| /* |
| * linux/arch/arm/mach-omap1/clock.c |
| * |
| * Copyright (C) 2004 - 2005 Nokia corporation |
| * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com> |
| * |
| * Modified to use omap shared clock framework by |
| * Tony Lindgren <tony@atomide.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/errno.h> |
| #include <linux/err.h> |
| #include <linux/clk.h> |
| |
| #include <asm/io.h> |
| |
| #include <asm/arch/usb.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/sram.h> |
| |
| #include "clock.h" |
| |
| __u32 arm_idlect1_mask; |
| |
| /*------------------------------------------------------------------------- |
| * Omap1 specific clock functions |
| *-------------------------------------------------------------------------*/ |
| |
| static void omap1_watchdog_recalc(struct clk * clk) |
| { |
| clk->rate = clk->parent->rate / 14; |
| } |
| |
| static void omap1_uart_recalc(struct clk * clk) |
| { |
| unsigned int val = omap_readl(clk->enable_reg); |
| if (val & clk->enable_bit) |
| clk->rate = 48000000; |
| else |
| clk->rate = 12000000; |
| } |
| |
| static int omap1_clk_enable_dsp_domain(struct clk *clk) |
| { |
| int retval; |
| |
| retval = omap1_clk_enable(&api_ck.clk); |
| if (!retval) { |
| retval = omap1_clk_enable_generic(clk); |
| omap1_clk_disable(&api_ck.clk); |
| } |
| |
| return retval; |
| } |
| |
| static void omap1_clk_disable_dsp_domain(struct clk *clk) |
| { |
| if (omap1_clk_enable(&api_ck.clk) == 0) { |
| omap1_clk_disable_generic(clk); |
| omap1_clk_disable(&api_ck.clk); |
| } |
| } |
| |
| static int omap1_clk_enable_uart_functional(struct clk *clk) |
| { |
| int ret; |
| struct uart_clk *uclk; |
| |
| ret = omap1_clk_enable_generic(clk); |
| if (ret == 0) { |
| /* Set smart idle acknowledgement mode */ |
| uclk = (struct uart_clk *)clk; |
| omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8, |
| uclk->sysc_addr); |
| } |
| |
| return ret; |
| } |
| |
| static void omap1_clk_disable_uart_functional(struct clk *clk) |
| { |
| struct uart_clk *uclk; |
| |
| /* Set force idle acknowledgement mode */ |
| uclk = (struct uart_clk *)clk; |
| omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr); |
| |
| omap1_clk_disable_generic(clk); |
| } |
| |
| static void omap1_clk_allow_idle(struct clk *clk) |
| { |
| struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; |
| |
| if (!(clk->flags & CLOCK_IDLE_CONTROL)) |
| return; |
| |
| if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count)) |
| arm_idlect1_mask |= 1 << iclk->idlect_shift; |
| } |
| |
| static void omap1_clk_deny_idle(struct clk *clk) |
| { |
| struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk; |
| |
| if (!(clk->flags & CLOCK_IDLE_CONTROL)) |
| return; |
| |
| if (iclk->no_idle_count++ == 0) |
| arm_idlect1_mask &= ~(1 << iclk->idlect_shift); |
| } |
| |
| static __u16 verify_ckctl_value(__u16 newval) |
| { |
| /* This function checks for following limitations set |
| * by the hardware (all conditions must be true): |
| * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2 |
| * ARM_CK >= TC_CK |
| * DSP_CK >= TC_CK |
| * DSPMMU_CK >= TC_CK |
| * |
| * In addition following rules are enforced: |
| * LCD_CK <= TC_CK |
| * ARMPER_CK <= TC_CK |
| * |
| * However, maximum frequencies are not checked for! |
| */ |
| __u8 per_exp; |
| __u8 lcd_exp; |
| __u8 arm_exp; |
| __u8 dsp_exp; |
| __u8 tc_exp; |
| __u8 dspmmu_exp; |
| |
| per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3; |
| lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3; |
| arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3; |
| dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3; |
| tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3; |
| dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3; |
| |
| if (dspmmu_exp < dsp_exp) |
| dspmmu_exp = dsp_exp; |
| if (dspmmu_exp > dsp_exp+1) |
| dspmmu_exp = dsp_exp+1; |
| if (tc_exp < arm_exp) |
| tc_exp = arm_exp; |
| if (tc_exp < dspmmu_exp) |
| tc_exp = dspmmu_exp; |
| if (tc_exp > lcd_exp) |
| lcd_exp = tc_exp; |
| if (tc_exp > per_exp) |
| per_exp = tc_exp; |
| |
| newval &= 0xf000; |
| newval |= per_exp << CKCTL_PERDIV_OFFSET; |
| newval |= lcd_exp << CKCTL_LCDDIV_OFFSET; |
| newval |= arm_exp << CKCTL_ARMDIV_OFFSET; |
| newval |= dsp_exp << CKCTL_DSPDIV_OFFSET; |
| newval |= tc_exp << CKCTL_TCDIV_OFFSET; |
| newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET; |
| |
| return newval; |
| } |
| |
| static int calc_dsor_exp(struct clk *clk, unsigned long rate) |
| { |
| /* Note: If target frequency is too low, this function will return 4, |
| * which is invalid value. Caller must check for this value and act |
| * accordingly. |
| * |
| * Note: This function does not check for following limitations set |
| * by the hardware (all conditions must be true): |
| * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2 |
| * ARM_CK >= TC_CK |
| * DSP_CK >= TC_CK |
| * DSPMMU_CK >= TC_CK |
| */ |
| unsigned long realrate; |
| struct clk * parent; |
| unsigned dsor_exp; |
| |
| if (unlikely(!(clk->flags & RATE_CKCTL))) |
| return -EINVAL; |
| |
| parent = clk->parent; |
| if (unlikely(parent == 0)) |
| return -EIO; |
| |
| realrate = parent->rate; |
| for (dsor_exp=0; dsor_exp<4; dsor_exp++) { |
| if (realrate <= rate) |
| break; |
| |
| realrate /= 2; |
| } |
| |
| return dsor_exp; |
| } |
| |
| static void omap1_ckctl_recalc(struct clk * clk) |
| { |
| int dsor; |
| |
| /* Calculate divisor encoded as 2-bit exponent */ |
| dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset)); |
| |
| if (unlikely(clk->rate == clk->parent->rate / dsor)) |
| return; /* No change, quick exit */ |
| clk->rate = clk->parent->rate / dsor; |
| |
| if (unlikely(clk->flags & RATE_PROPAGATES)) |
| propagate_rate(clk); |
| } |
| |
| static void omap1_ckctl_recalc_dsp_domain(struct clk * clk) |
| { |
| int dsor; |
| |
| /* Calculate divisor encoded as 2-bit exponent |
| * |
| * The clock control bits are in DSP domain, |
| * so api_ck is needed for access. |
| * Note that DSP_CKCTL virt addr = phys addr, so |
| * we must use __raw_readw() instead of omap_readw(). |
| */ |
| omap1_clk_enable(&api_ck.clk); |
| dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset)); |
| omap1_clk_disable(&api_ck.clk); |
| |
| if (unlikely(clk->rate == clk->parent->rate / dsor)) |
| return; /* No change, quick exit */ |
| clk->rate = clk->parent->rate / dsor; |
| |
| if (unlikely(clk->flags & RATE_PROPAGATES)) |
| propagate_rate(clk); |
| } |
| |
| /* MPU virtual clock functions */ |
| static int omap1_select_table_rate(struct clk * clk, unsigned long rate) |
| { |
| /* Find the highest supported frequency <= rate and switch to it */ |
| struct mpu_rate * ptr; |
| |
| if (clk != &virtual_ck_mpu) |
| return -EINVAL; |
| |
| for (ptr = rate_table; ptr->rate; ptr++) { |
| if (ptr->xtal != ck_ref.rate) |
| continue; |
| |
| /* DPLL1 cannot be reprogrammed without risking system crash */ |
| if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate) |
| continue; |
| |
| /* Can check only after xtal frequency check */ |
| if (ptr->rate <= rate) |
| break; |
| } |
| |
| if (!ptr->rate) |
| return -EINVAL; |
| |
| /* |
| * In most cases we should not need to reprogram DPLL. |
| * Reprogramming the DPLL is tricky, it must be done from SRAM. |
| */ |
| omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val); |
| |
| ck_dpll1.rate = ptr->pll_rate; |
| propagate_rate(&ck_dpll1); |
| return 0; |
| } |
| |
| static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate) |
| { |
| int ret = -EINVAL; |
| int dsor_exp; |
| __u16 regval; |
| |
| if (clk->flags & RATE_CKCTL) { |
| dsor_exp = calc_dsor_exp(clk, rate); |
| if (dsor_exp > 3) |
| dsor_exp = -EINVAL; |
| if (dsor_exp < 0) |
| return dsor_exp; |
| |
| regval = __raw_readw(DSP_CKCTL); |
| regval &= ~(3 << clk->rate_offset); |
| regval |= dsor_exp << clk->rate_offset; |
| __raw_writew(regval, DSP_CKCTL); |
| clk->rate = clk->parent->rate / (1 << dsor_exp); |
| ret = 0; |
| } |
| |
| if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES))) |
| propagate_rate(clk); |
| |
| return ret; |
| } |
| |
| static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate) |
| { |
| /* Find the highest supported frequency <= rate */ |
| struct mpu_rate * ptr; |
| long highest_rate; |
| |
| if (clk != &virtual_ck_mpu) |
| return -EINVAL; |
| |
| highest_rate = -EINVAL; |
| |
| for (ptr = rate_table; ptr->rate; ptr++) { |
| if (ptr->xtal != ck_ref.rate) |
| continue; |
| |
| highest_rate = ptr->rate; |
| |
| /* Can check only after xtal frequency check */ |
| if (ptr->rate <= rate) |
| break; |
| } |
| |
| return highest_rate; |
| } |
| |
| static unsigned calc_ext_dsor(unsigned long rate) |
| { |
| unsigned dsor; |
| |
| /* MCLK and BCLK divisor selection is not linear: |
| * freq = 96MHz / dsor |
| * |
| * RATIO_SEL range: dsor <-> RATIO_SEL |
| * 0..6: (RATIO_SEL+2) <-> (dsor-2) |
| * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6) |
| * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9 |
| * can not be used. |
| */ |
| for (dsor = 2; dsor < 96; ++dsor) { |
| if ((dsor & 1) && dsor > 8) |
| continue; |
| if (rate >= 96000000 / dsor) |
| break; |
| } |
| return dsor; |
| } |
| |
| /* Only needed on 1510 */ |
| static int omap1_set_uart_rate(struct clk * clk, unsigned long rate) |
| { |
| unsigned int val; |
| |
| val = omap_readl(clk->enable_reg); |
| if (rate == 12000000) |
| val &= ~(1 << clk->enable_bit); |
| else if (rate == 48000000) |
| val |= (1 << clk->enable_bit); |
| else |
| return -EINVAL; |
| omap_writel(val, clk->enable_reg); |
| clk->rate = rate; |
| |
| return 0; |
| } |
| |
| /* External clock (MCLK & BCLK) functions */ |
| static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate) |
| { |
| unsigned dsor; |
| __u16 ratio_bits; |
| |
| dsor = calc_ext_dsor(rate); |
| clk->rate = 96000000 / dsor; |
| if (dsor > 8) |
| ratio_bits = ((dsor - 8) / 2 + 6) << 2; |
| else |
| ratio_bits = (dsor - 2) << 2; |
| |
| ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd; |
| omap_writew(ratio_bits, clk->enable_reg); |
| |
| return 0; |
| } |
| |
| static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate) |
| { |
| return 96000000 / calc_ext_dsor(rate); |
| } |
| |
| static void omap1_init_ext_clk(struct clk * clk) |
| { |
| unsigned dsor; |
| __u16 ratio_bits; |
| |
| /* Determine current rate and ensure clock is based on 96MHz APLL */ |
| ratio_bits = omap_readw(clk->enable_reg) & ~1; |
| omap_writew(ratio_bits, clk->enable_reg); |
| |
| ratio_bits = (ratio_bits & 0xfc) >> 2; |
| if (ratio_bits > 6) |
| dsor = (ratio_bits - 6) * 2 + 8; |
| else |
| dsor = ratio_bits + 2; |
| |
| clk-> rate = 96000000 / dsor; |
| } |
| |
| static int omap1_clk_enable(struct clk *clk) |
| { |
| int ret = 0; |
| if (clk->usecount++ == 0) { |
| if (likely(clk->parent)) { |
| ret = omap1_clk_enable(clk->parent); |
| |
| if (unlikely(ret != 0)) { |
| clk->usecount--; |
| return ret; |
| } |
| |
| if (clk->flags & CLOCK_NO_IDLE_PARENT) |
| if (!cpu_is_omap24xx()) |
| omap1_clk_deny_idle(clk->parent); |
| } |
| |
| ret = clk->enable(clk); |
| |
| if (unlikely(ret != 0) && clk->parent) { |
| omap1_clk_disable(clk->parent); |
| clk->usecount--; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void omap1_clk_disable(struct clk *clk) |
| { |
| if (clk->usecount > 0 && !(--clk->usecount)) { |
| clk->disable(clk); |
| if (likely(clk->parent)) { |
| omap1_clk_disable(clk->parent); |
| if (clk->flags & CLOCK_NO_IDLE_PARENT) |
| if (!cpu_is_omap24xx()) |
| omap1_clk_allow_idle(clk->parent); |
| } |
| } |
| } |
| |
| static int omap1_clk_enable_generic(struct clk *clk) |
| { |
| __u16 regval16; |
| __u32 regval32; |
| |
| if (clk->flags & ALWAYS_ENABLED) |
| return 0; |
| |
| if (unlikely(clk->enable_reg == 0)) { |
| printk(KERN_ERR "clock.c: Enable for %s without enable code\n", |
| clk->name); |
| return 0; |
| } |
| |
| if (clk->flags & ENABLE_REG_32BIT) { |
| if (clk->flags & VIRTUAL_IO_ADDRESS) { |
| regval32 = __raw_readl(clk->enable_reg); |
| regval32 |= (1 << clk->enable_bit); |
| __raw_writel(regval32, clk->enable_reg); |
| } else { |
| regval32 = omap_readl(clk->enable_reg); |
| regval32 |= (1 << clk->enable_bit); |
| omap_writel(regval32, clk->enable_reg); |
| } |
| } else { |
| if (clk->flags & VIRTUAL_IO_ADDRESS) { |
| regval16 = __raw_readw(clk->enable_reg); |
| regval16 |= (1 << clk->enable_bit); |
| __raw_writew(regval16, clk->enable_reg); |
| } else { |
| regval16 = omap_readw(clk->enable_reg); |
| regval16 |= (1 << clk->enable_bit); |
| omap_writew(regval16, clk->enable_reg); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void omap1_clk_disable_generic(struct clk *clk) |
| { |
| __u16 regval16; |
| __u32 regval32; |
| |
| if (clk->enable_reg == 0) |
| return; |
| |
| if (clk->flags & ENABLE_REG_32BIT) { |
| if (clk->flags & VIRTUAL_IO_ADDRESS) { |
| regval32 = __raw_readl(clk->enable_reg); |
| regval32 &= ~(1 << clk->enable_bit); |
| __raw_writel(regval32, clk->enable_reg); |
| } else { |
| regval32 = omap_readl(clk->enable_reg); |
| regval32 &= ~(1 << clk->enable_bit); |
| omap_writel(regval32, clk->enable_reg); |
| } |
| } else { |
| if (clk->flags & VIRTUAL_IO_ADDRESS) { |
| regval16 = __raw_readw(clk->enable_reg); |
| regval16 &= ~(1 << clk->enable_bit); |
| __raw_writew(regval16, clk->enable_reg); |
| } else { |
| regval16 = omap_readw(clk->enable_reg); |
| regval16 &= ~(1 << clk->enable_bit); |
| omap_writew(regval16, clk->enable_reg); |
| } |
| } |
| } |
| |
| static long omap1_clk_round_rate(struct clk *clk, unsigned long rate) |
| { |
| int dsor_exp; |
| |
| if (clk->flags & RATE_FIXED) |
| return clk->rate; |
| |
| if (clk->flags & RATE_CKCTL) { |
| dsor_exp = calc_dsor_exp(clk, rate); |
| if (dsor_exp < 0) |
| return dsor_exp; |
| if (dsor_exp > 3) |
| dsor_exp = 3; |
| return clk->parent->rate / (1 << dsor_exp); |
| } |
| |
| if(clk->round_rate != 0) |
| return clk->round_rate(clk, rate); |
| |
| return clk->rate; |
| } |
| |
| static int omap1_clk_set_rate(struct clk *clk, unsigned long rate) |
| { |
| int ret = -EINVAL; |
| int dsor_exp; |
| __u16 regval; |
| |
| if (clk->set_rate) |
| ret = clk->set_rate(clk, rate); |
| else if (clk->flags & RATE_CKCTL) { |
| dsor_exp = calc_dsor_exp(clk, rate); |
| if (dsor_exp > 3) |
| dsor_exp = -EINVAL; |
| if (dsor_exp < 0) |
| return dsor_exp; |
| |
| regval = omap_readw(ARM_CKCTL); |
| regval &= ~(3 << clk->rate_offset); |
| regval |= dsor_exp << clk->rate_offset; |
| regval = verify_ckctl_value(regval); |
| omap_writew(regval, ARM_CKCTL); |
| clk->rate = clk->parent->rate / (1 << dsor_exp); |
| ret = 0; |
| } |
| |
| if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES))) |
| propagate_rate(clk); |
| |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------------- |
| * Omap1 clock reset and init functions |
| *-------------------------------------------------------------------------*/ |
| |
| #ifdef CONFIG_OMAP_RESET_CLOCKS |
| /* |
| * Resets some clocks that may be left on from bootloader, |
| * but leaves serial clocks on. See also omap_late_clk_reset(). |
| */ |
| static inline void omap1_early_clk_reset(void) |
| { |
| //omap_writel(0x3 << 29, MOD_CONF_CTRL_0); |
| } |
| |
| static int __init omap1_late_clk_reset(void) |
| { |
| /* Turn off all unused clocks */ |
| struct clk *p; |
| __u32 regval32; |
| |
| /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */ |
| regval32 = omap_readw(SOFT_REQ_REG) & (1 << 4); |
| omap_writew(regval32, SOFT_REQ_REG); |
| omap_writew(0, SOFT_REQ_REG2); |
| |
| list_for_each_entry(p, &clocks, node) { |
| if (p->usecount > 0 || (p->flags & ALWAYS_ENABLED) || |
| p->enable_reg == 0) |
| continue; |
| |
| /* Clocks in the DSP domain need api_ck. Just assume bootloader |
| * has not enabled any DSP clocks */ |
| if ((u32)p->enable_reg == DSP_IDLECT2) { |
| printk(KERN_INFO "Skipping reset check for DSP domain " |
| "clock \"%s\"\n", p->name); |
| continue; |
| } |
| |
| /* Is the clock already disabled? */ |
| if (p->flags & ENABLE_REG_32BIT) { |
| if (p->flags & VIRTUAL_IO_ADDRESS) |
| regval32 = __raw_readl(p->enable_reg); |
| else |
| regval32 = omap_readl(p->enable_reg); |
| } else { |
| if (p->flags & VIRTUAL_IO_ADDRESS) |
| regval32 = __raw_readw(p->enable_reg); |
| else |
| regval32 = omap_readw(p->enable_reg); |
| } |
| |
| if ((regval32 & (1 << p->enable_bit)) == 0) |
| continue; |
| |
| /* FIXME: This clock seems to be necessary but no-one |
| * has asked for its activation. */ |
| if (p == &tc2_ck // FIX: pm.c (SRAM), CCP, Camera |
| || p == &ck_dpll1out.clk // FIX: SoSSI, SSR |
| || p == &arm_gpio_ck // FIX: GPIO code for 1510 |
| ) { |
| printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n", |
| p->name); |
| continue; |
| } |
| |
| printk(KERN_INFO "Disabling unused clock \"%s\"... ", p->name); |
| p->disable(p); |
| printk(" done\n"); |
| } |
| |
| return 0; |
| } |
| late_initcall(omap1_late_clk_reset); |
| |
| #else |
| #define omap1_early_clk_reset() {} |
| #endif |
| |
| static struct clk_functions omap1_clk_functions = { |
| .clk_enable = omap1_clk_enable, |
| .clk_disable = omap1_clk_disable, |
| .clk_round_rate = omap1_clk_round_rate, |
| .clk_set_rate = omap1_clk_set_rate, |
| }; |
| |
| int __init omap1_clk_init(void) |
| { |
| struct clk ** clkp; |
| const struct omap_clock_config *info; |
| int crystal_type = 0; /* Default 12 MHz */ |
| |
| omap1_early_clk_reset(); |
| clk_init(&omap1_clk_functions); |
| |
| /* By default all idlect1 clocks are allowed to idle */ |
| arm_idlect1_mask = ~0; |
| |
| for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) { |
| if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) { |
| clk_register(*clkp); |
| continue; |
| } |
| |
| if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) { |
| clk_register(*clkp); |
| continue; |
| } |
| |
| if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) { |
| clk_register(*clkp); |
| continue; |
| } |
| |
| if (((*clkp)->flags &CLOCK_IN_OMAP310) && cpu_is_omap310()) { |
| clk_register(*clkp); |
| continue; |
| } |
| } |
| |
| info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config); |
| if (info != NULL) { |
| if (!cpu_is_omap1510()) |
| crystal_type = info->system_clock_type; |
| } |
| |
| #if defined(CONFIG_ARCH_OMAP730) |
| ck_ref.rate = 13000000; |
| #elif defined(CONFIG_ARCH_OMAP16XX) |
| if (crystal_type == 2) |
| ck_ref.rate = 19200000; |
| #endif |
| |
| printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n", |
| omap_readw(ARM_SYSST), omap_readw(DPLL_CTL), |
| omap_readw(ARM_CKCTL)); |
| |
| /* We want to be in syncronous scalable mode */ |
| omap_writew(0x1000, ARM_SYSST); |
| |
| #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER |
| /* Use values set by bootloader. Determine PLL rate and recalculate |
| * dependent clocks as if kernel had changed PLL or divisors. |
| */ |
| { |
| unsigned pll_ctl_val = omap_readw(DPLL_CTL); |
| |
| ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */ |
| if (pll_ctl_val & 0x10) { |
| /* PLL enabled, apply multiplier and divisor */ |
| if (pll_ctl_val & 0xf80) |
| ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7; |
| ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1; |
| } else { |
| /* PLL disabled, apply bypass divisor */ |
| switch (pll_ctl_val & 0xc) { |
| case 0: |
| break; |
| case 0x4: |
| ck_dpll1.rate /= 2; |
| break; |
| default: |
| ck_dpll1.rate /= 4; |
| break; |
| } |
| } |
| } |
| propagate_rate(&ck_dpll1); |
| #else |
| /* Find the highest supported frequency and enable it */ |
| if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) { |
| printk(KERN_ERR "System frequencies not set. Check your config.\n"); |
| /* Guess sane values (60MHz) */ |
| omap_writew(0x2290, DPLL_CTL); |
| omap_writew(0x1005, ARM_CKCTL); |
| ck_dpll1.rate = 60000000; |
| propagate_rate(&ck_dpll1); |
| } |
| #endif |
| /* Cache rates for clocks connected to ck_ref (not dpll1) */ |
| propagate_rate(&ck_ref); |
| printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): " |
| "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n", |
| ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10, |
| ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10, |
| arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10); |
| |
| #ifdef CONFIG_MACH_OMAP_PERSEUS2 |
| /* Select slicer output as OMAP input clock */ |
| omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL); |
| #endif |
| |
| /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */ |
| omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL); |
| |
| /* Put DSP/MPUI into reset until needed */ |
| omap_writew(0, ARM_RSTCT1); |
| omap_writew(1, ARM_RSTCT2); |
| omap_writew(0x400, ARM_IDLECT1); |
| |
| /* |
| * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8) |
| * of the ARM_IDLECT2 register must be set to zero. The power-on |
| * default value of this bit is one. |
| */ |
| omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */ |
| |
| /* |
| * Only enable those clocks we will need, let the drivers |
| * enable other clocks as necessary |
| */ |
| clk_enable(&armper_ck.clk); |
| clk_enable(&armxor_ck.clk); |
| clk_enable(&armtim_ck.clk); /* This should be done by timer code */ |
| |
| if (cpu_is_omap15xx()) |
| clk_enable(&arm_gpio_ck); |
| |
| return 0; |
| } |
| |