| /* |
| * linux/mm/swap.c |
| * |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| */ |
| |
| /* |
| * This file contains the default values for the opereation of the |
| * Linux VM subsystem. Fine-tuning documentation can be found in |
| * Documentation/sysctl/vm.txt. |
| * Started 18.12.91 |
| * Swap aging added 23.2.95, Stephen Tweedie. |
| * Buffermem limits added 12.3.98, Rik van Riel. |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/sched.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/swap.h> |
| #include <linux/mman.h> |
| #include <linux/pagemap.h> |
| #include <linux/pagevec.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mm_inline.h> |
| #include <linux/buffer_head.h> /* for try_to_release_page() */ |
| #include <linux/module.h> |
| #include <linux/percpu_counter.h> |
| #include <linux/percpu.h> |
| #include <linux/cpu.h> |
| #include <linux/notifier.h> |
| #include <linux/init.h> |
| |
| /* How many pages do we try to swap or page in/out together? */ |
| int page_cluster; |
| |
| /* |
| * This path almost never happens for VM activity - pages are normally |
| * freed via pagevecs. But it gets used by networking. |
| */ |
| static void fastcall __page_cache_release(struct page *page) |
| { |
| if (PageLRU(page)) { |
| unsigned long flags; |
| struct zone *zone = page_zone(page); |
| |
| spin_lock_irqsave(&zone->lru_lock, flags); |
| VM_BUG_ON(!PageLRU(page)); |
| __ClearPageLRU(page); |
| del_page_from_lru(zone, page); |
| spin_unlock_irqrestore(&zone->lru_lock, flags); |
| } |
| free_hot_page(page); |
| } |
| |
| static void put_compound_page(struct page *page) |
| { |
| page = (struct page *)page_private(page); |
| if (put_page_testzero(page)) { |
| void (*dtor)(struct page *page); |
| |
| dtor = (void (*)(struct page *))page[1].lru.next; |
| (*dtor)(page); |
| } |
| } |
| |
| void put_page(struct page *page) |
| { |
| if (unlikely(PageCompound(page))) |
| put_compound_page(page); |
| else if (put_page_testzero(page)) |
| __page_cache_release(page); |
| } |
| EXPORT_SYMBOL(put_page); |
| |
| /** |
| * put_pages_list(): release a list of pages |
| * |
| * Release a list of pages which are strung together on page.lru. Currently |
| * used by read_cache_pages() and related error recovery code. |
| * |
| * @pages: list of pages threaded on page->lru |
| */ |
| void put_pages_list(struct list_head *pages) |
| { |
| while (!list_empty(pages)) { |
| struct page *victim; |
| |
| victim = list_entry(pages->prev, struct page, lru); |
| list_del(&victim->lru); |
| page_cache_release(victim); |
| } |
| } |
| EXPORT_SYMBOL(put_pages_list); |
| |
| /* |
| * Writeback is about to end against a page which has been marked for immediate |
| * reclaim. If it still appears to be reclaimable, move it to the tail of the |
| * inactive list. The page still has PageWriteback set, which will pin it. |
| * |
| * We don't expect many pages to come through here, so don't bother batching |
| * things up. |
| * |
| * To avoid placing the page at the tail of the LRU while PG_writeback is still |
| * set, this function will clear PG_writeback before performing the page |
| * motion. Do that inside the lru lock because once PG_writeback is cleared |
| * we may not touch the page. |
| * |
| * Returns zero if it cleared PG_writeback. |
| */ |
| int rotate_reclaimable_page(struct page *page) |
| { |
| struct zone *zone; |
| unsigned long flags; |
| |
| if (PageLocked(page)) |
| return 1; |
| if (PageDirty(page)) |
| return 1; |
| if (PageActive(page)) |
| return 1; |
| if (!PageLRU(page)) |
| return 1; |
| |
| zone = page_zone(page); |
| spin_lock_irqsave(&zone->lru_lock, flags); |
| if (PageLRU(page) && !PageActive(page)) { |
| list_move_tail(&page->lru, &zone->inactive_list); |
| __count_vm_event(PGROTATED); |
| } |
| if (!test_clear_page_writeback(page)) |
| BUG(); |
| spin_unlock_irqrestore(&zone->lru_lock, flags); |
| return 0; |
| } |
| |
| /* |
| * FIXME: speed this up? |
| */ |
| void fastcall activate_page(struct page *page) |
| { |
| struct zone *zone = page_zone(page); |
| |
| spin_lock_irq(&zone->lru_lock); |
| if (PageLRU(page) && !PageActive(page)) { |
| del_page_from_inactive_list(zone, page); |
| SetPageActive(page); |
| add_page_to_active_list(zone, page); |
| __count_vm_event(PGACTIVATE); |
| } |
| spin_unlock_irq(&zone->lru_lock); |
| } |
| |
| /* |
| * Mark a page as having seen activity. |
| * |
| * inactive,unreferenced -> inactive,referenced |
| * inactive,referenced -> active,unreferenced |
| * active,unreferenced -> active,referenced |
| */ |
| void fastcall mark_page_accessed(struct page *page) |
| { |
| if (!PageActive(page) && PageReferenced(page) && PageLRU(page)) { |
| activate_page(page); |
| ClearPageReferenced(page); |
| } else if (!PageReferenced(page)) { |
| SetPageReferenced(page); |
| } |
| } |
| |
| EXPORT_SYMBOL(mark_page_accessed); |
| |
| /** |
| * lru_cache_add: add a page to the page lists |
| * @page: the page to add |
| */ |
| static DEFINE_PER_CPU(struct pagevec, lru_add_pvecs) = { 0, }; |
| static DEFINE_PER_CPU(struct pagevec, lru_add_active_pvecs) = { 0, }; |
| |
| void fastcall lru_cache_add(struct page *page) |
| { |
| struct pagevec *pvec = &get_cpu_var(lru_add_pvecs); |
| |
| page_cache_get(page); |
| if (!pagevec_add(pvec, page)) |
| __pagevec_lru_add(pvec); |
| put_cpu_var(lru_add_pvecs); |
| } |
| |
| void fastcall lru_cache_add_active(struct page *page) |
| { |
| struct pagevec *pvec = &get_cpu_var(lru_add_active_pvecs); |
| |
| page_cache_get(page); |
| if (!pagevec_add(pvec, page)) |
| __pagevec_lru_add_active(pvec); |
| put_cpu_var(lru_add_active_pvecs); |
| } |
| |
| static void __lru_add_drain(int cpu) |
| { |
| struct pagevec *pvec = &per_cpu(lru_add_pvecs, cpu); |
| |
| /* CPU is dead, so no locking needed. */ |
| if (pagevec_count(pvec)) |
| __pagevec_lru_add(pvec); |
| pvec = &per_cpu(lru_add_active_pvecs, cpu); |
| if (pagevec_count(pvec)) |
| __pagevec_lru_add_active(pvec); |
| } |
| |
| void lru_add_drain(void) |
| { |
| __lru_add_drain(get_cpu()); |
| put_cpu(); |
| } |
| |
| #ifdef CONFIG_NUMA |
| static void lru_add_drain_per_cpu(struct work_struct *dummy) |
| { |
| lru_add_drain(); |
| } |
| |
| /* |
| * Returns 0 for success |
| */ |
| int lru_add_drain_all(void) |
| { |
| return schedule_on_each_cpu(lru_add_drain_per_cpu); |
| } |
| |
| #else |
| |
| /* |
| * Returns 0 for success |
| */ |
| int lru_add_drain_all(void) |
| { |
| lru_add_drain(); |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Batched page_cache_release(). Decrement the reference count on all the |
| * passed pages. If it fell to zero then remove the page from the LRU and |
| * free it. |
| * |
| * Avoid taking zone->lru_lock if possible, but if it is taken, retain it |
| * for the remainder of the operation. |
| * |
| * The locking in this function is against shrink_cache(): we recheck the |
| * page count inside the lock to see whether shrink_cache grabbed the page |
| * via the LRU. If it did, give up: shrink_cache will free it. |
| */ |
| void release_pages(struct page **pages, int nr, int cold) |
| { |
| int i; |
| struct pagevec pages_to_free; |
| struct zone *zone = NULL; |
| |
| pagevec_init(&pages_to_free, cold); |
| for (i = 0; i < nr; i++) { |
| struct page *page = pages[i]; |
| |
| if (unlikely(PageCompound(page))) { |
| if (zone) { |
| spin_unlock_irq(&zone->lru_lock); |
| zone = NULL; |
| } |
| put_compound_page(page); |
| continue; |
| } |
| |
| if (!put_page_testzero(page)) |
| continue; |
| |
| if (PageLRU(page)) { |
| struct zone *pagezone = page_zone(page); |
| if (pagezone != zone) { |
| if (zone) |
| spin_unlock_irq(&zone->lru_lock); |
| zone = pagezone; |
| spin_lock_irq(&zone->lru_lock); |
| } |
| VM_BUG_ON(!PageLRU(page)); |
| __ClearPageLRU(page); |
| del_page_from_lru(zone, page); |
| } |
| |
| if (!pagevec_add(&pages_to_free, page)) { |
| if (zone) { |
| spin_unlock_irq(&zone->lru_lock); |
| zone = NULL; |
| } |
| __pagevec_free(&pages_to_free); |
| pagevec_reinit(&pages_to_free); |
| } |
| } |
| if (zone) |
| spin_unlock_irq(&zone->lru_lock); |
| |
| pagevec_free(&pages_to_free); |
| } |
| |
| /* |
| * The pages which we're about to release may be in the deferred lru-addition |
| * queues. That would prevent them from really being freed right now. That's |
| * OK from a correctness point of view but is inefficient - those pages may be |
| * cache-warm and we want to give them back to the page allocator ASAP. |
| * |
| * So __pagevec_release() will drain those queues here. __pagevec_lru_add() |
| * and __pagevec_lru_add_active() call release_pages() directly to avoid |
| * mutual recursion. |
| */ |
| void __pagevec_release(struct pagevec *pvec) |
| { |
| lru_add_drain(); |
| release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); |
| pagevec_reinit(pvec); |
| } |
| |
| EXPORT_SYMBOL(__pagevec_release); |
| |
| /* |
| * pagevec_release() for pages which are known to not be on the LRU |
| * |
| * This function reinitialises the caller's pagevec. |
| */ |
| void __pagevec_release_nonlru(struct pagevec *pvec) |
| { |
| int i; |
| struct pagevec pages_to_free; |
| |
| pagevec_init(&pages_to_free, pvec->cold); |
| for (i = 0; i < pagevec_count(pvec); i++) { |
| struct page *page = pvec->pages[i]; |
| |
| VM_BUG_ON(PageLRU(page)); |
| if (put_page_testzero(page)) |
| pagevec_add(&pages_to_free, page); |
| } |
| pagevec_free(&pages_to_free); |
| pagevec_reinit(pvec); |
| } |
| |
| /* |
| * Add the passed pages to the LRU, then drop the caller's refcount |
| * on them. Reinitialises the caller's pagevec. |
| */ |
| void __pagevec_lru_add(struct pagevec *pvec) |
| { |
| int i; |
| struct zone *zone = NULL; |
| |
| for (i = 0; i < pagevec_count(pvec); i++) { |
| struct page *page = pvec->pages[i]; |
| struct zone *pagezone = page_zone(page); |
| |
| if (pagezone != zone) { |
| if (zone) |
| spin_unlock_irq(&zone->lru_lock); |
| zone = pagezone; |
| spin_lock_irq(&zone->lru_lock); |
| } |
| VM_BUG_ON(PageLRU(page)); |
| SetPageLRU(page); |
| add_page_to_inactive_list(zone, page); |
| } |
| if (zone) |
| spin_unlock_irq(&zone->lru_lock); |
| release_pages(pvec->pages, pvec->nr, pvec->cold); |
| pagevec_reinit(pvec); |
| } |
| |
| EXPORT_SYMBOL(__pagevec_lru_add); |
| |
| void __pagevec_lru_add_active(struct pagevec *pvec) |
| { |
| int i; |
| struct zone *zone = NULL; |
| |
| for (i = 0; i < pagevec_count(pvec); i++) { |
| struct page *page = pvec->pages[i]; |
| struct zone *pagezone = page_zone(page); |
| |
| if (pagezone != zone) { |
| if (zone) |
| spin_unlock_irq(&zone->lru_lock); |
| zone = pagezone; |
| spin_lock_irq(&zone->lru_lock); |
| } |
| VM_BUG_ON(PageLRU(page)); |
| SetPageLRU(page); |
| VM_BUG_ON(PageActive(page)); |
| SetPageActive(page); |
| add_page_to_active_list(zone, page); |
| } |
| if (zone) |
| spin_unlock_irq(&zone->lru_lock); |
| release_pages(pvec->pages, pvec->nr, pvec->cold); |
| pagevec_reinit(pvec); |
| } |
| |
| /* |
| * Try to drop buffers from the pages in a pagevec |
| */ |
| void pagevec_strip(struct pagevec *pvec) |
| { |
| int i; |
| |
| for (i = 0; i < pagevec_count(pvec); i++) { |
| struct page *page = pvec->pages[i]; |
| |
| if (PagePrivate(page) && !TestSetPageLocked(page)) { |
| if (PagePrivate(page)) |
| try_to_release_page(page, 0); |
| unlock_page(page); |
| } |
| } |
| } |
| |
| /** |
| * pagevec_lookup - gang pagecache lookup |
| * @pvec: Where the resulting pages are placed |
| * @mapping: The address_space to search |
| * @start: The starting page index |
| * @nr_pages: The maximum number of pages |
| * |
| * pagevec_lookup() will search for and return a group of up to @nr_pages pages |
| * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a |
| * reference against the pages in @pvec. |
| * |
| * The search returns a group of mapping-contiguous pages with ascending |
| * indexes. There may be holes in the indices due to not-present pages. |
| * |
| * pagevec_lookup() returns the number of pages which were found. |
| */ |
| unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, |
| pgoff_t start, unsigned nr_pages) |
| { |
| pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); |
| return pagevec_count(pvec); |
| } |
| |
| EXPORT_SYMBOL(pagevec_lookup); |
| |
| unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, |
| pgoff_t *index, int tag, unsigned nr_pages) |
| { |
| pvec->nr = find_get_pages_tag(mapping, index, tag, |
| nr_pages, pvec->pages); |
| return pagevec_count(pvec); |
| } |
| |
| EXPORT_SYMBOL(pagevec_lookup_tag); |
| |
| #ifdef CONFIG_SMP |
| /* |
| * We tolerate a little inaccuracy to avoid ping-ponging the counter between |
| * CPUs |
| */ |
| #define ACCT_THRESHOLD max(16, NR_CPUS * 2) |
| |
| static DEFINE_PER_CPU(long, committed_space) = 0; |
| |
| void vm_acct_memory(long pages) |
| { |
| long *local; |
| |
| preempt_disable(); |
| local = &__get_cpu_var(committed_space); |
| *local += pages; |
| if (*local > ACCT_THRESHOLD || *local < -ACCT_THRESHOLD) { |
| atomic_add(*local, &vm_committed_space); |
| *local = 0; |
| } |
| preempt_enable(); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| /* Drop the CPU's cached committed space back into the central pool. */ |
| static int cpu_swap_callback(struct notifier_block *nfb, |
| unsigned long action, |
| void *hcpu) |
| { |
| long *committed; |
| |
| committed = &per_cpu(committed_space, (long)hcpu); |
| if (action == CPU_DEAD) { |
| atomic_add(*committed, &vm_committed_space); |
| *committed = 0; |
| __lru_add_drain((long)hcpu); |
| } |
| return NOTIFY_OK; |
| } |
| #endif /* CONFIG_HOTPLUG_CPU */ |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * Perform any setup for the swap system |
| */ |
| void __init swap_setup(void) |
| { |
| unsigned long megs = num_physpages >> (20 - PAGE_SHIFT); |
| |
| /* Use a smaller cluster for small-memory machines */ |
| if (megs < 16) |
| page_cluster = 2; |
| else |
| page_cluster = 3; |
| /* |
| * Right now other parts of the system means that we |
| * _really_ don't want to cluster much more |
| */ |
| hotcpu_notifier(cpu_swap_callback, 0); |
| } |