| /* |
| * An async IO implementation for Linux |
| * Written by Benjamin LaHaise <bcrl@kvack.org> |
| * |
| * Implements an efficient asynchronous io interface. |
| * |
| * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. |
| * |
| * See ../COPYING for licensing terms. |
| */ |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/time.h> |
| #include <linux/aio_abi.h> |
| #include <linux/export.h> |
| #include <linux/syscalls.h> |
| #include <linux/backing-dev.h> |
| #include <linux/uio.h> |
| |
| #include <linux/sched.h> |
| #include <linux/fs.h> |
| #include <linux/file.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/mmu_context.h> |
| #include <linux/slab.h> |
| #include <linux/timer.h> |
| #include <linux/aio.h> |
| #include <linux/highmem.h> |
| #include <linux/workqueue.h> |
| #include <linux/security.h> |
| #include <linux/eventfd.h> |
| #include <linux/blkdev.h> |
| #include <linux/compat.h> |
| |
| #include <asm/kmap_types.h> |
| #include <asm/uaccess.h> |
| |
| #define AIO_RING_MAGIC 0xa10a10a1 |
| #define AIO_RING_COMPAT_FEATURES 1 |
| #define AIO_RING_INCOMPAT_FEATURES 0 |
| struct aio_ring { |
| unsigned id; /* kernel internal index number */ |
| unsigned nr; /* number of io_events */ |
| unsigned head; |
| unsigned tail; |
| |
| unsigned magic; |
| unsigned compat_features; |
| unsigned incompat_features; |
| unsigned header_length; /* size of aio_ring */ |
| |
| |
| struct io_event io_events[0]; |
| }; /* 128 bytes + ring size */ |
| |
| #define AIO_RING_PAGES 8 |
| struct aio_ring_info { |
| unsigned long mmap_base; |
| unsigned long mmap_size; |
| |
| struct page **ring_pages; |
| struct mutex ring_lock; |
| long nr_pages; |
| |
| unsigned nr, tail; |
| |
| struct page *internal_pages[AIO_RING_PAGES]; |
| }; |
| |
| struct kioctx { |
| atomic_t users; |
| atomic_t dead; |
| |
| /* This needs improving */ |
| unsigned long user_id; |
| struct hlist_node list; |
| |
| wait_queue_head_t wait; |
| |
| spinlock_t ctx_lock; |
| |
| atomic_t reqs_active; |
| struct list_head active_reqs; /* used for cancellation */ |
| |
| /* |
| * This is what userspace passed to io_setup(), it's not used for |
| * anything but counting against the global max_reqs quota. |
| * |
| * The real limit is ring->nr - 1, which will be larger (see |
| * aio_setup_ring()) |
| */ |
| unsigned max_reqs; |
| |
| struct aio_ring_info ring_info; |
| |
| spinlock_t completion_lock; |
| |
| struct rcu_head rcu_head; |
| struct work_struct rcu_work; |
| }; |
| |
| /*------ sysctl variables----*/ |
| static DEFINE_SPINLOCK(aio_nr_lock); |
| unsigned long aio_nr; /* current system wide number of aio requests */ |
| unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ |
| /*----end sysctl variables---*/ |
| |
| static struct kmem_cache *kiocb_cachep; |
| static struct kmem_cache *kioctx_cachep; |
| |
| /* aio_setup |
| * Creates the slab caches used by the aio routines, panic on |
| * failure as this is done early during the boot sequence. |
| */ |
| static int __init aio_setup(void) |
| { |
| kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); |
| kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); |
| |
| pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); |
| |
| return 0; |
| } |
| __initcall(aio_setup); |
| |
| static void aio_free_ring(struct kioctx *ctx) |
| { |
| struct aio_ring_info *info = &ctx->ring_info; |
| long i; |
| |
| for (i=0; i<info->nr_pages; i++) |
| put_page(info->ring_pages[i]); |
| |
| if (info->mmap_size) { |
| vm_munmap(info->mmap_base, info->mmap_size); |
| } |
| |
| if (info->ring_pages && info->ring_pages != info->internal_pages) |
| kfree(info->ring_pages); |
| info->ring_pages = NULL; |
| info->nr = 0; |
| } |
| |
| static int aio_setup_ring(struct kioctx *ctx) |
| { |
| struct aio_ring *ring; |
| struct aio_ring_info *info = &ctx->ring_info; |
| unsigned nr_events = ctx->max_reqs; |
| struct mm_struct *mm = current->mm; |
| unsigned long size, populate; |
| int nr_pages; |
| |
| /* Compensate for the ring buffer's head/tail overlap entry */ |
| nr_events += 2; /* 1 is required, 2 for good luck */ |
| |
| size = sizeof(struct aio_ring); |
| size += sizeof(struct io_event) * nr_events; |
| nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; |
| |
| if (nr_pages < 0) |
| return -EINVAL; |
| |
| nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); |
| |
| info->nr = 0; |
| info->ring_pages = info->internal_pages; |
| if (nr_pages > AIO_RING_PAGES) { |
| info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); |
| if (!info->ring_pages) |
| return -ENOMEM; |
| } |
| |
| info->mmap_size = nr_pages * PAGE_SIZE; |
| pr_debug("attempting mmap of %lu bytes\n", info->mmap_size); |
| down_write(&mm->mmap_sem); |
| info->mmap_base = do_mmap_pgoff(NULL, 0, info->mmap_size, |
| PROT_READ|PROT_WRITE, |
| MAP_ANONYMOUS|MAP_PRIVATE, 0, |
| &populate); |
| if (IS_ERR((void *)info->mmap_base)) { |
| up_write(&mm->mmap_sem); |
| info->mmap_size = 0; |
| aio_free_ring(ctx); |
| return -EAGAIN; |
| } |
| |
| pr_debug("mmap address: 0x%08lx\n", info->mmap_base); |
| info->nr_pages = get_user_pages(current, mm, info->mmap_base, nr_pages, |
| 1, 0, info->ring_pages, NULL); |
| up_write(&mm->mmap_sem); |
| |
| if (unlikely(info->nr_pages != nr_pages)) { |
| aio_free_ring(ctx); |
| return -EAGAIN; |
| } |
| if (populate) |
| mm_populate(info->mmap_base, populate); |
| |
| ctx->user_id = info->mmap_base; |
| |
| info->nr = nr_events; /* trusted copy */ |
| |
| ring = kmap_atomic(info->ring_pages[0]); |
| ring->nr = nr_events; /* user copy */ |
| ring->id = ctx->user_id; |
| ring->head = ring->tail = 0; |
| ring->magic = AIO_RING_MAGIC; |
| ring->compat_features = AIO_RING_COMPAT_FEATURES; |
| ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; |
| ring->header_length = sizeof(struct aio_ring); |
| kunmap_atomic(ring); |
| flush_dcache_page(info->ring_pages[0]); |
| |
| return 0; |
| } |
| |
| #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) |
| #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) |
| #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) |
| |
| void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) |
| { |
| struct kioctx *ctx = req->ki_ctx; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ctx->ctx_lock, flags); |
| |
| if (!req->ki_list.next) |
| list_add(&req->ki_list, &ctx->active_reqs); |
| |
| req->ki_cancel = cancel; |
| |
| spin_unlock_irqrestore(&ctx->ctx_lock, flags); |
| } |
| EXPORT_SYMBOL(kiocb_set_cancel_fn); |
| |
| static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb, |
| struct io_event *res) |
| { |
| kiocb_cancel_fn *old, *cancel; |
| int ret = -EINVAL; |
| |
| /* |
| * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it |
| * actually has a cancel function, hence the cmpxchg() |
| */ |
| |
| cancel = ACCESS_ONCE(kiocb->ki_cancel); |
| do { |
| if (!cancel || cancel == KIOCB_CANCELLED) |
| return ret; |
| |
| old = cancel; |
| cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); |
| } while (cancel != old); |
| |
| atomic_inc(&kiocb->ki_users); |
| spin_unlock_irq(&ctx->ctx_lock); |
| |
| memset(res, 0, sizeof(*res)); |
| res->obj = (u64)(unsigned long)kiocb->ki_obj.user; |
| res->data = kiocb->ki_user_data; |
| ret = cancel(kiocb, res); |
| |
| spin_lock_irq(&ctx->ctx_lock); |
| |
| return ret; |
| } |
| |
| static void free_ioctx_rcu(struct rcu_head *head) |
| { |
| struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); |
| kmem_cache_free(kioctx_cachep, ctx); |
| } |
| |
| /* |
| * When this function runs, the kioctx has been removed from the "hash table" |
| * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - |
| * now it's safe to cancel any that need to be. |
| */ |
| static void free_ioctx(struct kioctx *ctx) |
| { |
| struct aio_ring_info *info = &ctx->ring_info; |
| struct aio_ring *ring; |
| struct io_event res; |
| struct kiocb *req; |
| unsigned head, avail; |
| |
| spin_lock_irq(&ctx->ctx_lock); |
| |
| while (!list_empty(&ctx->active_reqs)) { |
| req = list_first_entry(&ctx->active_reqs, |
| struct kiocb, ki_list); |
| |
| list_del_init(&req->ki_list); |
| kiocb_cancel(ctx, req, &res); |
| } |
| |
| spin_unlock_irq(&ctx->ctx_lock); |
| |
| ring = kmap_atomic(info->ring_pages[0]); |
| head = ring->head; |
| kunmap_atomic(ring); |
| |
| while (atomic_read(&ctx->reqs_active) > 0) { |
| wait_event(ctx->wait, head != info->tail); |
| |
| avail = (head <= info->tail ? info->tail : info->nr) - head; |
| |
| atomic_sub(avail, &ctx->reqs_active); |
| head += avail; |
| head %= info->nr; |
| } |
| |
| WARN_ON(atomic_read(&ctx->reqs_active) < 0); |
| |
| aio_free_ring(ctx); |
| |
| spin_lock(&aio_nr_lock); |
| BUG_ON(aio_nr - ctx->max_reqs > aio_nr); |
| aio_nr -= ctx->max_reqs; |
| spin_unlock(&aio_nr_lock); |
| |
| pr_debug("freeing %p\n", ctx); |
| |
| /* |
| * Here the call_rcu() is between the wait_event() for reqs_active to |
| * hit 0, and freeing the ioctx. |
| * |
| * aio_complete() decrements reqs_active, but it has to touch the ioctx |
| * after to issue a wakeup so we use rcu. |
| */ |
| call_rcu(&ctx->rcu_head, free_ioctx_rcu); |
| } |
| |
| static void put_ioctx(struct kioctx *ctx) |
| { |
| if (unlikely(atomic_dec_and_test(&ctx->users))) |
| free_ioctx(ctx); |
| } |
| |
| /* ioctx_alloc |
| * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. |
| */ |
| static struct kioctx *ioctx_alloc(unsigned nr_events) |
| { |
| struct mm_struct *mm = current->mm; |
| struct kioctx *ctx; |
| int err = -ENOMEM; |
| |
| /* Prevent overflows */ |
| if ((nr_events > (0x10000000U / sizeof(struct io_event))) || |
| (nr_events > (0x10000000U / sizeof(struct kiocb)))) { |
| pr_debug("ENOMEM: nr_events too high\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (!nr_events || (unsigned long)nr_events > aio_max_nr) |
| return ERR_PTR(-EAGAIN); |
| |
| ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); |
| if (!ctx) |
| return ERR_PTR(-ENOMEM); |
| |
| ctx->max_reqs = nr_events; |
| |
| atomic_set(&ctx->users, 2); |
| atomic_set(&ctx->dead, 0); |
| spin_lock_init(&ctx->ctx_lock); |
| spin_lock_init(&ctx->completion_lock); |
| mutex_init(&ctx->ring_info.ring_lock); |
| init_waitqueue_head(&ctx->wait); |
| |
| INIT_LIST_HEAD(&ctx->active_reqs); |
| |
| if (aio_setup_ring(ctx) < 0) |
| goto out_freectx; |
| |
| /* limit the number of system wide aios */ |
| spin_lock(&aio_nr_lock); |
| if (aio_nr + nr_events > aio_max_nr || |
| aio_nr + nr_events < aio_nr) { |
| spin_unlock(&aio_nr_lock); |
| goto out_cleanup; |
| } |
| aio_nr += ctx->max_reqs; |
| spin_unlock(&aio_nr_lock); |
| |
| /* now link into global list. */ |
| spin_lock(&mm->ioctx_lock); |
| hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); |
| spin_unlock(&mm->ioctx_lock); |
| |
| pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", |
| ctx, ctx->user_id, mm, ctx->ring_info.nr); |
| return ctx; |
| |
| out_cleanup: |
| err = -EAGAIN; |
| aio_free_ring(ctx); |
| out_freectx: |
| kmem_cache_free(kioctx_cachep, ctx); |
| pr_debug("error allocating ioctx %d\n", err); |
| return ERR_PTR(err); |
| } |
| |
| static void kill_ioctx_work(struct work_struct *work) |
| { |
| struct kioctx *ctx = container_of(work, struct kioctx, rcu_work); |
| |
| wake_up_all(&ctx->wait); |
| put_ioctx(ctx); |
| } |
| |
| static void kill_ioctx_rcu(struct rcu_head *head) |
| { |
| struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); |
| |
| INIT_WORK(&ctx->rcu_work, kill_ioctx_work); |
| schedule_work(&ctx->rcu_work); |
| } |
| |
| /* kill_ioctx |
| * Cancels all outstanding aio requests on an aio context. Used |
| * when the processes owning a context have all exited to encourage |
| * the rapid destruction of the kioctx. |
| */ |
| static void kill_ioctx(struct kioctx *ctx) |
| { |
| if (!atomic_xchg(&ctx->dead, 1)) { |
| hlist_del_rcu(&ctx->list); |
| /* Between hlist_del_rcu() and dropping the initial ref */ |
| synchronize_rcu(); |
| |
| /* |
| * We can't punt to workqueue here because put_ioctx() -> |
| * free_ioctx() will unmap the ringbuffer, and that has to be |
| * done in the original process's context. kill_ioctx_rcu/work() |
| * exist for exit_aio(), as in that path free_ioctx() won't do |
| * the unmap. |
| */ |
| kill_ioctx_work(&ctx->rcu_work); |
| } |
| } |
| |
| /* wait_on_sync_kiocb: |
| * Waits on the given sync kiocb to complete. |
| */ |
| ssize_t wait_on_sync_kiocb(struct kiocb *iocb) |
| { |
| while (atomic_read(&iocb->ki_users)) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| if (!atomic_read(&iocb->ki_users)) |
| break; |
| io_schedule(); |
| } |
| __set_current_state(TASK_RUNNING); |
| return iocb->ki_user_data; |
| } |
| EXPORT_SYMBOL(wait_on_sync_kiocb); |
| |
| /* |
| * exit_aio: called when the last user of mm goes away. At this point, there is |
| * no way for any new requests to be submited or any of the io_* syscalls to be |
| * called on the context. |
| * |
| * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on |
| * them. |
| */ |
| void exit_aio(struct mm_struct *mm) |
| { |
| struct kioctx *ctx; |
| struct hlist_node *n; |
| |
| hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) { |
| if (1 != atomic_read(&ctx->users)) |
| printk(KERN_DEBUG |
| "exit_aio:ioctx still alive: %d %d %d\n", |
| atomic_read(&ctx->users), |
| atomic_read(&ctx->dead), |
| atomic_read(&ctx->reqs_active)); |
| /* |
| * We don't need to bother with munmap() here - |
| * exit_mmap(mm) is coming and it'll unmap everything. |
| * Since aio_free_ring() uses non-zero ->mmap_size |
| * as indicator that it needs to unmap the area, |
| * just set it to 0; aio_free_ring() is the only |
| * place that uses ->mmap_size, so it's safe. |
| */ |
| ctx->ring_info.mmap_size = 0; |
| |
| if (!atomic_xchg(&ctx->dead, 1)) { |
| hlist_del_rcu(&ctx->list); |
| call_rcu(&ctx->rcu_head, kill_ioctx_rcu); |
| } |
| } |
| } |
| |
| /* aio_get_req |
| * Allocate a slot for an aio request. Increments the ki_users count |
| * of the kioctx so that the kioctx stays around until all requests are |
| * complete. Returns NULL if no requests are free. |
| * |
| * Returns with kiocb->ki_users set to 2. The io submit code path holds |
| * an extra reference while submitting the i/o. |
| * This prevents races between the aio code path referencing the |
| * req (after submitting it) and aio_complete() freeing the req. |
| */ |
| static struct kiocb *__aio_get_req(struct kioctx *ctx) |
| { |
| struct kiocb *req = NULL; |
| |
| req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); |
| if (unlikely(!req)) |
| return NULL; |
| |
| atomic_set(&req->ki_users, 2); |
| req->ki_ctx = ctx; |
| |
| return req; |
| } |
| |
| /* |
| * struct kiocb's are allocated in batches to reduce the number of |
| * times the ctx lock is acquired and released. |
| */ |
| #define KIOCB_BATCH_SIZE 32L |
| struct kiocb_batch { |
| struct list_head head; |
| long count; /* number of requests left to allocate */ |
| }; |
| |
| static void kiocb_batch_init(struct kiocb_batch *batch, long total) |
| { |
| INIT_LIST_HEAD(&batch->head); |
| batch->count = total; |
| } |
| |
| static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch) |
| { |
| struct kiocb *req, *n; |
| |
| if (list_empty(&batch->head)) |
| return; |
| |
| spin_lock_irq(&ctx->ctx_lock); |
| list_for_each_entry_safe(req, n, &batch->head, ki_batch) { |
| list_del(&req->ki_batch); |
| kmem_cache_free(kiocb_cachep, req); |
| atomic_dec(&ctx->reqs_active); |
| } |
| spin_unlock_irq(&ctx->ctx_lock); |
| } |
| |
| /* |
| * Allocate a batch of kiocbs. This avoids taking and dropping the |
| * context lock a lot during setup. |
| */ |
| static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch) |
| { |
| unsigned short allocated, to_alloc; |
| long avail; |
| struct kiocb *req, *n; |
| |
| to_alloc = min(batch->count, KIOCB_BATCH_SIZE); |
| for (allocated = 0; allocated < to_alloc; allocated++) { |
| req = __aio_get_req(ctx); |
| if (!req) |
| /* allocation failed, go with what we've got */ |
| break; |
| list_add(&req->ki_batch, &batch->head); |
| } |
| |
| if (allocated == 0) |
| goto out; |
| |
| spin_lock_irq(&ctx->ctx_lock); |
| |
| avail = ctx->ring_info.nr - atomic_read(&ctx->reqs_active) - 1; |
| BUG_ON(avail < 0); |
| if (avail < allocated) { |
| /* Trim back the number of requests. */ |
| list_for_each_entry_safe(req, n, &batch->head, ki_batch) { |
| list_del(&req->ki_batch); |
| kmem_cache_free(kiocb_cachep, req); |
| if (--allocated <= avail) |
| break; |
| } |
| } |
| |
| batch->count -= allocated; |
| atomic_add(allocated, &ctx->reqs_active); |
| |
| spin_unlock_irq(&ctx->ctx_lock); |
| |
| out: |
| return allocated; |
| } |
| |
| static inline struct kiocb *aio_get_req(struct kioctx *ctx, |
| struct kiocb_batch *batch) |
| { |
| struct kiocb *req; |
| |
| if (list_empty(&batch->head)) |
| if (kiocb_batch_refill(ctx, batch) == 0) |
| return NULL; |
| req = list_first_entry(&batch->head, struct kiocb, ki_batch); |
| list_del(&req->ki_batch); |
| return req; |
| } |
| |
| static void kiocb_free(struct kiocb *req) |
| { |
| if (req->ki_filp) |
| fput(req->ki_filp); |
| if (req->ki_eventfd != NULL) |
| eventfd_ctx_put(req->ki_eventfd); |
| if (req->ki_dtor) |
| req->ki_dtor(req); |
| if (req->ki_iovec != &req->ki_inline_vec) |
| kfree(req->ki_iovec); |
| kmem_cache_free(kiocb_cachep, req); |
| } |
| |
| void aio_put_req(struct kiocb *req) |
| { |
| if (atomic_dec_and_test(&req->ki_users)) |
| kiocb_free(req); |
| } |
| EXPORT_SYMBOL(aio_put_req); |
| |
| static struct kioctx *lookup_ioctx(unsigned long ctx_id) |
| { |
| struct mm_struct *mm = current->mm; |
| struct kioctx *ctx, *ret = NULL; |
| |
| rcu_read_lock(); |
| |
| hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) { |
| if (ctx->user_id == ctx_id) { |
| atomic_inc(&ctx->users); |
| ret = ctx; |
| break; |
| } |
| } |
| |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| /* aio_complete |
| * Called when the io request on the given iocb is complete. |
| */ |
| void aio_complete(struct kiocb *iocb, long res, long res2) |
| { |
| struct kioctx *ctx = iocb->ki_ctx; |
| struct aio_ring_info *info; |
| struct aio_ring *ring; |
| struct io_event *ev_page, *event; |
| unsigned long flags; |
| unsigned tail, pos; |
| |
| /* |
| * Special case handling for sync iocbs: |
| * - events go directly into the iocb for fast handling |
| * - the sync task with the iocb in its stack holds the single iocb |
| * ref, no other paths have a way to get another ref |
| * - the sync task helpfully left a reference to itself in the iocb |
| */ |
| if (is_sync_kiocb(iocb)) { |
| BUG_ON(atomic_read(&iocb->ki_users) != 1); |
| iocb->ki_user_data = res; |
| atomic_set(&iocb->ki_users, 0); |
| wake_up_process(iocb->ki_obj.tsk); |
| return; |
| } |
| |
| info = &ctx->ring_info; |
| |
| /* |
| * Take rcu_read_lock() in case the kioctx is being destroyed, as we |
| * need to issue a wakeup after decrementing reqs_active. |
| */ |
| rcu_read_lock(); |
| |
| if (iocb->ki_list.next) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ctx->ctx_lock, flags); |
| list_del(&iocb->ki_list); |
| spin_unlock_irqrestore(&ctx->ctx_lock, flags); |
| } |
| |
| /* |
| * cancelled requests don't get events, userland was given one |
| * when the event got cancelled. |
| */ |
| if (unlikely(xchg(&iocb->ki_cancel, |
| KIOCB_CANCELLED) == KIOCB_CANCELLED)) { |
| atomic_dec(&ctx->reqs_active); |
| /* Still need the wake_up in case free_ioctx is waiting */ |
| goto put_rq; |
| } |
| |
| /* |
| * Add a completion event to the ring buffer. Must be done holding |
| * ctx->ctx_lock to prevent other code from messing with the tail |
| * pointer since we might be called from irq context. |
| */ |
| spin_lock_irqsave(&ctx->completion_lock, flags); |
| |
| tail = info->tail; |
| pos = tail + AIO_EVENTS_OFFSET; |
| |
| if (++tail >= info->nr) |
| tail = 0; |
| |
| ev_page = kmap_atomic(info->ring_pages[pos / AIO_EVENTS_PER_PAGE]); |
| event = ev_page + pos % AIO_EVENTS_PER_PAGE; |
| |
| event->obj = (u64)(unsigned long)iocb->ki_obj.user; |
| event->data = iocb->ki_user_data; |
| event->res = res; |
| event->res2 = res2; |
| |
| kunmap_atomic(ev_page); |
| flush_dcache_page(info->ring_pages[pos / AIO_EVENTS_PER_PAGE]); |
| |
| pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", |
| ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, |
| res, res2); |
| |
| /* after flagging the request as done, we |
| * must never even look at it again |
| */ |
| smp_wmb(); /* make event visible before updating tail */ |
| |
| info->tail = tail; |
| |
| ring = kmap_atomic(info->ring_pages[0]); |
| ring->tail = tail; |
| kunmap_atomic(ring); |
| flush_dcache_page(info->ring_pages[0]); |
| |
| spin_unlock_irqrestore(&ctx->completion_lock, flags); |
| |
| pr_debug("added to ring %p at [%u]\n", iocb, tail); |
| |
| /* |
| * Check if the user asked us to deliver the result through an |
| * eventfd. The eventfd_signal() function is safe to be called |
| * from IRQ context. |
| */ |
| if (iocb->ki_eventfd != NULL) |
| eventfd_signal(iocb->ki_eventfd, 1); |
| |
| put_rq: |
| /* everything turned out well, dispose of the aiocb. */ |
| aio_put_req(iocb); |
| |
| /* |
| * We have to order our ring_info tail store above and test |
| * of the wait list below outside the wait lock. This is |
| * like in wake_up_bit() where clearing a bit has to be |
| * ordered with the unlocked test. |
| */ |
| smp_mb(); |
| |
| if (waitqueue_active(&ctx->wait)) |
| wake_up(&ctx->wait); |
| |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL(aio_complete); |
| |
| /* aio_read_events |
| * Pull an event off of the ioctx's event ring. Returns the number of |
| * events fetched |
| */ |
| static long aio_read_events_ring(struct kioctx *ctx, |
| struct io_event __user *event, long nr) |
| { |
| struct aio_ring_info *info = &ctx->ring_info; |
| struct aio_ring *ring; |
| unsigned head, pos; |
| long ret = 0; |
| int copy_ret; |
| |
| mutex_lock(&info->ring_lock); |
| |
| ring = kmap_atomic(info->ring_pages[0]); |
| head = ring->head; |
| kunmap_atomic(ring); |
| |
| pr_debug("h%u t%u m%u\n", head, info->tail, info->nr); |
| |
| if (head == info->tail) |
| goto out; |
| |
| while (ret < nr) { |
| long avail; |
| struct io_event *ev; |
| struct page *page; |
| |
| avail = (head <= info->tail ? info->tail : info->nr) - head; |
| if (head == info->tail) |
| break; |
| |
| avail = min(avail, nr - ret); |
| avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - |
| ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); |
| |
| pos = head + AIO_EVENTS_OFFSET; |
| page = info->ring_pages[pos / AIO_EVENTS_PER_PAGE]; |
| pos %= AIO_EVENTS_PER_PAGE; |
| |
| ev = kmap(page); |
| copy_ret = copy_to_user(event + ret, ev + pos, |
| sizeof(*ev) * avail); |
| kunmap(page); |
| |
| if (unlikely(copy_ret)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| ret += avail; |
| head += avail; |
| head %= info->nr; |
| } |
| |
| ring = kmap_atomic(info->ring_pages[0]); |
| ring->head = head; |
| kunmap_atomic(ring); |
| flush_dcache_page(info->ring_pages[0]); |
| |
| pr_debug("%li h%u t%u\n", ret, head, info->tail); |
| |
| atomic_sub(ret, &ctx->reqs_active); |
| out: |
| mutex_unlock(&info->ring_lock); |
| |
| return ret; |
| } |
| |
| static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, |
| struct io_event __user *event, long *i) |
| { |
| long ret = aio_read_events_ring(ctx, event + *i, nr - *i); |
| |
| if (ret > 0) |
| *i += ret; |
| |
| if (unlikely(atomic_read(&ctx->dead))) |
| ret = -EINVAL; |
| |
| if (!*i) |
| *i = ret; |
| |
| return ret < 0 || *i >= min_nr; |
| } |
| |
| static long read_events(struct kioctx *ctx, long min_nr, long nr, |
| struct io_event __user *event, |
| struct timespec __user *timeout) |
| { |
| ktime_t until = { .tv64 = KTIME_MAX }; |
| long ret = 0; |
| |
| if (timeout) { |
| struct timespec ts; |
| |
| if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) |
| return -EFAULT; |
| |
| until = timespec_to_ktime(ts); |
| } |
| |
| /* |
| * Note that aio_read_events() is being called as the conditional - i.e. |
| * we're calling it after prepare_to_wait() has set task state to |
| * TASK_INTERRUPTIBLE. |
| * |
| * But aio_read_events() can block, and if it blocks it's going to flip |
| * the task state back to TASK_RUNNING. |
| * |
| * This should be ok, provided it doesn't flip the state back to |
| * TASK_RUNNING and return 0 too much - that causes us to spin. That |
| * will only happen if the mutex_lock() call blocks, and we then find |
| * the ringbuffer empty. So in practice we should be ok, but it's |
| * something to be aware of when touching this code. |
| */ |
| wait_event_interruptible_hrtimeout(ctx->wait, |
| aio_read_events(ctx, min_nr, nr, event, &ret), until); |
| |
| if (!ret && signal_pending(current)) |
| ret = -EINTR; |
| |
| return ret; |
| } |
| |
| /* sys_io_setup: |
| * Create an aio_context capable of receiving at least nr_events. |
| * ctxp must not point to an aio_context that already exists, and |
| * must be initialized to 0 prior to the call. On successful |
| * creation of the aio_context, *ctxp is filled in with the resulting |
| * handle. May fail with -EINVAL if *ctxp is not initialized, |
| * if the specified nr_events exceeds internal limits. May fail |
| * with -EAGAIN if the specified nr_events exceeds the user's limit |
| * of available events. May fail with -ENOMEM if insufficient kernel |
| * resources are available. May fail with -EFAULT if an invalid |
| * pointer is passed for ctxp. Will fail with -ENOSYS if not |
| * implemented. |
| */ |
| SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) |
| { |
| struct kioctx *ioctx = NULL; |
| unsigned long ctx; |
| long ret; |
| |
| ret = get_user(ctx, ctxp); |
| if (unlikely(ret)) |
| goto out; |
| |
| ret = -EINVAL; |
| if (unlikely(ctx || nr_events == 0)) { |
| pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", |
| ctx, nr_events); |
| goto out; |
| } |
| |
| ioctx = ioctx_alloc(nr_events); |
| ret = PTR_ERR(ioctx); |
| if (!IS_ERR(ioctx)) { |
| ret = put_user(ioctx->user_id, ctxp); |
| if (ret) |
| kill_ioctx(ioctx); |
| put_ioctx(ioctx); |
| } |
| |
| out: |
| return ret; |
| } |
| |
| /* sys_io_destroy: |
| * Destroy the aio_context specified. May cancel any outstanding |
| * AIOs and block on completion. Will fail with -ENOSYS if not |
| * implemented. May fail with -EINVAL if the context pointed to |
| * is invalid. |
| */ |
| SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) |
| { |
| struct kioctx *ioctx = lookup_ioctx(ctx); |
| if (likely(NULL != ioctx)) { |
| kill_ioctx(ioctx); |
| put_ioctx(ioctx); |
| return 0; |
| } |
| pr_debug("EINVAL: io_destroy: invalid context id\n"); |
| return -EINVAL; |
| } |
| |
| static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) |
| { |
| struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; |
| |
| BUG_ON(ret <= 0); |
| |
| while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { |
| ssize_t this = min((ssize_t)iov->iov_len, ret); |
| iov->iov_base += this; |
| iov->iov_len -= this; |
| iocb->ki_left -= this; |
| ret -= this; |
| if (iov->iov_len == 0) { |
| iocb->ki_cur_seg++; |
| iov++; |
| } |
| } |
| |
| /* the caller should not have done more io than what fit in |
| * the remaining iovecs */ |
| BUG_ON(ret > 0 && iocb->ki_left == 0); |
| } |
| |
| static ssize_t aio_rw_vect_retry(struct kiocb *iocb) |
| { |
| struct file *file = iocb->ki_filp; |
| struct address_space *mapping = file->f_mapping; |
| struct inode *inode = mapping->host; |
| ssize_t (*rw_op)(struct kiocb *, const struct iovec *, |
| unsigned long, loff_t); |
| ssize_t ret = 0; |
| unsigned short opcode; |
| |
| if ((iocb->ki_opcode == IOCB_CMD_PREADV) || |
| (iocb->ki_opcode == IOCB_CMD_PREAD)) { |
| rw_op = file->f_op->aio_read; |
| opcode = IOCB_CMD_PREADV; |
| } else { |
| rw_op = file->f_op->aio_write; |
| opcode = IOCB_CMD_PWRITEV; |
| } |
| |
| /* This matches the pread()/pwrite() logic */ |
| if (iocb->ki_pos < 0) |
| return -EINVAL; |
| |
| if (opcode == IOCB_CMD_PWRITEV) |
| file_start_write(file); |
| do { |
| ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], |
| iocb->ki_nr_segs - iocb->ki_cur_seg, |
| iocb->ki_pos); |
| if (ret > 0) |
| aio_advance_iovec(iocb, ret); |
| |
| /* retry all partial writes. retry partial reads as long as its a |
| * regular file. */ |
| } while (ret > 0 && iocb->ki_left > 0 && |
| (opcode == IOCB_CMD_PWRITEV || |
| (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); |
| if (opcode == IOCB_CMD_PWRITEV) |
| file_end_write(file); |
| |
| /* This means we must have transferred all that we could */ |
| /* No need to retry anymore */ |
| if ((ret == 0) || (iocb->ki_left == 0)) |
| ret = iocb->ki_nbytes - iocb->ki_left; |
| |
| /* If we managed to write some out we return that, rather than |
| * the eventual error. */ |
| if (opcode == IOCB_CMD_PWRITEV |
| && ret < 0 && ret != -EIOCBQUEUED |
| && iocb->ki_nbytes - iocb->ki_left) |
| ret = iocb->ki_nbytes - iocb->ki_left; |
| |
| return ret; |
| } |
| |
| static ssize_t aio_fdsync(struct kiocb *iocb) |
| { |
| struct file *file = iocb->ki_filp; |
| ssize_t ret = -EINVAL; |
| |
| if (file->f_op->aio_fsync) |
| ret = file->f_op->aio_fsync(iocb, 1); |
| return ret; |
| } |
| |
| static ssize_t aio_fsync(struct kiocb *iocb) |
| { |
| struct file *file = iocb->ki_filp; |
| ssize_t ret = -EINVAL; |
| |
| if (file->f_op->aio_fsync) |
| ret = file->f_op->aio_fsync(iocb, 0); |
| return ret; |
| } |
| |
| static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat) |
| { |
| ssize_t ret; |
| |
| #ifdef CONFIG_COMPAT |
| if (compat) |
| ret = compat_rw_copy_check_uvector(type, |
| (struct compat_iovec __user *)kiocb->ki_buf, |
| kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, |
| &kiocb->ki_iovec); |
| else |
| #endif |
| ret = rw_copy_check_uvector(type, |
| (struct iovec __user *)kiocb->ki_buf, |
| kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, |
| &kiocb->ki_iovec); |
| if (ret < 0) |
| goto out; |
| |
| ret = rw_verify_area(type, kiocb->ki_filp, &kiocb->ki_pos, ret); |
| if (ret < 0) |
| goto out; |
| |
| kiocb->ki_nr_segs = kiocb->ki_nbytes; |
| kiocb->ki_cur_seg = 0; |
| /* ki_nbytes/left now reflect bytes instead of segs */ |
| kiocb->ki_nbytes = ret; |
| kiocb->ki_left = ret; |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| static ssize_t aio_setup_single_vector(int type, struct file * file, struct kiocb *kiocb) |
| { |
| int bytes; |
| |
| bytes = rw_verify_area(type, file, &kiocb->ki_pos, kiocb->ki_left); |
| if (bytes < 0) |
| return bytes; |
| |
| kiocb->ki_iovec = &kiocb->ki_inline_vec; |
| kiocb->ki_iovec->iov_base = kiocb->ki_buf; |
| kiocb->ki_iovec->iov_len = bytes; |
| kiocb->ki_nr_segs = 1; |
| kiocb->ki_cur_seg = 0; |
| return 0; |
| } |
| |
| /* |
| * aio_setup_iocb: |
| * Performs the initial checks and aio retry method |
| * setup for the kiocb at the time of io submission. |
| */ |
| static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat) |
| { |
| struct file *file = kiocb->ki_filp; |
| ssize_t ret = 0; |
| |
| switch (kiocb->ki_opcode) { |
| case IOCB_CMD_PREAD: |
| ret = -EBADF; |
| if (unlikely(!(file->f_mode & FMODE_READ))) |
| break; |
| ret = -EFAULT; |
| if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, |
| kiocb->ki_left))) |
| break; |
| ret = aio_setup_single_vector(READ, file, kiocb); |
| if (ret) |
| break; |
| ret = -EINVAL; |
| if (file->f_op->aio_read) |
| kiocb->ki_retry = aio_rw_vect_retry; |
| break; |
| case IOCB_CMD_PWRITE: |
| ret = -EBADF; |
| if (unlikely(!(file->f_mode & FMODE_WRITE))) |
| break; |
| ret = -EFAULT; |
| if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, |
| kiocb->ki_left))) |
| break; |
| ret = aio_setup_single_vector(WRITE, file, kiocb); |
| if (ret) |
| break; |
| ret = -EINVAL; |
| if (file->f_op->aio_write) |
| kiocb->ki_retry = aio_rw_vect_retry; |
| break; |
| case IOCB_CMD_PREADV: |
| ret = -EBADF; |
| if (unlikely(!(file->f_mode & FMODE_READ))) |
| break; |
| ret = aio_setup_vectored_rw(READ, kiocb, compat); |
| if (ret) |
| break; |
| ret = -EINVAL; |
| if (file->f_op->aio_read) |
| kiocb->ki_retry = aio_rw_vect_retry; |
| break; |
| case IOCB_CMD_PWRITEV: |
| ret = -EBADF; |
| if (unlikely(!(file->f_mode & FMODE_WRITE))) |
| break; |
| ret = aio_setup_vectored_rw(WRITE, kiocb, compat); |
| if (ret) |
| break; |
| ret = -EINVAL; |
| if (file->f_op->aio_write) |
| kiocb->ki_retry = aio_rw_vect_retry; |
| break; |
| case IOCB_CMD_FDSYNC: |
| ret = -EINVAL; |
| if (file->f_op->aio_fsync) |
| kiocb->ki_retry = aio_fdsync; |
| break; |
| case IOCB_CMD_FSYNC: |
| ret = -EINVAL; |
| if (file->f_op->aio_fsync) |
| kiocb->ki_retry = aio_fsync; |
| break; |
| default: |
| pr_debug("EINVAL: no operation provided\n"); |
| ret = -EINVAL; |
| } |
| |
| if (!kiocb->ki_retry) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, |
| struct iocb *iocb, struct kiocb_batch *batch, |
| bool compat) |
| { |
| struct kiocb *req; |
| ssize_t ret; |
| |
| /* enforce forwards compatibility on users */ |
| if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { |
| pr_debug("EINVAL: reserve field set\n"); |
| return -EINVAL; |
| } |
| |
| /* prevent overflows */ |
| if (unlikely( |
| (iocb->aio_buf != (unsigned long)iocb->aio_buf) || |
| (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || |
| ((ssize_t)iocb->aio_nbytes < 0) |
| )) { |
| pr_debug("EINVAL: io_submit: overflow check\n"); |
| return -EINVAL; |
| } |
| |
| req = aio_get_req(ctx, batch); /* returns with 2 references to req */ |
| if (unlikely(!req)) |
| return -EAGAIN; |
| |
| req->ki_filp = fget(iocb->aio_fildes); |
| if (unlikely(!req->ki_filp)) { |
| ret = -EBADF; |
| goto out_put_req; |
| } |
| |
| if (iocb->aio_flags & IOCB_FLAG_RESFD) { |
| /* |
| * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an |
| * instance of the file* now. The file descriptor must be |
| * an eventfd() fd, and will be signaled for each completed |
| * event using the eventfd_signal() function. |
| */ |
| req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); |
| if (IS_ERR(req->ki_eventfd)) { |
| ret = PTR_ERR(req->ki_eventfd); |
| req->ki_eventfd = NULL; |
| goto out_put_req; |
| } |
| } |
| |
| ret = put_user(req->ki_key, &user_iocb->aio_key); |
| if (unlikely(ret)) { |
| pr_debug("EFAULT: aio_key\n"); |
| goto out_put_req; |
| } |
| |
| req->ki_obj.user = user_iocb; |
| req->ki_user_data = iocb->aio_data; |
| req->ki_pos = iocb->aio_offset; |
| |
| req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; |
| req->ki_left = req->ki_nbytes = iocb->aio_nbytes; |
| req->ki_opcode = iocb->aio_lio_opcode; |
| |
| ret = aio_setup_iocb(req, compat); |
| if (ret) |
| goto out_put_req; |
| |
| ret = req->ki_retry(req); |
| if (ret != -EIOCBQUEUED) { |
| /* |
| * There's no easy way to restart the syscall since other AIO's |
| * may be already running. Just fail this IO with EINTR. |
| */ |
| if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || |
| ret == -ERESTARTNOHAND || |
| ret == -ERESTART_RESTARTBLOCK)) |
| ret = -EINTR; |
| aio_complete(req, ret, 0); |
| } |
| |
| aio_put_req(req); /* drop extra ref to req */ |
| return 0; |
| |
| out_put_req: |
| atomic_dec(&ctx->reqs_active); |
| aio_put_req(req); /* drop extra ref to req */ |
| aio_put_req(req); /* drop i/o ref to req */ |
| return ret; |
| } |
| |
| long do_io_submit(aio_context_t ctx_id, long nr, |
| struct iocb __user *__user *iocbpp, bool compat) |
| { |
| struct kioctx *ctx; |
| long ret = 0; |
| int i = 0; |
| struct blk_plug plug; |
| struct kiocb_batch batch; |
| |
| if (unlikely(nr < 0)) |
| return -EINVAL; |
| |
| if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) |
| nr = LONG_MAX/sizeof(*iocbpp); |
| |
| if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) |
| return -EFAULT; |
| |
| ctx = lookup_ioctx(ctx_id); |
| if (unlikely(!ctx)) { |
| pr_debug("EINVAL: invalid context id\n"); |
| return -EINVAL; |
| } |
| |
| kiocb_batch_init(&batch, nr); |
| |
| blk_start_plug(&plug); |
| |
| /* |
| * AKPM: should this return a partial result if some of the IOs were |
| * successfully submitted? |
| */ |
| for (i=0; i<nr; i++) { |
| struct iocb __user *user_iocb; |
| struct iocb tmp; |
| |
| if (unlikely(__get_user(user_iocb, iocbpp + i))) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat); |
| if (ret) |
| break; |
| } |
| blk_finish_plug(&plug); |
| |
| kiocb_batch_free(ctx, &batch); |
| put_ioctx(ctx); |
| return i ? i : ret; |
| } |
| |
| /* sys_io_submit: |
| * Queue the nr iocbs pointed to by iocbpp for processing. Returns |
| * the number of iocbs queued. May return -EINVAL if the aio_context |
| * specified by ctx_id is invalid, if nr is < 0, if the iocb at |
| * *iocbpp[0] is not properly initialized, if the operation specified |
| * is invalid for the file descriptor in the iocb. May fail with |
| * -EFAULT if any of the data structures point to invalid data. May |
| * fail with -EBADF if the file descriptor specified in the first |
| * iocb is invalid. May fail with -EAGAIN if insufficient resources |
| * are available to queue any iocbs. Will return 0 if nr is 0. Will |
| * fail with -ENOSYS if not implemented. |
| */ |
| SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, |
| struct iocb __user * __user *, iocbpp) |
| { |
| return do_io_submit(ctx_id, nr, iocbpp, 0); |
| } |
| |
| /* lookup_kiocb |
| * Finds a given iocb for cancellation. |
| */ |
| static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, |
| u32 key) |
| { |
| struct list_head *pos; |
| |
| assert_spin_locked(&ctx->ctx_lock); |
| |
| /* TODO: use a hash or array, this sucks. */ |
| list_for_each(pos, &ctx->active_reqs) { |
| struct kiocb *kiocb = list_kiocb(pos); |
| if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) |
| return kiocb; |
| } |
| return NULL; |
| } |
| |
| /* sys_io_cancel: |
| * Attempts to cancel an iocb previously passed to io_submit. If |
| * the operation is successfully cancelled, the resulting event is |
| * copied into the memory pointed to by result without being placed |
| * into the completion queue and 0 is returned. May fail with |
| * -EFAULT if any of the data structures pointed to are invalid. |
| * May fail with -EINVAL if aio_context specified by ctx_id is |
| * invalid. May fail with -EAGAIN if the iocb specified was not |
| * cancelled. Will fail with -ENOSYS if not implemented. |
| */ |
| SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, |
| struct io_event __user *, result) |
| { |
| struct io_event res; |
| struct kioctx *ctx; |
| struct kiocb *kiocb; |
| u32 key; |
| int ret; |
| |
| ret = get_user(key, &iocb->aio_key); |
| if (unlikely(ret)) |
| return -EFAULT; |
| |
| ctx = lookup_ioctx(ctx_id); |
| if (unlikely(!ctx)) |
| return -EINVAL; |
| |
| spin_lock_irq(&ctx->ctx_lock); |
| |
| kiocb = lookup_kiocb(ctx, iocb, key); |
| if (kiocb) |
| ret = kiocb_cancel(ctx, kiocb, &res); |
| else |
| ret = -EINVAL; |
| |
| spin_unlock_irq(&ctx->ctx_lock); |
| |
| if (!ret) { |
| /* Cancellation succeeded -- copy the result |
| * into the user's buffer. |
| */ |
| if (copy_to_user(result, &res, sizeof(res))) |
| ret = -EFAULT; |
| } |
| |
| put_ioctx(ctx); |
| |
| return ret; |
| } |
| |
| /* io_getevents: |
| * Attempts to read at least min_nr events and up to nr events from |
| * the completion queue for the aio_context specified by ctx_id. If |
| * it succeeds, the number of read events is returned. May fail with |
| * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is |
| * out of range, if timeout is out of range. May fail with -EFAULT |
| * if any of the memory specified is invalid. May return 0 or |
| * < min_nr if the timeout specified by timeout has elapsed |
| * before sufficient events are available, where timeout == NULL |
| * specifies an infinite timeout. Note that the timeout pointed to by |
| * timeout is relative and will be updated if not NULL and the |
| * operation blocks. Will fail with -ENOSYS if not implemented. |
| */ |
| SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, |
| long, min_nr, |
| long, nr, |
| struct io_event __user *, events, |
| struct timespec __user *, timeout) |
| { |
| struct kioctx *ioctx = lookup_ioctx(ctx_id); |
| long ret = -EINVAL; |
| |
| if (likely(ioctx)) { |
| if (likely(min_nr <= nr && min_nr >= 0)) |
| ret = read_events(ioctx, min_nr, nr, events, timeout); |
| put_ioctx(ioctx); |
| } |
| return ret; |
| } |