| /* |
| * Copyright (C) 1994 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * General FPU state handling cleanups |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| * x86-64 work by Andi Kleen 2002 |
| */ |
| |
| #ifndef _ASM_X86_FPU_INTERNAL_H |
| #define _ASM_X86_FPU_INTERNAL_H |
| |
| #include <linux/compat.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| |
| #include <asm/user.h> |
| #include <asm/fpu/api.h> |
| #include <asm/fpu/xstate.h> |
| |
| /* |
| * High level FPU state handling functions: |
| */ |
| extern void fpu__activate_curr(struct fpu *fpu); |
| extern void fpu__activate_fpstate_read(struct fpu *fpu); |
| extern void fpu__activate_fpstate_write(struct fpu *fpu); |
| extern void fpu__save(struct fpu *fpu); |
| extern void fpu__restore(struct fpu *fpu); |
| extern int fpu__restore_sig(void __user *buf, int ia32_frame); |
| extern void fpu__drop(struct fpu *fpu); |
| extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu); |
| extern void fpu__clear(struct fpu *fpu); |
| extern int fpu__exception_code(struct fpu *fpu, int trap_nr); |
| extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate); |
| |
| /* |
| * Boot time FPU initialization functions: |
| */ |
| extern void fpu__init_cpu(void); |
| extern void fpu__init_system_xstate(void); |
| extern void fpu__init_cpu_xstate(void); |
| extern void fpu__init_system(struct cpuinfo_x86 *c); |
| extern void fpu__init_check_bugs(void); |
| extern void fpu__resume_cpu(void); |
| extern u64 fpu__get_supported_xfeatures_mask(void); |
| |
| /* |
| * Debugging facility: |
| */ |
| #ifdef CONFIG_X86_DEBUG_FPU |
| # define WARN_ON_FPU(x) WARN_ON_ONCE(x) |
| #else |
| # define WARN_ON_FPU(x) ({ (void)(x); 0; }) |
| #endif |
| |
| /* |
| * FPU related CPU feature flag helper routines: |
| */ |
| static __always_inline __pure bool use_eager_fpu(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_EAGER_FPU); |
| } |
| |
| static __always_inline __pure bool use_xsaveopt(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_XSAVEOPT); |
| } |
| |
| static __always_inline __pure bool use_xsave(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_XSAVE); |
| } |
| |
| static __always_inline __pure bool use_fxsr(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_FXSR); |
| } |
| |
| /* |
| * fpstate handling functions: |
| */ |
| |
| extern union fpregs_state init_fpstate; |
| |
| extern void fpstate_init(union fpregs_state *state); |
| #ifdef CONFIG_MATH_EMULATION |
| extern void fpstate_init_soft(struct swregs_state *soft); |
| #else |
| static inline void fpstate_init_soft(struct swregs_state *soft) {} |
| #endif |
| static inline void fpstate_init_fxstate(struct fxregs_state *fx) |
| { |
| fx->cwd = 0x37f; |
| fx->mxcsr = MXCSR_DEFAULT; |
| } |
| extern void fpstate_sanitize_xstate(struct fpu *fpu); |
| |
| #define user_insn(insn, output, input...) \ |
| ({ \ |
| int err; \ |
| asm volatile(ASM_STAC "\n" \ |
| "1:" #insn "\n\t" \ |
| "2: " ASM_CLAC "\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3: movl $-1,%[err]\n" \ |
| " jmp 2b\n" \ |
| ".previous\n" \ |
| _ASM_EXTABLE(1b, 3b) \ |
| : [err] "=r" (err), output \ |
| : "0"(0), input); \ |
| err; \ |
| }) |
| |
| #define check_insn(insn, output, input...) \ |
| ({ \ |
| int err; \ |
| asm volatile("1:" #insn "\n\t" \ |
| "2:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3: movl $-1,%[err]\n" \ |
| " jmp 2b\n" \ |
| ".previous\n" \ |
| _ASM_EXTABLE(1b, 3b) \ |
| : [err] "=r" (err), output \ |
| : "0"(0), input); \ |
| err; \ |
| }) |
| |
| static inline int copy_fregs_to_user(struct fregs_state __user *fx) |
| { |
| return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); |
| } |
| |
| static inline int copy_fxregs_to_user(struct fxregs_state __user *fx) |
| { |
| if (config_enabled(CONFIG_X86_32)) |
| return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); |
| else if (config_enabled(CONFIG_AS_FXSAVEQ)) |
| return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); |
| |
| /* See comment in copy_fxregs_to_kernel() below. */ |
| return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx)); |
| } |
| |
| static inline void copy_kernel_to_fxregs(struct fxregs_state *fx) |
| { |
| int err; |
| |
| if (config_enabled(CONFIG_X86_32)) { |
| err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| } else { |
| if (config_enabled(CONFIG_AS_FXSAVEQ)) { |
| err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| } else { |
| /* See comment in copy_fxregs_to_kernel() below. */ |
| err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx)); |
| } |
| } |
| /* Copying from a kernel buffer to FPU registers should never fail: */ |
| WARN_ON_FPU(err); |
| } |
| |
| static inline int copy_user_to_fxregs(struct fxregs_state __user *fx) |
| { |
| if (config_enabled(CONFIG_X86_32)) |
| return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| else if (config_enabled(CONFIG_AS_FXSAVEQ)) |
| return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| |
| /* See comment in copy_fxregs_to_kernel() below. */ |
| return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), |
| "m" (*fx)); |
| } |
| |
| static inline void copy_kernel_to_fregs(struct fregs_state *fx) |
| { |
| int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| |
| WARN_ON_FPU(err); |
| } |
| |
| static inline int copy_user_to_fregs(struct fregs_state __user *fx) |
| { |
| return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| } |
| |
| static inline void copy_fxregs_to_kernel(struct fpu *fpu) |
| { |
| if (config_enabled(CONFIG_X86_32)) |
| asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); |
| else if (config_enabled(CONFIG_AS_FXSAVEQ)) |
| asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); |
| else { |
| /* Using "rex64; fxsave %0" is broken because, if the memory |
| * operand uses any extended registers for addressing, a second |
| * REX prefix will be generated (to the assembler, rex64 |
| * followed by semicolon is a separate instruction), and hence |
| * the 64-bitness is lost. |
| * |
| * Using "fxsaveq %0" would be the ideal choice, but is only |
| * supported starting with gas 2.16. |
| * |
| * Using, as a workaround, the properly prefixed form below |
| * isn't accepted by any binutils version so far released, |
| * complaining that the same type of prefix is used twice if |
| * an extended register is needed for addressing (fix submitted |
| * to mainline 2005-11-21). |
| * |
| * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave)); |
| * |
| * This, however, we can work around by forcing the compiler to |
| * select an addressing mode that doesn't require extended |
| * registers. |
| */ |
| asm volatile( "rex64/fxsave (%[fx])" |
| : "=m" (fpu->state.fxsave) |
| : [fx] "R" (&fpu->state.fxsave)); |
| } |
| } |
| |
| /* These macros all use (%edi)/(%rdi) as the single memory argument. */ |
| #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27" |
| #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37" |
| #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f" |
| #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f" |
| #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f" |
| |
| #define XSTATE_OP(op, st, lmask, hmask, err) \ |
| asm volatile("1:" op "\n\t" \ |
| "xor %[err], %[err]\n" \ |
| "2:\n\t" \ |
| ".pushsection .fixup,\"ax\"\n\t" \ |
| "3: movl $-2,%[err]\n\t" \ |
| "jmp 2b\n\t" \ |
| ".popsection\n\t" \ |
| _ASM_EXTABLE(1b, 3b) \ |
| : [err] "=r" (err) \ |
| : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ |
| : "memory") |
| |
| /* |
| * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact |
| * format and supervisor states in addition to modified optimization in |
| * XSAVEOPT. |
| * |
| * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT |
| * supports modified optimization which is not supported by XSAVE. |
| * |
| * We use XSAVE as a fallback. |
| * |
| * The 661 label is defined in the ALTERNATIVE* macros as the address of the |
| * original instruction which gets replaced. We need to use it here as the |
| * address of the instruction where we might get an exception at. |
| */ |
| #define XSTATE_XSAVE(st, lmask, hmask, err) \ |
| asm volatile(ALTERNATIVE_2(XSAVE, \ |
| XSAVEOPT, X86_FEATURE_XSAVEOPT, \ |
| XSAVES, X86_FEATURE_XSAVES) \ |
| "\n" \ |
| "xor %[err], %[err]\n" \ |
| "3:\n" \ |
| ".pushsection .fixup,\"ax\"\n" \ |
| "4: movl $-2, %[err]\n" \ |
| "jmp 3b\n" \ |
| ".popsection\n" \ |
| _ASM_EXTABLE(661b, 4b) \ |
| : [err] "=r" (err) \ |
| : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ |
| : "memory") |
| |
| /* |
| * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact |
| * XSAVE area format. |
| */ |
| #define XSTATE_XRESTORE(st, lmask, hmask, err) \ |
| asm volatile(ALTERNATIVE(XRSTOR, \ |
| XRSTORS, X86_FEATURE_XSAVES) \ |
| "\n" \ |
| "xor %[err], %[err]\n" \ |
| "3:\n" \ |
| ".pushsection .fixup,\"ax\"\n" \ |
| "4: movl $-2, %[err]\n" \ |
| "jmp 3b\n" \ |
| ".popsection\n" \ |
| _ASM_EXTABLE(661b, 4b) \ |
| : [err] "=r" (err) \ |
| : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ |
| : "memory") |
| |
| /* |
| * This function is called only during boot time when x86 caps are not set |
| * up and alternative can not be used yet. |
| */ |
| static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate) |
| { |
| u64 mask = -1; |
| u32 lmask = mask; |
| u32 hmask = mask >> 32; |
| int err; |
| |
| WARN_ON(system_state != SYSTEM_BOOTING); |
| |
| if (static_cpu_has_safe(X86_FEATURE_XSAVES)) |
| XSTATE_OP(XSAVES, xstate, lmask, hmask, err); |
| else |
| XSTATE_OP(XSAVE, xstate, lmask, hmask, err); |
| |
| /* We should never fault when copying to a kernel buffer: */ |
| WARN_ON_FPU(err); |
| } |
| |
| /* |
| * This function is called only during boot time when x86 caps are not set |
| * up and alternative can not be used yet. |
| */ |
| static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate) |
| { |
| u64 mask = -1; |
| u32 lmask = mask; |
| u32 hmask = mask >> 32; |
| int err; |
| |
| WARN_ON(system_state != SYSTEM_BOOTING); |
| |
| if (static_cpu_has_safe(X86_FEATURE_XSAVES)) |
| XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); |
| else |
| XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); |
| |
| /* We should never fault when copying from a kernel buffer: */ |
| WARN_ON_FPU(err); |
| } |
| |
| /* |
| * Save processor xstate to xsave area. |
| */ |
| static inline void copy_xregs_to_kernel(struct xregs_state *xstate) |
| { |
| u64 mask = -1; |
| u32 lmask = mask; |
| u32 hmask = mask >> 32; |
| int err; |
| |
| WARN_ON(!alternatives_patched); |
| |
| XSTATE_XSAVE(xstate, lmask, hmask, err); |
| |
| /* We should never fault when copying to a kernel buffer: */ |
| WARN_ON_FPU(err); |
| } |
| |
| /* |
| * Restore processor xstate from xsave area. |
| */ |
| static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask) |
| { |
| u32 lmask = mask; |
| u32 hmask = mask >> 32; |
| int err; |
| |
| XSTATE_XRESTORE(xstate, lmask, hmask, err); |
| |
| /* We should never fault when copying from a kernel buffer: */ |
| WARN_ON_FPU(err); |
| } |
| |
| /* |
| * Save xstate to user space xsave area. |
| * |
| * We don't use modified optimization because xrstor/xrstors might track |
| * a different application. |
| * |
| * We don't use compacted format xsave area for |
| * backward compatibility for old applications which don't understand |
| * compacted format of xsave area. |
| */ |
| static inline int copy_xregs_to_user(struct xregs_state __user *buf) |
| { |
| int err; |
| |
| /* |
| * Clear the xsave header first, so that reserved fields are |
| * initialized to zero. |
| */ |
| err = __clear_user(&buf->header, sizeof(buf->header)); |
| if (unlikely(err)) |
| return -EFAULT; |
| |
| stac(); |
| XSTATE_OP(XSAVE, buf, -1, -1, err); |
| clac(); |
| |
| return err; |
| } |
| |
| /* |
| * Restore xstate from user space xsave area. |
| */ |
| static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask) |
| { |
| struct xregs_state *xstate = ((__force struct xregs_state *)buf); |
| u32 lmask = mask; |
| u32 hmask = mask >> 32; |
| int err; |
| |
| stac(); |
| XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); |
| clac(); |
| |
| return err; |
| } |
| |
| /* |
| * These must be called with preempt disabled. Returns |
| * 'true' if the FPU state is still intact and we can |
| * keep registers active. |
| * |
| * The legacy FNSAVE instruction cleared all FPU state |
| * unconditionally, so registers are essentially destroyed. |
| * Modern FPU state can be kept in registers, if there are |
| * no pending FP exceptions. |
| */ |
| static inline int copy_fpregs_to_fpstate(struct fpu *fpu) |
| { |
| if (likely(use_xsave())) { |
| copy_xregs_to_kernel(&fpu->state.xsave); |
| return 1; |
| } |
| |
| if (likely(use_fxsr())) { |
| copy_fxregs_to_kernel(fpu); |
| return 1; |
| } |
| |
| /* |
| * Legacy FPU register saving, FNSAVE always clears FPU registers, |
| * so we have to mark them inactive: |
| */ |
| asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); |
| |
| return 0; |
| } |
| |
| static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate) |
| { |
| if (use_xsave()) { |
| copy_kernel_to_xregs(&fpstate->xsave, -1); |
| } else { |
| if (use_fxsr()) |
| copy_kernel_to_fxregs(&fpstate->fxsave); |
| else |
| copy_kernel_to_fregs(&fpstate->fsave); |
| } |
| } |
| |
| static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate) |
| { |
| /* |
| * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is |
| * pending. Clear the x87 state here by setting it to fixed values. |
| * "m" is a random variable that should be in L1. |
| */ |
| if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) { |
| asm volatile( |
| "fnclex\n\t" |
| "emms\n\t" |
| "fildl %P[addr]" /* set F?P to defined value */ |
| : : [addr] "m" (fpstate)); |
| } |
| |
| __copy_kernel_to_fpregs(fpstate); |
| } |
| |
| extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size); |
| |
| /* |
| * FPU context switch related helper methods: |
| */ |
| |
| DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); |
| |
| /* |
| * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx, |
| * on this CPU. |
| * |
| * This will disable any lazy FPU state restore of the current FPU state, |
| * but if the current thread owns the FPU, it will still be saved by. |
| */ |
| static inline void __cpu_disable_lazy_restore(unsigned int cpu) |
| { |
| per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; |
| } |
| |
| static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu) |
| { |
| return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; |
| } |
| |
| |
| /* |
| * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation' |
| * idiom, which is then paired with the sw-flag (fpregs_active) later on: |
| */ |
| |
| static inline void __fpregs_activate_hw(void) |
| { |
| if (!use_eager_fpu()) |
| clts(); |
| } |
| |
| static inline void __fpregs_deactivate_hw(void) |
| { |
| if (!use_eager_fpu()) |
| stts(); |
| } |
| |
| /* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */ |
| static inline void __fpregs_deactivate(struct fpu *fpu) |
| { |
| WARN_ON_FPU(!fpu->fpregs_active); |
| |
| fpu->fpregs_active = 0; |
| this_cpu_write(fpu_fpregs_owner_ctx, NULL); |
| } |
| |
| /* Must be paired with a 'clts' (fpregs_activate_hw()) before! */ |
| static inline void __fpregs_activate(struct fpu *fpu) |
| { |
| WARN_ON_FPU(fpu->fpregs_active); |
| |
| fpu->fpregs_active = 1; |
| this_cpu_write(fpu_fpregs_owner_ctx, fpu); |
| } |
| |
| /* |
| * The question "does this thread have fpu access?" |
| * is slightly racy, since preemption could come in |
| * and revoke it immediately after the test. |
| * |
| * However, even in that very unlikely scenario, |
| * we can just assume we have FPU access - typically |
| * to save the FP state - we'll just take a #NM |
| * fault and get the FPU access back. |
| */ |
| static inline int fpregs_active(void) |
| { |
| return current->thread.fpu.fpregs_active; |
| } |
| |
| /* |
| * Encapsulate the CR0.TS handling together with the |
| * software flag. |
| * |
| * These generally need preemption protection to work, |
| * do try to avoid using these on their own. |
| */ |
| static inline void fpregs_activate(struct fpu *fpu) |
| { |
| __fpregs_activate_hw(); |
| __fpregs_activate(fpu); |
| } |
| |
| static inline void fpregs_deactivate(struct fpu *fpu) |
| { |
| __fpregs_deactivate(fpu); |
| __fpregs_deactivate_hw(); |
| } |
| |
| /* |
| * FPU state switching for scheduling. |
| * |
| * This is a two-stage process: |
| * |
| * - switch_fpu_prepare() saves the old state and |
| * sets the new state of the CR0.TS bit. This is |
| * done within the context of the old process. |
| * |
| * - switch_fpu_finish() restores the new state as |
| * necessary. |
| */ |
| typedef struct { int preload; } fpu_switch_t; |
| |
| static inline fpu_switch_t |
| switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu) |
| { |
| fpu_switch_t fpu; |
| |
| /* |
| * If the task has used the math, pre-load the FPU on xsave processors |
| * or if the past 5 consecutive context-switches used math. |
| */ |
| fpu.preload = new_fpu->fpstate_active && |
| (use_eager_fpu() || new_fpu->counter > 5); |
| |
| if (old_fpu->fpregs_active) { |
| if (!copy_fpregs_to_fpstate(old_fpu)) |
| old_fpu->last_cpu = -1; |
| else |
| old_fpu->last_cpu = cpu; |
| |
| /* But leave fpu_fpregs_owner_ctx! */ |
| old_fpu->fpregs_active = 0; |
| |
| /* Don't change CR0.TS if we just switch! */ |
| if (fpu.preload) { |
| new_fpu->counter++; |
| __fpregs_activate(new_fpu); |
| prefetch(&new_fpu->state); |
| } else { |
| __fpregs_deactivate_hw(); |
| } |
| } else { |
| old_fpu->counter = 0; |
| old_fpu->last_cpu = -1; |
| if (fpu.preload) { |
| new_fpu->counter++; |
| if (fpu_want_lazy_restore(new_fpu, cpu)) |
| fpu.preload = 0; |
| else |
| prefetch(&new_fpu->state); |
| fpregs_activate(new_fpu); |
| } |
| } |
| return fpu; |
| } |
| |
| /* |
| * Misc helper functions: |
| */ |
| |
| /* |
| * By the time this gets called, we've already cleared CR0.TS and |
| * given the process the FPU if we are going to preload the FPU |
| * state - all we need to do is to conditionally restore the register |
| * state itself. |
| */ |
| static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch) |
| { |
| if (fpu_switch.preload) |
| copy_kernel_to_fpregs(&new_fpu->state); |
| } |
| |
| /* |
| * Needs to be preemption-safe. |
| * |
| * NOTE! user_fpu_begin() must be used only immediately before restoring |
| * the save state. It does not do any saving/restoring on its own. In |
| * lazy FPU mode, it is just an optimization to avoid a #NM exception, |
| * the task can lose the FPU right after preempt_enable(). |
| */ |
| static inline void user_fpu_begin(void) |
| { |
| struct fpu *fpu = ¤t->thread.fpu; |
| |
| preempt_disable(); |
| if (!fpregs_active()) |
| fpregs_activate(fpu); |
| preempt_enable(); |
| } |
| |
| /* |
| * MXCSR and XCR definitions: |
| */ |
| |
| extern unsigned int mxcsr_feature_mask; |
| |
| #define XCR_XFEATURE_ENABLED_MASK 0x00000000 |
| |
| static inline u64 xgetbv(u32 index) |
| { |
| u32 eax, edx; |
| |
| asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */ |
| : "=a" (eax), "=d" (edx) |
| : "c" (index)); |
| return eax + ((u64)edx << 32); |
| } |
| |
| static inline void xsetbv(u32 index, u64 value) |
| { |
| u32 eax = value; |
| u32 edx = value >> 32; |
| |
| asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */ |
| : : "a" (eax), "d" (edx), "c" (index)); |
| } |
| |
| #endif /* _ASM_X86_FPU_INTERNAL_H */ |