thread_tls( |
| unsigned long clone_flags, unsigned long sp, unsigned long arg, |
| struct task_struct *p, unsigned long tls) |
| { |
| return copy_thread(clone_flags, sp, arg, p); |
| } |
| #endif |
| extern void flush_thread(void); |
| extern void exit_thread(void); |
| |
| extern void exit_files(struct task_struct *); |
| extern void __cleanup_sighand(struct sighand_struct *); |
| |
| extern void exit_itimers(struct signal_struct *); |
| extern void flush_itimer_signals(void); |
| |
| extern void do_group_exit(int); |
| |
| extern int do_execve(struct filename *, |
| const char __user * const __user *, |
| const char __user * const __user *); |
| extern int do_execveat(int, struct filename *, |
| const char __user * const __user *, |
| const char __user * const __user *, |
| int); |
| extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); |
| extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); |
| struct task_struct *fork_idle(int); |
| extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); |
| |
| extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); |
| static inline void set_task_comm(struct task_struct *tsk, const char *from) |
| { |
| __set_task_comm(tsk, from, false); |
| } |
| extern char *get_task_comm(char *to, struct task_struct *tsk); |
| |
| #ifdef CONFIG_SMP |
| void scheduler_ipi(void); |
| extern unsigned long wait_task_inactive(struct task_struct *, long match_state); |
| #else |
| static inline void scheduler_ipi(void) { } |
| static inline unsigned long wait_task_inactive(struct task_struct *p, |
| long match_state) |
| { |
| return 1; |
| } |
| #endif |
| |
| #define tasklist_empty() \ |
| list_empty(&init_task.tasks) |
| |
| #define next_task(p) \ |
| list_entry_rcu((p)->tasks.next, struct task_struct, tasks) |
| |
| #define for_each_process(p) \ |
| for (p = &init_task ; (p = next_task(p)) != &init_task ; ) |
| |
| extern bool current_is_single_threaded(void); |
| |
| /* |
| * Careful: do_each_thread/while_each_thread is a double loop so |
| * 'break' will not work as expected - use goto instead. |
| */ |
| #define do_each_thread(g, t) \ |
| for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do |
| |
| #define while_each_thread(g, t) \ |
| while ((t = next_thread(t)) != g) |
| |
| #define __for_each_thread(signal, t) \ |
| list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) |
| |
| #define for_each_thread(p, t) \ |
| __for_each_thread((p)->signal, t) |
| |
| /* Careful: this is a double loop, 'break' won't work as expected. */ |
| #define for_each_process_thread(p, t) \ |
| for_each_process(p) for_each_thread(p, t) |
| |
| static inline int get_nr_threads(struct task_struct *tsk) |
| { |
| return tsk->signal->nr_threads; |
| } |
| |
| static inline bool thread_group_leader(struct task_struct *p) |
| { |
| return p->exit_signal >= 0; |
| } |
| |
| /* Do to the insanities of de_thread it is possible for a process |
| * to have the pid of the thread group leader without actually being |
| * the thread group leader. For iteration through the pids in proc |
| * all we care about is that we have a task with the appropriate |
| * pid, we don't actually care if we have the right task. |
| */ |
| static inline bool has_group_leader_pid(struct task_struct *p) |
| { |
| return task_pid(p) == p->signal->leader_pid; |
| } |
| |
| static inline |
| bool same_thread_group(struct task_struct *p1, struct task_struct *p2) |
| { |
| return p1->signal == p2->signal; |
| } |
| |
| static inline struct task_struct *next_thread(const struct task_struct *p) |
| { |
| return list_entry_rcu(p->thread_group.next, |
| struct task_struct, thread_group); |
| } |
| |
| static inline int thread_group_empty(struct task_struct *p) |
| { |
| return list_empty(&p->thread_group); |
| } |
| |
| #define delay_group_leader(p) \ |
| (thread_group_leader(p) && !thread_group_empty(p)) |
| |
| /* |
| * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring |
| * subscriptions and synchronises with wait4(). Also used in procfs. Also |
| * pins the final release of task.io_context. Also protects ->cpuset and |
| * ->cgroup.subsys[]. And ->vfork_done. |
| * |
| * Nests both inside and outside of read_lock(&tasklist_lock). |
| * It must not be nested with write_lock_irq(&tasklist_lock), |
| * neither inside nor outside. |
| */ |
| static inline void task_lock(struct task_struct *p) |
| { |
| spin_lock(&p->alloc_lock); |
| } |
| |
| static inline void task_unlock(struct task_struct *p) |
| { |
| spin_unlock(&p->alloc_lock); |
| } |
| |
| extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, |
| unsigned long *flags); |
| |
| static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, |
| unsigned long *flags) |
| { |
| struct sighand_struct *ret; |
| |
| ret = __lock_task_sighand(tsk, flags); |
| (void)__cond_lock(&tsk->sighand->siglock, ret); |
| return ret; |
| } |
| |
| static inline void unlock_task_sighand(struct task_struct *tsk, |
| unsigned long *flags) |
| { |
| spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); |
| } |
| |
| /** |
| * threadgroup_change_begin - mark the beginning of changes to a threadgroup |
| * @tsk: task causing the changes |
| * |
| * All operations which modify a threadgroup - a new thread joining the |
| * group, death of a member thread (the assertion of PF_EXITING) and |
| * exec(2) dethreading the process and replacing the leader - are wrapped |
| * by threadgroup_change_{begin|end}(). This is to provide a place which |
| * subsystems needing threadgroup stability can hook into for |
| * synchronization. |
| */ |
| static inline void threadgroup_change_begin(struct task_struct *tsk) |
| { |
| might_sleep(); |
| cgroup_threadgroup_change_begin(tsk); |
| } |
| |
| /** |
| * threadgroup_change_end - mark the end of changes to a threadgroup |
| * @tsk: task causing the changes |
| * |
| * See threadgroup_change_begin(). |
| */ |
| static inline void threadgroup_change_end(struct task_struct *tsk) |
| { |
| cgroup_threadgroup_change_end(tsk); |
| } |
| |
| #ifndef __HAVE_THREAD_FUNCTIONS |
| |
| #define task_thread_info(task) ((struct thread_info *)(task)->stack) |
| #define task_stack_page(task) ((task)->stack) |
| |
| static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) |
| { |
| *task_thread_info(p) = *task_thread_info(org); |
| task_thread_info(p)->task = p; |
| } |
| |
| /* |
| * Return the address of the last usable long on the stack. |
| * |
| * When the stack grows down, this is just above the thread |
| * info struct. Going any lower will corrupt the threadinfo. |
| * |
| * When the stack grows up, this is the highest address. |
| * Beyond that position, we corrupt data on the next page. |
| */ |
| static inline unsigned long *end_of_stack(struct task_struct *p) |
| { |
| #ifdef CONFIG_STACK_GROWSUP |
| return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; |
| #else |
| return (unsigned long *)(task_thread_info(p) + 1); |
| #endif |
| } |
| |
| #endif |
| #define task_stack_end_corrupted(task) \ |
| (*(end_of_stack(task)) != STACK_END_MAGIC) |
| |
| static inline int object_is_on_stack(void *obj) |
| { |
| void *stack = task_stack_page(current); |
| |
| return (obj >= stack) && (obj < (stack + THREAD_SIZE)); |
| } |
| |
| extern void thread_info_cache_init(void); |
| |
| #ifdef CONFIG_DEBUG_STACK_USAGE |
| static inline unsigned long stack_not_used(struct task_struct *p) |
| { |
| unsigned long *n = end_of_stack(p); |
| |
| do { /* Skip over canary */ |
| # ifdef CONFIG_STACK_GROWSUP |
| n--; |
| # else |
| n++; |
| # endif |
| } while (!*n); |
| |
| # ifdef CONFIG_STACK_GROWSUP |
| return (unsigned long)end_of_stack(p) - (unsigned long)n; |
| # else |
| return (unsigned long)n - (unsigned long)end_of_stack(p); |
| # endif |
| } |
| #endif |
| extern void set_task_stack_end_magic(struct task_struct *tsk); |
| |
| /* set thread flags in other task's structures |
| * - see asm/thread_info.h for TIF_xxxx flags available |
| */ |
| static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| set_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| clear_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) |
| { |
| return test_ti_thread_flag(task_thread_info(tsk), flag); |
| } |
| |
| static inline void set_tsk_need_resched(struct task_struct *tsk) |
| { |
| set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); |
| } |
| |
| static inline void clear_tsk_need_resched(struct task_struct *tsk) |
| { |
| clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); |
| } |
| |
| static inline int test_tsk_need_resched(struct task_struct *tsk) |
| { |
| return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); |
| } |
| |
| static inline int restart_syscall(void) |
| { |
| set_tsk_thread_flag(current, TIF_SIGPENDING); |
| return -ERESTARTNOINTR; |
| } |
| |
| static inline int signal_pending(struct task_struct *p) |
| { |
| return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); |
| } |
| |
| static inline int __fatal_signal_pending(struct task_struct *p) |
| { |
| return unlikely(sigismember(&p->pending.signal, SIGKILL)); |
| } |
| |
| static inline int fatal_signal_pending(struct task_struct *p) |
| { |
| return signal_pending(p) && __fatal_signal_pending(p); |
| } |
| |
| static inline int signal_pending_state(long state, struct task_struct *p) |
| { |
| if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) |
| return 0; |
| if (!signal_pending(p)) |
| return 0; |
| |
| return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); |
| } |
| |
| /* |
| * cond_resched() and cond_resched_lock(): latency reduction via |
| * explicit rescheduling in places that are safe. The return |
| * value indicates whether a reschedule was done in fact. |
| * cond_resched_lock() will drop the spinlock before scheduling, |
| * cond_resched_softirq() will enable bhs before scheduling. |
| */ |
| extern int _cond_resched(void); |
| |
| #define cond_resched() ({ \ |
| ___might_sleep(__FILE__, __LINE__, 0); \ |
| _cond_resched(); \ |
| }) |
| |
| extern int __cond_resched_lock(spinlock_t *lock); |
| |
| #define cond_resched_lock(lock) ({ \ |
| ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ |
| __cond_resched_lock(lock); \ |
| }) |
| |
| extern int __cond_resched_softirq(void); |
| |
| #define cond_resched_softirq() ({ \ |
| ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ |
| __cond_resched_softirq(); \ |
| }) |
| |
| static inline void cond_resched_rcu(void) |
| { |
| #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) |
| rcu_read_unlock(); |
| cond_resched(); |
| rcu_read_lock(); |
| #endif |
| } |
| |
| /* |
| * Does a critical section need to be broken due to another |
| * task waiting?: (technically does not depend on CONFIG_PREEMPT, |
| * but a general need for low latency) |
| */ |
| static inline int spin_needbreak(spinlock_t *lock) |
| { |
| #ifdef CONFIG_PREEMPT |
| return spin_is_contended(lock); |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * Idle thread specific functions to determine the need_resched |
| * polling state. |
| */ |
| #ifdef TIF_POLLING_NRFLAG |
| static inline int tsk_is_polling(struct task_struct *p) |
| { |
| return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); |
| } |
| |
| static inline void __current_set_polling(void) |
| { |
| set_thread_flag(TIF_POLLING_NRFLAG); |
| } |
| |
| static inline bool __must_check current_set_polling_and_test(void) |
| { |
| __current_set_polling(); |
| |
| /* |
| * Polling state must be visible before we test NEED_RESCHED, |
| * paired by resched_curr() |
| */ |
| smp_mb__after_atomic(); |
| |
| return unlikely(tif_need_resched()); |
| } |
| |
| static inline void __current_clr_polling(void) |
| { |
| clear_thread_flag(TIF_POLLING_NRFLAG); |
| } |
| |
| static inline bool __must_check current_clr_polling_and_test(void) |
| { |
| __current_clr_polling(); |
| |
| /* |
| * Polling state must be visible before we test NEED_RESCHED, |
| * paired by resched_curr() |
| */ |
| smp_mb__after_atomic(); |
| |
| return unlikely(tif_need_resched()); |
| } |
| |
| #else |
| static inline int tsk_is_polling(struct task_struct *p) { return 0; } |
| static inline void __current_set_polling(void) { } |
| static inline void __current_clr_polling(void) { } |
| |
| static inline bool __must_check current_set_polling_and_test(void) |
| { |
| return unlikely(tif_need_resched()); |
| } |
| static inline bool __must_check current_clr_polling_and_test(void) |
| { |
| return unlikely(tif_need_resched()); |
| } |
| #endif |
| |
| static inline void current_clr_polling(void) |
| { |
| __current_clr_polling(); |
| |
| /* |
| * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. |
| * Once the bit is cleared, we'll get IPIs with every new |
| * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also |
| * fold. |
| */ |
| smp_mb(); /* paired with resched_curr() */ |
| |
| preempt_fold_need_resched(); |
| } |
| |
| static __always_inline bool need_resched(void) |
| { |
| return unlikely(tif_need_resched()); |
| } |
| |
| /* |
| * Thread group CPU time accounting. |
| */ |
| void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); |
| void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); |
| |
| /* |
| * Reevaluate whether the task has signals pending delivery. |
| * Wake the task if so. |
| * This is required every time the blocked sigset_t changes. |
| * callers must hold sighand->siglock. |
| */ |
| extern void recalc_sigpending_and_wake(struct task_struct *t); |
| extern void recalc_sigpending(void); |
| |
| extern void signal_wake_up_state(struct task_struct *t, unsigned int state); |
| |
| static inline void signal_wake_up(struct task_struct *t, bool resume) |
| { |
| signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); |
| } |
| static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) |
| { |
| signal_wake_up_state(t, resume ? __TASK_TRACED : 0); |
| } |
| |
| /* |
| * Wrappers for p->thread_info->cpu access. No-op on UP. |
| */ |
| #ifdef CONFIG_SMP |
| |
| static inline unsigned int task_cpu(const struct task_struct *p) |
| { |
| return task_thread_info(p)->cpu; |
| } |
| |
| static inline int task_node(const struct task_struct *p) |
| { |
| return cpu_to_node(task_cpu(p)); |
| } |
| |
| extern void set_task_cpu(struct task_struct *p, unsigned int cpu); |
| |
| #else |
| |
| static inline unsigned int task_cpu(const struct task_struct *p) |
| { |
| return 0; |
| } |
| |
| static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) |
| { |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); |
| extern long sched_getaffinity(pid_t pid, struct cpumask *mask); |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| extern struct task_group root_task_group; |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| extern int task_can_switch_user(struct user_struct *up, |
| struct task_struct *tsk); |
| |
| #ifdef CONFIG_TASK_XACCT |
| static inline void add_rchar(struct task_struct *tsk, ssize_t amt) |
| { |
| tsk->ioac.rchar += amt; |
| } |
| |
| static inline void add_wchar(struct task_struct *tsk, ssize_t amt) |
| { |
| tsk->ioac.wchar += amt; |
| } |
| |
| static inline void inc_syscr(struct task_struct *tsk) |
| { |
| tsk->ioac.syscr++; |
| } |
| |
| static inline void inc_syscw(struct task_struct *tsk) |
| { |
| tsk->ioac.syscw++; |
| } |
| #else |
| static inline void add_rchar(struct task_struct *tsk, ssize_t amt) |
| { |
| } |
| |
| static inline void add_wchar(struct task_struct *tsk, ssize_t amt) |
| { |
| } |
| |
| static inline void inc_syscr(struct task_struct *tsk) |
| { |
| } |
| |
| static inline void inc_syscw(struct task_struct *tsk) |
| { |
| } |
| #endif |
| |
| #ifndef TASK_SIZE_OF |
| #define TASK_SIZE_OF(tsk) TASK_SIZE |
| #endif |
| |
| #ifdef CONFIG_MEMCG |
| extern void mm_update_next_owner(struct mm_struct *mm); |
| #else |
| static inline void mm_update_next_owner(struct mm_struct *mm) |
| { |
| } |
| #endif /* CONFIG_MEMCG */ |
| |
| static inline unsigned long task_rlimit(const struct task_struct *tsk, |
| unsigned int limit) |
| { |
| return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); |
| } |
| |
| static inline unsigned long task_rlimit_max(const struct task_struct *tsk, |
| unsigned int limit) |
| { |
| return READ_ONCE(tsk->signal->rlim[limit].rlim_max); |
| } |
| |
| static inline unsigned long rlimit(unsigned int limit) |
| { |
| return task_rlimit(current, limit); |
| } |
| |
| static inline unsigned long rlimit_max(unsigned int limit) |
| { |
| return task_rlimit_max(current, limit); |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| struct update_util_data { |
| void (*func)(struct update_util_data *data, |
| u64 time, unsigned long util, unsigned long max); |
| }; |
| |
| void cpufreq_set_update_util_data(int cpu, struct update_util_data *data); |
| #endif /* CONFIG_CPU_FREQ */ |
| |
| #endif |