| /******************************************************************************* |
| |
| Intel PRO/1000 Linux driver |
| Copyright(c) 1999 - 2008 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pagemap.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/tcp.h> |
| #include <linux/ipv6.h> |
| #include <net/checksum.h> |
| #include <net/ip6_checksum.h> |
| #include <linux/mii.h> |
| #include <linux/ethtool.h> |
| #include <linux/if_vlan.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/pm_qos_params.h> |
| |
| #include "e1000.h" |
| |
| #define DRV_VERSION "0.3.3.3-k6" |
| char e1000e_driver_name[] = "e1000e"; |
| const char e1000e_driver_version[] = DRV_VERSION; |
| |
| static const struct e1000_info *e1000_info_tbl[] = { |
| [board_82571] = &e1000_82571_info, |
| [board_82572] = &e1000_82572_info, |
| [board_82573] = &e1000_82573_info, |
| [board_82574] = &e1000_82574_info, |
| [board_80003es2lan] = &e1000_es2_info, |
| [board_ich8lan] = &e1000_ich8_info, |
| [board_ich9lan] = &e1000_ich9_info, |
| [board_ich10lan] = &e1000_ich10_info, |
| }; |
| |
| #ifdef DEBUG |
| /** |
| * e1000_get_hw_dev_name - return device name string |
| * used by hardware layer to print debugging information |
| **/ |
| char *e1000e_get_hw_dev_name(struct e1000_hw *hw) |
| { |
| return hw->adapter->netdev->name; |
| } |
| #endif |
| |
| /** |
| * e1000_desc_unused - calculate if we have unused descriptors |
| **/ |
| static int e1000_desc_unused(struct e1000_ring *ring) |
| { |
| if (ring->next_to_clean > ring->next_to_use) |
| return ring->next_to_clean - ring->next_to_use - 1; |
| |
| return ring->count + ring->next_to_clean - ring->next_to_use - 1; |
| } |
| |
| /** |
| * e1000_receive_skb - helper function to handle Rx indications |
| * @adapter: board private structure |
| * @status: descriptor status field as written by hardware |
| * @vlan: descriptor vlan field as written by hardware (no le/be conversion) |
| * @skb: pointer to sk_buff to be indicated to stack |
| **/ |
| static void e1000_receive_skb(struct e1000_adapter *adapter, |
| struct net_device *netdev, |
| struct sk_buff *skb, |
| u8 status, __le16 vlan) |
| { |
| skb->protocol = eth_type_trans(skb, netdev); |
| |
| if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) |
| vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
| le16_to_cpu(vlan)); |
| else |
| netif_receive_skb(skb); |
| |
| netdev->last_rx = jiffies; |
| } |
| |
| /** |
| * e1000_rx_checksum - Receive Checksum Offload for 82543 |
| * @adapter: board private structure |
| * @status_err: receive descriptor status and error fields |
| * @csum: receive descriptor csum field |
| * @sk_buff: socket buffer with received data |
| **/ |
| static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, |
| u32 csum, struct sk_buff *skb) |
| { |
| u16 status = (u16)status_err; |
| u8 errors = (u8)(status_err >> 24); |
| skb->ip_summed = CHECKSUM_NONE; |
| |
| /* Ignore Checksum bit is set */ |
| if (status & E1000_RXD_STAT_IXSM) |
| return; |
| /* TCP/UDP checksum error bit is set */ |
| if (errors & E1000_RXD_ERR_TCPE) { |
| /* let the stack verify checksum errors */ |
| adapter->hw_csum_err++; |
| return; |
| } |
| |
| /* TCP/UDP Checksum has not been calculated */ |
| if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) |
| return; |
| |
| /* It must be a TCP or UDP packet with a valid checksum */ |
| if (status & E1000_RXD_STAT_TCPCS) { |
| /* TCP checksum is good */ |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } else { |
| /* |
| * IP fragment with UDP payload |
| * Hardware complements the payload checksum, so we undo it |
| * and then put the value in host order for further stack use. |
| */ |
| __sum16 sum = (__force __sum16)htons(csum); |
| skb->csum = csum_unfold(~sum); |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| } |
| adapter->hw_csum_good++; |
| } |
| |
| /** |
| * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
| * @adapter: address of board private structure |
| **/ |
| static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, |
| int cleaned_count) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| struct e1000_rx_desc *rx_desc; |
| struct e1000_buffer *buffer_info; |
| struct sk_buff *skb; |
| unsigned int i; |
| unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; |
| |
| i = rx_ring->next_to_use; |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (cleaned_count--) { |
| skb = buffer_info->skb; |
| if (skb) { |
| skb_trim(skb, 0); |
| goto map_skb; |
| } |
| |
| skb = netdev_alloc_skb(netdev, bufsz); |
| if (!skb) { |
| /* Better luck next round */ |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| |
| /* |
| * Make buffer alignment 2 beyond a 16 byte boundary |
| * this will result in a 16 byte aligned IP header after |
| * the 14 byte MAC header is removed |
| */ |
| skb_reserve(skb, NET_IP_ALIGN); |
| |
| buffer_info->skb = skb; |
| map_skb: |
| buffer_info->dma = pci_map_single(pdev, skb->data, |
| adapter->rx_buffer_len, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(pdev, buffer_info->dma)) { |
| dev_err(&pdev->dev, "RX DMA map failed\n"); |
| adapter->rx_dma_failed++; |
| break; |
| } |
| |
| rx_desc = E1000_RX_DESC(*rx_ring, i); |
| rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
| |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| buffer_info = &rx_ring->buffer_info[i]; |
| } |
| |
| if (rx_ring->next_to_use != i) { |
| rx_ring->next_to_use = i; |
| if (i-- == 0) |
| i = (rx_ring->count - 1); |
| |
| /* |
| * Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| writel(i, adapter->hw.hw_addr + rx_ring->tail); |
| } |
| } |
| |
| /** |
| * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split |
| * @adapter: address of board private structure |
| **/ |
| static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, |
| int cleaned_count) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| union e1000_rx_desc_packet_split *rx_desc; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| struct e1000_buffer *buffer_info; |
| struct e1000_ps_page *ps_page; |
| struct sk_buff *skb; |
| unsigned int i, j; |
| |
| i = rx_ring->next_to_use; |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (cleaned_count--) { |
| rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
| |
| for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
| ps_page = &buffer_info->ps_pages[j]; |
| if (j >= adapter->rx_ps_pages) { |
| /* all unused desc entries get hw null ptr */ |
| rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); |
| continue; |
| } |
| if (!ps_page->page) { |
| ps_page->page = alloc_page(GFP_ATOMIC); |
| if (!ps_page->page) { |
| adapter->alloc_rx_buff_failed++; |
| goto no_buffers; |
| } |
| ps_page->dma = pci_map_page(pdev, |
| ps_page->page, |
| 0, PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(pdev, ps_page->dma)) { |
| dev_err(&adapter->pdev->dev, |
| "RX DMA page map failed\n"); |
| adapter->rx_dma_failed++; |
| goto no_buffers; |
| } |
| } |
| /* |
| * Refresh the desc even if buffer_addrs |
| * didn't change because each write-back |
| * erases this info. |
| */ |
| rx_desc->read.buffer_addr[j+1] = |
| cpu_to_le64(ps_page->dma); |
| } |
| |
| skb = netdev_alloc_skb(netdev, |
| adapter->rx_ps_bsize0 + NET_IP_ALIGN); |
| |
| if (!skb) { |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| |
| /* |
| * Make buffer alignment 2 beyond a 16 byte boundary |
| * this will result in a 16 byte aligned IP header after |
| * the 14 byte MAC header is removed |
| */ |
| skb_reserve(skb, NET_IP_ALIGN); |
| |
| buffer_info->skb = skb; |
| buffer_info->dma = pci_map_single(pdev, skb->data, |
| adapter->rx_ps_bsize0, |
| PCI_DMA_FROMDEVICE); |
| if (pci_dma_mapping_error(pdev, buffer_info->dma)) { |
| dev_err(&pdev->dev, "RX DMA map failed\n"); |
| adapter->rx_dma_failed++; |
| /* cleanup skb */ |
| dev_kfree_skb_any(skb); |
| buffer_info->skb = NULL; |
| break; |
| } |
| |
| rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); |
| |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| buffer_info = &rx_ring->buffer_info[i]; |
| } |
| |
| no_buffers: |
| if (rx_ring->next_to_use != i) { |
| rx_ring->next_to_use = i; |
| |
| if (!(i--)) |
| i = (rx_ring->count - 1); |
| |
| /* |
| * Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| /* |
| * Hardware increments by 16 bytes, but packet split |
| * descriptors are 32 bytes...so we increment tail |
| * twice as much. |
| */ |
| writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); |
| } |
| } |
| |
| /** |
| * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers |
| * @adapter: address of board private structure |
| * @cleaned_count: number of buffers to allocate this pass |
| **/ |
| |
| static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, |
| int cleaned_count) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_rx_desc *rx_desc; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| struct e1000_buffer *buffer_info; |
| struct sk_buff *skb; |
| unsigned int i; |
| unsigned int bufsz = 256 - |
| 16 /* for skb_reserve */ - |
| NET_IP_ALIGN; |
| |
| i = rx_ring->next_to_use; |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (cleaned_count--) { |
| skb = buffer_info->skb; |
| if (skb) { |
| skb_trim(skb, 0); |
| goto check_page; |
| } |
| |
| skb = netdev_alloc_skb(netdev, bufsz); |
| if (unlikely(!skb)) { |
| /* Better luck next round */ |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| |
| /* Make buffer alignment 2 beyond a 16 byte boundary |
| * this will result in a 16 byte aligned IP header after |
| * the 14 byte MAC header is removed |
| */ |
| skb_reserve(skb, NET_IP_ALIGN); |
| |
| buffer_info->skb = skb; |
| check_page: |
| /* allocate a new page if necessary */ |
| if (!buffer_info->page) { |
| buffer_info->page = alloc_page(GFP_ATOMIC); |
| if (unlikely(!buffer_info->page)) { |
| adapter->alloc_rx_buff_failed++; |
| break; |
| } |
| } |
| |
| if (!buffer_info->dma) |
| buffer_info->dma = pci_map_page(pdev, |
| buffer_info->page, 0, |
| PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| |
| rx_desc = E1000_RX_DESC(*rx_ring, i); |
| rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
| |
| if (unlikely(++i == rx_ring->count)) |
| i = 0; |
| buffer_info = &rx_ring->buffer_info[i]; |
| } |
| |
| if (likely(rx_ring->next_to_use != i)) { |
| rx_ring->next_to_use = i; |
| if (unlikely(i-- == 0)) |
| i = (rx_ring->count - 1); |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). */ |
| wmb(); |
| writel(i, adapter->hw.hw_addr + rx_ring->tail); |
| } |
| } |
| |
| /** |
| * e1000_clean_rx_irq - Send received data up the network stack; legacy |
| * @adapter: board private structure |
| * |
| * the return value indicates whether actual cleaning was done, there |
| * is no guarantee that everything was cleaned |
| **/ |
| static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, |
| int *work_done, int work_to_do) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| struct e1000_rx_desc *rx_desc, *next_rxd; |
| struct e1000_buffer *buffer_info, *next_buffer; |
| u32 length; |
| unsigned int i; |
| int cleaned_count = 0; |
| bool cleaned = 0; |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = E1000_RX_DESC(*rx_ring, i); |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (rx_desc->status & E1000_RXD_STAT_DD) { |
| struct sk_buff *skb; |
| u8 status; |
| |
| if (*work_done >= work_to_do) |
| break; |
| (*work_done)++; |
| |
| status = rx_desc->status; |
| skb = buffer_info->skb; |
| buffer_info->skb = NULL; |
| |
| prefetch(skb->data - NET_IP_ALIGN); |
| |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| next_rxd = E1000_RX_DESC(*rx_ring, i); |
| prefetch(next_rxd); |
| |
| next_buffer = &rx_ring->buffer_info[i]; |
| |
| cleaned = 1; |
| cleaned_count++; |
| pci_unmap_single(pdev, |
| buffer_info->dma, |
| adapter->rx_buffer_len, |
| PCI_DMA_FROMDEVICE); |
| buffer_info->dma = 0; |
| |
| length = le16_to_cpu(rx_desc->length); |
| |
| /* !EOP means multiple descriptors were used to store a single |
| * packet, also make sure the frame isn't just CRC only */ |
| if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) { |
| /* All receives must fit into a single buffer */ |
| e_dbg("%s: Receive packet consumed multiple buffers\n", |
| netdev->name); |
| /* recycle */ |
| buffer_info->skb = skb; |
| goto next_desc; |
| } |
| |
| if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { |
| /* recycle */ |
| buffer_info->skb = skb; |
| goto next_desc; |
| } |
| |
| /* adjust length to remove Ethernet CRC */ |
| if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
| length -= 4; |
| |
| total_rx_bytes += length; |
| total_rx_packets++; |
| |
| /* |
| * code added for copybreak, this should improve |
| * performance for small packets with large amounts |
| * of reassembly being done in the stack |
| */ |
| if (length < copybreak) { |
| struct sk_buff *new_skb = |
| netdev_alloc_skb(netdev, length + NET_IP_ALIGN); |
| if (new_skb) { |
| skb_reserve(new_skb, NET_IP_ALIGN); |
| skb_copy_to_linear_data_offset(new_skb, |
| -NET_IP_ALIGN, |
| (skb->data - |
| NET_IP_ALIGN), |
| (length + |
| NET_IP_ALIGN)); |
| /* save the skb in buffer_info as good */ |
| buffer_info->skb = skb; |
| skb = new_skb; |
| } |
| /* else just continue with the old one */ |
| } |
| /* end copybreak code */ |
| skb_put(skb, length); |
| |
| /* Receive Checksum Offload */ |
| e1000_rx_checksum(adapter, |
| (u32)(status) | |
| ((u32)(rx_desc->errors) << 24), |
| le16_to_cpu(rx_desc->csum), skb); |
| |
| e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); |
| |
| next_desc: |
| rx_desc->status = 0; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
| adapter->alloc_rx_buf(adapter, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| buffer_info = next_buffer; |
| } |
| rx_ring->next_to_clean = i; |
| |
| cleaned_count = e1000_desc_unused(rx_ring); |
| if (cleaned_count) |
| adapter->alloc_rx_buf(adapter, cleaned_count); |
| |
| adapter->total_rx_bytes += total_rx_bytes; |
| adapter->total_rx_packets += total_rx_packets; |
| adapter->net_stats.rx_bytes += total_rx_bytes; |
| adapter->net_stats.rx_packets += total_rx_packets; |
| return cleaned; |
| } |
| |
| static void e1000_put_txbuf(struct e1000_adapter *adapter, |
| struct e1000_buffer *buffer_info) |
| { |
| if (buffer_info->dma) { |
| pci_unmap_page(adapter->pdev, buffer_info->dma, |
| buffer_info->length, PCI_DMA_TODEVICE); |
| buffer_info->dma = 0; |
| } |
| if (buffer_info->skb) { |
| dev_kfree_skb_any(buffer_info->skb); |
| buffer_info->skb = NULL; |
| } |
| } |
| |
| static void e1000_print_tx_hang(struct e1000_adapter *adapter) |
| { |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| unsigned int i = tx_ring->next_to_clean; |
| unsigned int eop = tx_ring->buffer_info[i].next_to_watch; |
| struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| |
| /* detected Tx unit hang */ |
| e_err("Detected Tx Unit Hang:\n" |
| " TDH <%x>\n" |
| " TDT <%x>\n" |
| " next_to_use <%x>\n" |
| " next_to_clean <%x>\n" |
| "buffer_info[next_to_clean]:\n" |
| " time_stamp <%lx>\n" |
| " next_to_watch <%x>\n" |
| " jiffies <%lx>\n" |
| " next_to_watch.status <%x>\n", |
| readl(adapter->hw.hw_addr + tx_ring->head), |
| readl(adapter->hw.hw_addr + tx_ring->tail), |
| tx_ring->next_to_use, |
| tx_ring->next_to_clean, |
| tx_ring->buffer_info[eop].time_stamp, |
| eop, |
| jiffies, |
| eop_desc->upper.fields.status); |
| } |
| |
| /** |
| * e1000_clean_tx_irq - Reclaim resources after transmit completes |
| * @adapter: board private structure |
| * |
| * the return value indicates whether actual cleaning was done, there |
| * is no guarantee that everything was cleaned |
| **/ |
| static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| struct e1000_tx_desc *tx_desc, *eop_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i, eop; |
| unsigned int count = 0; |
| bool cleaned = 0; |
| unsigned int total_tx_bytes = 0, total_tx_packets = 0; |
| |
| i = tx_ring->next_to_clean; |
| eop = tx_ring->buffer_info[i].next_to_watch; |
| eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| |
| while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { |
| for (cleaned = 0; !cleaned; ) { |
| tx_desc = E1000_TX_DESC(*tx_ring, i); |
| buffer_info = &tx_ring->buffer_info[i]; |
| cleaned = (i == eop); |
| |
| if (cleaned) { |
| struct sk_buff *skb = buffer_info->skb; |
| unsigned int segs, bytecount; |
| segs = skb_shinfo(skb)->gso_segs ?: 1; |
| /* multiply data chunks by size of headers */ |
| bytecount = ((segs - 1) * skb_headlen(skb)) + |
| skb->len; |
| total_tx_packets += segs; |
| total_tx_bytes += bytecount; |
| } |
| |
| e1000_put_txbuf(adapter, buffer_info); |
| tx_desc->upper.data = 0; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| } |
| |
| eop = tx_ring->buffer_info[i].next_to_watch; |
| eop_desc = E1000_TX_DESC(*tx_ring, eop); |
| #define E1000_TX_WEIGHT 64 |
| /* weight of a sort for tx, to avoid endless transmit cleanup */ |
| if (count++ == E1000_TX_WEIGHT) |
| break; |
| } |
| |
| tx_ring->next_to_clean = i; |
| |
| #define TX_WAKE_THRESHOLD 32 |
| if (cleaned && netif_carrier_ok(netdev) && |
| e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { |
| /* Make sure that anybody stopping the queue after this |
| * sees the new next_to_clean. |
| */ |
| smp_mb(); |
| |
| if (netif_queue_stopped(netdev) && |
| !(test_bit(__E1000_DOWN, &adapter->state))) { |
| netif_wake_queue(netdev); |
| ++adapter->restart_queue; |
| } |
| } |
| |
| if (adapter->detect_tx_hung) { |
| /* |
| * Detect a transmit hang in hardware, this serializes the |
| * check with the clearing of time_stamp and movement of i |
| */ |
| adapter->detect_tx_hung = 0; |
| if (tx_ring->buffer_info[eop].dma && |
| time_after(jiffies, tx_ring->buffer_info[eop].time_stamp |
| + (adapter->tx_timeout_factor * HZ)) |
| && !(er32(STATUS) & E1000_STATUS_TXOFF)) { |
| e1000_print_tx_hang(adapter); |
| netif_stop_queue(netdev); |
| } |
| } |
| adapter->total_tx_bytes += total_tx_bytes; |
| adapter->total_tx_packets += total_tx_packets; |
| adapter->net_stats.tx_bytes += total_tx_bytes; |
| adapter->net_stats.tx_packets += total_tx_packets; |
| return cleaned; |
| } |
| |
| /** |
| * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split |
| * @adapter: board private structure |
| * |
| * the return value indicates whether actual cleaning was done, there |
| * is no guarantee that everything was cleaned |
| **/ |
| static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, |
| int *work_done, int work_to_do) |
| { |
| union e1000_rx_desc_packet_split *rx_desc, *next_rxd; |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| struct e1000_buffer *buffer_info, *next_buffer; |
| struct e1000_ps_page *ps_page; |
| struct sk_buff *skb; |
| unsigned int i, j; |
| u32 length, staterr; |
| int cleaned_count = 0; |
| bool cleaned = 0; |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = E1000_RX_DESC_PS(*rx_ring, i); |
| staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (staterr & E1000_RXD_STAT_DD) { |
| if (*work_done >= work_to_do) |
| break; |
| (*work_done)++; |
| skb = buffer_info->skb; |
| |
| /* in the packet split case this is header only */ |
| prefetch(skb->data - NET_IP_ALIGN); |
| |
| i++; |
| if (i == rx_ring->count) |
| i = 0; |
| next_rxd = E1000_RX_DESC_PS(*rx_ring, i); |
| prefetch(next_rxd); |
| |
| next_buffer = &rx_ring->buffer_info[i]; |
| |
| cleaned = 1; |
| cleaned_count++; |
| pci_unmap_single(pdev, buffer_info->dma, |
| adapter->rx_ps_bsize0, |
| PCI_DMA_FROMDEVICE); |
| buffer_info->dma = 0; |
| |
| if (!(staterr & E1000_RXD_STAT_EOP)) { |
| e_dbg("%s: Packet Split buffers didn't pick up the " |
| "full packet\n", netdev->name); |
| dev_kfree_skb_irq(skb); |
| goto next_desc; |
| } |
| |
| if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { |
| dev_kfree_skb_irq(skb); |
| goto next_desc; |
| } |
| |
| length = le16_to_cpu(rx_desc->wb.middle.length0); |
| |
| if (!length) { |
| e_dbg("%s: Last part of the packet spanning multiple " |
| "descriptors\n", netdev->name); |
| dev_kfree_skb_irq(skb); |
| goto next_desc; |
| } |
| |
| /* Good Receive */ |
| skb_put(skb, length); |
| |
| { |
| /* |
| * this looks ugly, but it seems compiler issues make it |
| * more efficient than reusing j |
| */ |
| int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); |
| |
| /* |
| * page alloc/put takes too long and effects small packet |
| * throughput, so unsplit small packets and save the alloc/put |
| * only valid in softirq (napi) context to call kmap_* |
| */ |
| if (l1 && (l1 <= copybreak) && |
| ((length + l1) <= adapter->rx_ps_bsize0)) { |
| u8 *vaddr; |
| |
| ps_page = &buffer_info->ps_pages[0]; |
| |
| /* |
| * there is no documentation about how to call |
| * kmap_atomic, so we can't hold the mapping |
| * very long |
| */ |
| pci_dma_sync_single_for_cpu(pdev, ps_page->dma, |
| PAGE_SIZE, PCI_DMA_FROMDEVICE); |
| vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); |
| memcpy(skb_tail_pointer(skb), vaddr, l1); |
| kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); |
| pci_dma_sync_single_for_device(pdev, ps_page->dma, |
| PAGE_SIZE, PCI_DMA_FROMDEVICE); |
| |
| /* remove the CRC */ |
| if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
| l1 -= 4; |
| |
| skb_put(skb, l1); |
| goto copydone; |
| } /* if */ |
| } |
| |
| for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
| length = le16_to_cpu(rx_desc->wb.upper.length[j]); |
| if (!length) |
| break; |
| |
| ps_page = &buffer_info->ps_pages[j]; |
| pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| ps_page->dma = 0; |
| skb_fill_page_desc(skb, j, ps_page->page, 0, length); |
| ps_page->page = NULL; |
| skb->len += length; |
| skb->data_len += length; |
| skb->truesize += length; |
| } |
| |
| /* strip the ethernet crc, problem is we're using pages now so |
| * this whole operation can get a little cpu intensive |
| */ |
| if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) |
| pskb_trim(skb, skb->len - 4); |
| |
| copydone: |
| total_rx_bytes += skb->len; |
| total_rx_packets++; |
| |
| e1000_rx_checksum(adapter, staterr, le16_to_cpu( |
| rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); |
| |
| if (rx_desc->wb.upper.header_status & |
| cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) |
| adapter->rx_hdr_split++; |
| |
| e1000_receive_skb(adapter, netdev, skb, |
| staterr, rx_desc->wb.middle.vlan); |
| |
| next_desc: |
| rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); |
| buffer_info->skb = NULL; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (cleaned_count >= E1000_RX_BUFFER_WRITE) { |
| adapter->alloc_rx_buf(adapter, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| buffer_info = next_buffer; |
| |
| staterr = le32_to_cpu(rx_desc->wb.middle.status_error); |
| } |
| rx_ring->next_to_clean = i; |
| |
| cleaned_count = e1000_desc_unused(rx_ring); |
| if (cleaned_count) |
| adapter->alloc_rx_buf(adapter, cleaned_count); |
| |
| adapter->total_rx_bytes += total_rx_bytes; |
| adapter->total_rx_packets += total_rx_packets; |
| adapter->net_stats.rx_bytes += total_rx_bytes; |
| adapter->net_stats.rx_packets += total_rx_packets; |
| return cleaned; |
| } |
| |
| /** |
| * e1000_consume_page - helper function |
| **/ |
| static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, |
| u16 length) |
| { |
| bi->page = NULL; |
| skb->len += length; |
| skb->data_len += length; |
| skb->truesize += length; |
| } |
| |
| /** |
| * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy |
| * @adapter: board private structure |
| * |
| * the return value indicates whether actual cleaning was done, there |
| * is no guarantee that everything was cleaned |
| **/ |
| |
| static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, |
| int *work_done, int work_to_do) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| struct e1000_rx_desc *rx_desc, *next_rxd; |
| struct e1000_buffer *buffer_info, *next_buffer; |
| u32 length; |
| unsigned int i; |
| int cleaned_count = 0; |
| bool cleaned = false; |
| unsigned int total_rx_bytes=0, total_rx_packets=0; |
| |
| i = rx_ring->next_to_clean; |
| rx_desc = E1000_RX_DESC(*rx_ring, i); |
| buffer_info = &rx_ring->buffer_info[i]; |
| |
| while (rx_desc->status & E1000_RXD_STAT_DD) { |
| struct sk_buff *skb; |
| u8 status; |
| |
| if (*work_done >= work_to_do) |
| break; |
| (*work_done)++; |
| |
| status = rx_desc->status; |
| skb = buffer_info->skb; |
| buffer_info->skb = NULL; |
| |
| ++i; |
| if (i == rx_ring->count) |
| i = 0; |
| next_rxd = E1000_RX_DESC(*rx_ring, i); |
| prefetch(next_rxd); |
| |
| next_buffer = &rx_ring->buffer_info[i]; |
| |
| cleaned = true; |
| cleaned_count++; |
| pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| buffer_info->dma = 0; |
| |
| length = le16_to_cpu(rx_desc->length); |
| |
| /* errors is only valid for DD + EOP descriptors */ |
| if (unlikely((status & E1000_RXD_STAT_EOP) && |
| (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { |
| /* recycle both page and skb */ |
| buffer_info->skb = skb; |
| /* an error means any chain goes out the window |
| * too */ |
| if (rx_ring->rx_skb_top) |
| dev_kfree_skb(rx_ring->rx_skb_top); |
| rx_ring->rx_skb_top = NULL; |
| goto next_desc; |
| } |
| |
| #define rxtop rx_ring->rx_skb_top |
| if (!(status & E1000_RXD_STAT_EOP)) { |
| /* this descriptor is only the beginning (or middle) */ |
| if (!rxtop) { |
| /* this is the beginning of a chain */ |
| rxtop = skb; |
| skb_fill_page_desc(rxtop, 0, buffer_info->page, |
| 0, length); |
| } else { |
| /* this is the middle of a chain */ |
| skb_fill_page_desc(rxtop, |
| skb_shinfo(rxtop)->nr_frags, |
| buffer_info->page, 0, length); |
| /* re-use the skb, only consumed the page */ |
| buffer_info->skb = skb; |
| } |
| e1000_consume_page(buffer_info, rxtop, length); |
| goto next_desc; |
| } else { |
| if (rxtop) { |
| /* end of the chain */ |
| skb_fill_page_desc(rxtop, |
| skb_shinfo(rxtop)->nr_frags, |
| buffer_info->page, 0, length); |
| /* re-use the current skb, we only consumed the |
| * page */ |
| buffer_info->skb = skb; |
| skb = rxtop; |
| rxtop = NULL; |
| e1000_consume_page(buffer_info, skb, length); |
| } else { |
| /* no chain, got EOP, this buf is the packet |
| * copybreak to save the put_page/alloc_page */ |
| if (length <= copybreak && |
| skb_tailroom(skb) >= length) { |
| u8 *vaddr; |
| vaddr = kmap_atomic(buffer_info->page, |
| KM_SKB_DATA_SOFTIRQ); |
| memcpy(skb_tail_pointer(skb), vaddr, |
| length); |
| kunmap_atomic(vaddr, |
| KM_SKB_DATA_SOFTIRQ); |
| /* re-use the page, so don't erase |
| * buffer_info->page */ |
| skb_put(skb, length); |
| } else { |
| skb_fill_page_desc(skb, 0, |
| buffer_info->page, 0, |
| length); |
| e1000_consume_page(buffer_info, skb, |
| length); |
| } |
| } |
| } |
| |
| /* Receive Checksum Offload XXX recompute due to CRC strip? */ |
| e1000_rx_checksum(adapter, |
| (u32)(status) | |
| ((u32)(rx_desc->errors) << 24), |
| le16_to_cpu(rx_desc->csum), skb); |
| |
| /* probably a little skewed due to removing CRC */ |
| total_rx_bytes += skb->len; |
| total_rx_packets++; |
| |
| /* eth type trans needs skb->data to point to something */ |
| if (!pskb_may_pull(skb, ETH_HLEN)) { |
| e_err("pskb_may_pull failed.\n"); |
| dev_kfree_skb(skb); |
| goto next_desc; |
| } |
| |
| e1000_receive_skb(adapter, netdev, skb, status, |
| rx_desc->special); |
| |
| next_desc: |
| rx_desc->status = 0; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { |
| adapter->alloc_rx_buf(adapter, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| /* use prefetched values */ |
| rx_desc = next_rxd; |
| buffer_info = next_buffer; |
| } |
| rx_ring->next_to_clean = i; |
| |
| cleaned_count = e1000_desc_unused(rx_ring); |
| if (cleaned_count) |
| adapter->alloc_rx_buf(adapter, cleaned_count); |
| |
| adapter->total_rx_bytes += total_rx_bytes; |
| adapter->total_rx_packets += total_rx_packets; |
| adapter->net_stats.rx_bytes += total_rx_bytes; |
| adapter->net_stats.rx_packets += total_rx_packets; |
| return cleaned; |
| } |
| |
| /** |
| * e1000_clean_rx_ring - Free Rx Buffers per Queue |
| * @adapter: board private structure |
| **/ |
| static void e1000_clean_rx_ring(struct e1000_adapter *adapter) |
| { |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| struct e1000_buffer *buffer_info; |
| struct e1000_ps_page *ps_page; |
| struct pci_dev *pdev = adapter->pdev; |
| unsigned int i, j; |
| |
| /* Free all the Rx ring sk_buffs */ |
| for (i = 0; i < rx_ring->count; i++) { |
| buffer_info = &rx_ring->buffer_info[i]; |
| if (buffer_info->dma) { |
| if (adapter->clean_rx == e1000_clean_rx_irq) |
| pci_unmap_single(pdev, buffer_info->dma, |
| adapter->rx_buffer_len, |
| PCI_DMA_FROMDEVICE); |
| else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) |
| pci_unmap_page(pdev, buffer_info->dma, |
| PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| else if (adapter->clean_rx == e1000_clean_rx_irq_ps) |
| pci_unmap_single(pdev, buffer_info->dma, |
| adapter->rx_ps_bsize0, |
| PCI_DMA_FROMDEVICE); |
| buffer_info->dma = 0; |
| } |
| |
| if (buffer_info->page) { |
| put_page(buffer_info->page); |
| buffer_info->page = NULL; |
| } |
| |
| if (buffer_info->skb) { |
| dev_kfree_skb(buffer_info->skb); |
| buffer_info->skb = NULL; |
| } |
| |
| for (j = 0; j < PS_PAGE_BUFFERS; j++) { |
| ps_page = &buffer_info->ps_pages[j]; |
| if (!ps_page->page) |
| break; |
| pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, |
| PCI_DMA_FROMDEVICE); |
| ps_page->dma = 0; |
| put_page(ps_page->page); |
| ps_page->page = NULL; |
| } |
| } |
| |
| /* there also may be some cached data from a chained receive */ |
| if (rx_ring->rx_skb_top) { |
| dev_kfree_skb(rx_ring->rx_skb_top); |
| rx_ring->rx_skb_top = NULL; |
| } |
| |
| /* Zero out the descriptor ring */ |
| memset(rx_ring->desc, 0, rx_ring->size); |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| |
| writel(0, adapter->hw.hw_addr + rx_ring->head); |
| writel(0, adapter->hw.hw_addr + rx_ring->tail); |
| } |
| |
| static void e1000e_downshift_workaround(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, |
| struct e1000_adapter, downshift_task); |
| |
| e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); |
| } |
| |
| /** |
| * e1000_intr_msi - Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| **/ |
| static irqreturn_t e1000_intr_msi(int irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 icr = er32(ICR); |
| |
| /* |
| * read ICR disables interrupts using IAM |
| */ |
| |
| if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
| hw->mac.get_link_status = 1; |
| /* |
| * ICH8 workaround-- Call gig speed drop workaround on cable |
| * disconnect (LSC) before accessing any PHY registers |
| */ |
| if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
| (!(er32(STATUS) & E1000_STATUS_LU))) |
| schedule_work(&adapter->downshift_task); |
| |
| /* |
| * 80003ES2LAN workaround-- For packet buffer work-around on |
| * link down event; disable receives here in the ISR and reset |
| * adapter in watchdog |
| */ |
| if (netif_carrier_ok(netdev) && |
| adapter->flags & FLAG_RX_NEEDS_RESTART) { |
| /* disable receives */ |
| u32 rctl = er32(RCTL); |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| adapter->flags |= FLAG_RX_RESTART_NOW; |
| } |
| /* guard against interrupt when we're going down */ |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| if (netif_rx_schedule_prep(netdev, &adapter->napi)) { |
| adapter->total_tx_bytes = 0; |
| adapter->total_tx_packets = 0; |
| adapter->total_rx_bytes = 0; |
| adapter->total_rx_packets = 0; |
| __netif_rx_schedule(netdev, &adapter->napi); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * e1000_intr - Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| **/ |
| static irqreturn_t e1000_intr(int irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl, icr = er32(ICR); |
| |
| if (!icr) |
| return IRQ_NONE; /* Not our interrupt */ |
| |
| /* |
| * IMS will not auto-mask if INT_ASSERTED is not set, and if it is |
| * not set, then the adapter didn't send an interrupt |
| */ |
| if (!(icr & E1000_ICR_INT_ASSERTED)) |
| return IRQ_NONE; |
| |
| /* |
| * Interrupt Auto-Mask...upon reading ICR, |
| * interrupts are masked. No need for the |
| * IMC write |
| */ |
| |
| if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { |
| hw->mac.get_link_status = 1; |
| /* |
| * ICH8 workaround-- Call gig speed drop workaround on cable |
| * disconnect (LSC) before accessing any PHY registers |
| */ |
| if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && |
| (!(er32(STATUS) & E1000_STATUS_LU))) |
| schedule_work(&adapter->downshift_task); |
| |
| /* |
| * 80003ES2LAN workaround-- |
| * For packet buffer work-around on link down event; |
| * disable receives here in the ISR and |
| * reset adapter in watchdog |
| */ |
| if (netif_carrier_ok(netdev) && |
| (adapter->flags & FLAG_RX_NEEDS_RESTART)) { |
| /* disable receives */ |
| rctl = er32(RCTL); |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| adapter->flags |= FLAG_RX_RESTART_NOW; |
| } |
| /* guard against interrupt when we're going down */ |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| if (netif_rx_schedule_prep(netdev, &adapter->napi)) { |
| adapter->total_tx_bytes = 0; |
| adapter->total_tx_packets = 0; |
| adapter->total_rx_bytes = 0; |
| adapter->total_rx_packets = 0; |
| __netif_rx_schedule(netdev, &adapter->napi); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t e1000_msix_other(int irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 icr = er32(ICR); |
| |
| if (!(icr & E1000_ICR_INT_ASSERTED)) { |
| ew32(IMS, E1000_IMS_OTHER); |
| return IRQ_NONE; |
| } |
| |
| if (icr & adapter->eiac_mask) |
| ew32(ICS, (icr & adapter->eiac_mask)); |
| |
| if (icr & E1000_ICR_OTHER) { |
| if (!(icr & E1000_ICR_LSC)) |
| goto no_link_interrupt; |
| hw->mac.get_link_status = 1; |
| /* guard against interrupt when we're going down */ |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, jiffies + 1); |
| } |
| |
| no_link_interrupt: |
| ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| static irqreturn_t e1000_intr_msix_tx(int irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| |
| |
| adapter->total_tx_bytes = 0; |
| adapter->total_tx_packets = 0; |
| |
| if (!e1000_clean_tx_irq(adapter)) |
| /* Ring was not completely cleaned, so fire another interrupt */ |
| ew32(ICS, tx_ring->ims_val); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t e1000_intr_msix_rx(int irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| /* Write the ITR value calculated at the end of the |
| * previous interrupt. |
| */ |
| if (adapter->rx_ring->set_itr) { |
| writel(1000000000 / (adapter->rx_ring->itr_val * 256), |
| adapter->hw.hw_addr + adapter->rx_ring->itr_register); |
| adapter->rx_ring->set_itr = 0; |
| } |
| |
| if (netif_rx_schedule_prep(netdev, &adapter->napi)) { |
| adapter->total_rx_bytes = 0; |
| adapter->total_rx_packets = 0; |
| __netif_rx_schedule(netdev, &adapter->napi); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * e1000_configure_msix - Configure MSI-X hardware |
| * |
| * e1000_configure_msix sets up the hardware to properly |
| * generate MSI-X interrupts. |
| **/ |
| static void e1000_configure_msix(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| int vector = 0; |
| u32 ctrl_ext, ivar = 0; |
| |
| adapter->eiac_mask = 0; |
| |
| /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ |
| if (hw->mac.type == e1000_82574) { |
| u32 rfctl = er32(RFCTL); |
| rfctl |= E1000_RFCTL_ACK_DIS; |
| ew32(RFCTL, rfctl); |
| } |
| |
| #define E1000_IVAR_INT_ALLOC_VALID 0x8 |
| /* Configure Rx vector */ |
| rx_ring->ims_val = E1000_IMS_RXQ0; |
| adapter->eiac_mask |= rx_ring->ims_val; |
| if (rx_ring->itr_val) |
| writel(1000000000 / (rx_ring->itr_val * 256), |
| hw->hw_addr + rx_ring->itr_register); |
| else |
| writel(1, hw->hw_addr + rx_ring->itr_register); |
| ivar = E1000_IVAR_INT_ALLOC_VALID | vector; |
| |
| /* Configure Tx vector */ |
| tx_ring->ims_val = E1000_IMS_TXQ0; |
| vector++; |
| if (tx_ring->itr_val) |
| writel(1000000000 / (tx_ring->itr_val * 256), |
| hw->hw_addr + tx_ring->itr_register); |
| else |
| writel(1, hw->hw_addr + tx_ring->itr_register); |
| adapter->eiac_mask |= tx_ring->ims_val; |
| ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); |
| |
| /* set vector for Other Causes, e.g. link changes */ |
| vector++; |
| ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); |
| if (rx_ring->itr_val) |
| writel(1000000000 / (rx_ring->itr_val * 256), |
| hw->hw_addr + E1000_EITR_82574(vector)); |
| else |
| writel(1, hw->hw_addr + E1000_EITR_82574(vector)); |
| |
| /* Cause Tx interrupts on every write back */ |
| ivar |= (1 << 31); |
| |
| ew32(IVAR, ivar); |
| |
| /* enable MSI-X PBA support */ |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; |
| |
| /* Auto-Mask Other interrupts upon ICR read */ |
| #define E1000_EIAC_MASK_82574 0x01F00000 |
| ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); |
| ctrl_ext |= E1000_CTRL_EXT_EIAME; |
| ew32(CTRL_EXT, ctrl_ext); |
| e1e_flush(); |
| } |
| |
| void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) |
| { |
| if (adapter->msix_entries) { |
| pci_disable_msix(adapter->pdev); |
| kfree(adapter->msix_entries); |
| adapter->msix_entries = NULL; |
| } else if (adapter->flags & FLAG_MSI_ENABLED) { |
| pci_disable_msi(adapter->pdev); |
| adapter->flags &= ~FLAG_MSI_ENABLED; |
| } |
| |
| return; |
| } |
| |
| /** |
| * e1000e_set_interrupt_capability - set MSI or MSI-X if supported |
| * |
| * Attempt to configure interrupts using the best available |
| * capabilities of the hardware and kernel. |
| **/ |
| void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) |
| { |
| int err; |
| int numvecs, i; |
| |
| |
| switch (adapter->int_mode) { |
| case E1000E_INT_MODE_MSIX: |
| if (adapter->flags & FLAG_HAS_MSIX) { |
| numvecs = 3; /* RxQ0, TxQ0 and other */ |
| adapter->msix_entries = kcalloc(numvecs, |
| sizeof(struct msix_entry), |
| GFP_KERNEL); |
| if (adapter->msix_entries) { |
| for (i = 0; i < numvecs; i++) |
| adapter->msix_entries[i].entry = i; |
| |
| err = pci_enable_msix(adapter->pdev, |
| adapter->msix_entries, |
| numvecs); |
| if (err == 0) |
| return; |
| } |
| /* MSI-X failed, so fall through and try MSI */ |
| e_err("Failed to initialize MSI-X interrupts. " |
| "Falling back to MSI interrupts.\n"); |
| e1000e_reset_interrupt_capability(adapter); |
| } |
| adapter->int_mode = E1000E_INT_MODE_MSI; |
| /* Fall through */ |
| case E1000E_INT_MODE_MSI: |
| if (!pci_enable_msi(adapter->pdev)) { |
| adapter->flags |= FLAG_MSI_ENABLED; |
| } else { |
| adapter->int_mode = E1000E_INT_MODE_LEGACY; |
| e_err("Failed to initialize MSI interrupts. Falling " |
| "back to legacy interrupts.\n"); |
| } |
| /* Fall through */ |
| case E1000E_INT_MODE_LEGACY: |
| /* Don't do anything; this is the system default */ |
| break; |
| } |
| |
| return; |
| } |
| |
| /** |
| * e1000_request_msix - Initialize MSI-X interrupts |
| * |
| * e1000_request_msix allocates MSI-X vectors and requests interrupts from the |
| * kernel. |
| **/ |
| static int e1000_request_msix(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| int err = 0, vector = 0; |
| |
| if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
| sprintf(adapter->rx_ring->name, "%s-rx0", netdev->name); |
| else |
| memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); |
| err = request_irq(adapter->msix_entries[vector].vector, |
| &e1000_intr_msix_rx, 0, adapter->rx_ring->name, |
| netdev); |
| if (err) |
| goto out; |
| adapter->rx_ring->itr_register = E1000_EITR_82574(vector); |
| adapter->rx_ring->itr_val = adapter->itr; |
| vector++; |
| |
| if (strlen(netdev->name) < (IFNAMSIZ - 5)) |
| sprintf(adapter->tx_ring->name, "%s-tx0", netdev->name); |
| else |
| memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); |
| err = request_irq(adapter->msix_entries[vector].vector, |
| &e1000_intr_msix_tx, 0, adapter->tx_ring->name, |
| netdev); |
| if (err) |
| goto out; |
| adapter->tx_ring->itr_register = E1000_EITR_82574(vector); |
| adapter->tx_ring->itr_val = adapter->itr; |
| vector++; |
| |
| err = request_irq(adapter->msix_entries[vector].vector, |
| &e1000_msix_other, 0, netdev->name, netdev); |
| if (err) |
| goto out; |
| |
| e1000_configure_msix(adapter); |
| return 0; |
| out: |
| return err; |
| } |
| |
| /** |
| * e1000_request_irq - initialize interrupts |
| * |
| * Attempts to configure interrupts using the best available |
| * capabilities of the hardware and kernel. |
| **/ |
| static int e1000_request_irq(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| int err; |
| |
| if (adapter->msix_entries) { |
| err = e1000_request_msix(adapter); |
| if (!err) |
| return err; |
| /* fall back to MSI */ |
| e1000e_reset_interrupt_capability(adapter); |
| adapter->int_mode = E1000E_INT_MODE_MSI; |
| e1000e_set_interrupt_capability(adapter); |
| } |
| if (adapter->flags & FLAG_MSI_ENABLED) { |
| err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0, |
| netdev->name, netdev); |
| if (!err) |
| return err; |
| |
| /* fall back to legacy interrupt */ |
| e1000e_reset_interrupt_capability(adapter); |
| adapter->int_mode = E1000E_INT_MODE_LEGACY; |
| } |
| |
| err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED, |
| netdev->name, netdev); |
| if (err) |
| e_err("Unable to allocate interrupt, Error: %d\n", err); |
| |
| return err; |
| } |
| |
| static void e1000_free_irq(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| |
| if (adapter->msix_entries) { |
| int vector = 0; |
| |
| free_irq(adapter->msix_entries[vector].vector, netdev); |
| vector++; |
| |
| free_irq(adapter->msix_entries[vector].vector, netdev); |
| vector++; |
| |
| /* Other Causes interrupt vector */ |
| free_irq(adapter->msix_entries[vector].vector, netdev); |
| return; |
| } |
| |
| free_irq(adapter->pdev->irq, netdev); |
| } |
| |
| /** |
| * e1000_irq_disable - Mask off interrupt generation on the NIC |
| **/ |
| static void e1000_irq_disable(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| ew32(IMC, ~0); |
| if (adapter->msix_entries) |
| ew32(EIAC_82574, 0); |
| e1e_flush(); |
| synchronize_irq(adapter->pdev->irq); |
| } |
| |
| /** |
| * e1000_irq_enable - Enable default interrupt generation settings |
| **/ |
| static void e1000_irq_enable(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| if (adapter->msix_entries) { |
| ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); |
| ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); |
| } else { |
| ew32(IMS, IMS_ENABLE_MASK); |
| } |
| e1e_flush(); |
| } |
| |
| /** |
| * e1000_get_hw_control - get control of the h/w from f/w |
| * @adapter: address of board private structure |
| * |
| * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
| * For ASF and Pass Through versions of f/w this means that |
| * the driver is loaded. For AMT version (only with 82573) |
| * of the f/w this means that the network i/f is open. |
| **/ |
| static void e1000_get_hw_control(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl_ext; |
| u32 swsm; |
| |
| /* Let firmware know the driver has taken over */ |
| if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
| swsm = er32(SWSM); |
| ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); |
| } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
| ctrl_ext = er32(CTRL_EXT); |
| ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); |
| } |
| } |
| |
| /** |
| * e1000_release_hw_control - release control of the h/w to f/w |
| * @adapter: address of board private structure |
| * |
| * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. |
| * For ASF and Pass Through versions of f/w this means that the |
| * driver is no longer loaded. For AMT version (only with 82573) i |
| * of the f/w this means that the network i/f is closed. |
| * |
| **/ |
| static void e1000_release_hw_control(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl_ext; |
| u32 swsm; |
| |
| /* Let firmware taken over control of h/w */ |
| if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { |
| swsm = er32(SWSM); |
| ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); |
| } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { |
| ctrl_ext = er32(CTRL_EXT); |
| ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); |
| } |
| } |
| |
| /** |
| * @e1000_alloc_ring - allocate memory for a ring structure |
| **/ |
| static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, |
| struct e1000_ring *ring) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| |
| ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, |
| GFP_KERNEL); |
| if (!ring->desc) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) |
| * @adapter: board private structure |
| * |
| * Return 0 on success, negative on failure |
| **/ |
| int e1000e_setup_tx_resources(struct e1000_adapter *adapter) |
| { |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| int err = -ENOMEM, size; |
| |
| size = sizeof(struct e1000_buffer) * tx_ring->count; |
| tx_ring->buffer_info = vmalloc(size); |
| if (!tx_ring->buffer_info) |
| goto err; |
| memset(tx_ring->buffer_info, 0, size); |
| |
| /* round up to nearest 4K */ |
| tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); |
| tx_ring->size = ALIGN(tx_ring->size, 4096); |
| |
| err = e1000_alloc_ring_dma(adapter, tx_ring); |
| if (err) |
| goto err; |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| spin_lock_init(&adapter->tx_queue_lock); |
| |
| return 0; |
| err: |
| vfree(tx_ring->buffer_info); |
| e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
| return err; |
| } |
| |
| /** |
| * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) |
| * @adapter: board private structure |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| int e1000e_setup_rx_resources(struct e1000_adapter *adapter) |
| { |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| struct e1000_buffer *buffer_info; |
| int i, size, desc_len, err = -ENOMEM; |
| |
| size = sizeof(struct e1000_buffer) * rx_ring->count; |
| rx_ring->buffer_info = vmalloc(size); |
| if (!rx_ring->buffer_info) |
| goto err; |
| memset(rx_ring->buffer_info, 0, size); |
| |
| for (i = 0; i < rx_ring->count; i++) { |
| buffer_info = &rx_ring->buffer_info[i]; |
| buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, |
| sizeof(struct e1000_ps_page), |
| GFP_KERNEL); |
| if (!buffer_info->ps_pages) |
| goto err_pages; |
| } |
| |
| desc_len = sizeof(union e1000_rx_desc_packet_split); |
| |
| /* Round up to nearest 4K */ |
| rx_ring->size = rx_ring->count * desc_len; |
| rx_ring->size = ALIGN(rx_ring->size, 4096); |
| |
| err = e1000_alloc_ring_dma(adapter, rx_ring); |
| if (err) |
| goto err_pages; |
| |
| rx_ring->next_to_clean = 0; |
| rx_ring->next_to_use = 0; |
| rx_ring->rx_skb_top = NULL; |
| |
| return 0; |
| |
| err_pages: |
| for (i = 0; i < rx_ring->count; i++) { |
| buffer_info = &rx_ring->buffer_info[i]; |
| kfree(buffer_info->ps_pages); |
| } |
| err: |
| vfree(rx_ring->buffer_info); |
| e_err("Unable to allocate memory for the transmit descriptor ring\n"); |
| return err; |
| } |
| |
| /** |
| * e1000_clean_tx_ring - Free Tx Buffers |
| * @adapter: board private structure |
| **/ |
| static void e1000_clean_tx_ring(struct e1000_adapter *adapter) |
| { |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| struct e1000_buffer *buffer_info; |
| unsigned long size; |
| unsigned int i; |
| |
| for (i = 0; i < tx_ring->count; i++) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| e1000_put_txbuf(adapter, buffer_info); |
| } |
| |
| size = sizeof(struct e1000_buffer) * tx_ring->count; |
| memset(tx_ring->buffer_info, 0, size); |
| |
| memset(tx_ring->desc, 0, tx_ring->size); |
| |
| tx_ring->next_to_use = 0; |
| tx_ring->next_to_clean = 0; |
| |
| writel(0, adapter->hw.hw_addr + tx_ring->head); |
| writel(0, adapter->hw.hw_addr + tx_ring->tail); |
| } |
| |
| /** |
| * e1000e_free_tx_resources - Free Tx Resources per Queue |
| * @adapter: board private structure |
| * |
| * Free all transmit software resources |
| **/ |
| void e1000e_free_tx_resources(struct e1000_adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| |
| e1000_clean_tx_ring(adapter); |
| |
| vfree(tx_ring->buffer_info); |
| tx_ring->buffer_info = NULL; |
| |
| dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, |
| tx_ring->dma); |
| tx_ring->desc = NULL; |
| } |
| |
| /** |
| * e1000e_free_rx_resources - Free Rx Resources |
| * @adapter: board private structure |
| * |
| * Free all receive software resources |
| **/ |
| |
| void e1000e_free_rx_resources(struct e1000_adapter *adapter) |
| { |
| struct pci_dev *pdev = adapter->pdev; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| int i; |
| |
| e1000_clean_rx_ring(adapter); |
| |
| for (i = 0; i < rx_ring->count; i++) { |
| kfree(rx_ring->buffer_info[i].ps_pages); |
| } |
| |
| vfree(rx_ring->buffer_info); |
| rx_ring->buffer_info = NULL; |
| |
| dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, |
| rx_ring->dma); |
| rx_ring->desc = NULL; |
| } |
| |
| /** |
| * e1000_update_itr - update the dynamic ITR value based on statistics |
| * @adapter: pointer to adapter |
| * @itr_setting: current adapter->itr |
| * @packets: the number of packets during this measurement interval |
| * @bytes: the number of bytes during this measurement interval |
| * |
| * Stores a new ITR value based on packets and byte |
| * counts during the last interrupt. The advantage of per interrupt |
| * computation is faster updates and more accurate ITR for the current |
| * traffic pattern. Constants in this function were computed |
| * based on theoretical maximum wire speed and thresholds were set based |
| * on testing data as well as attempting to minimize response time |
| * while increasing bulk throughput. This functionality is controlled |
| * by the InterruptThrottleRate module parameter. |
| **/ |
| static unsigned int e1000_update_itr(struct e1000_adapter *adapter, |
| u16 itr_setting, int packets, |
| int bytes) |
| { |
| unsigned int retval = itr_setting; |
| |
| if (packets == 0) |
| goto update_itr_done; |
| |
| switch (itr_setting) { |
| case lowest_latency: |
| /* handle TSO and jumbo frames */ |
| if (bytes/packets > 8000) |
| retval = bulk_latency; |
| else if ((packets < 5) && (bytes > 512)) { |
| retval = low_latency; |
| } |
| break; |
| case low_latency: /* 50 usec aka 20000 ints/s */ |
| if (bytes > 10000) { |
| /* this if handles the TSO accounting */ |
| if (bytes/packets > 8000) { |
| retval = bulk_latency; |
| } else if ((packets < 10) || ((bytes/packets) > 1200)) { |
| retval = bulk_latency; |
| } else if ((packets > 35)) { |
| retval = lowest_latency; |
| } |
| } else if (bytes/packets > 2000) { |
| retval = bulk_latency; |
| } else if (packets <= 2 && bytes < 512) { |
| retval = lowest_latency; |
| } |
| break; |
| case bulk_latency: /* 250 usec aka 4000 ints/s */ |
| if (bytes > 25000) { |
| if (packets > 35) { |
| retval = low_latency; |
| } |
| } else if (bytes < 6000) { |
| retval = low_latency; |
| } |
| break; |
| } |
| |
| update_itr_done: |
| return retval; |
| } |
| |
| static void e1000_set_itr(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u16 current_itr; |
| u32 new_itr = adapter->itr; |
| |
| /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ |
| if (adapter->link_speed != SPEED_1000) { |
| current_itr = 0; |
| new_itr = 4000; |
| goto set_itr_now; |
| } |
| |
| adapter->tx_itr = e1000_update_itr(adapter, |
| adapter->tx_itr, |
| adapter->total_tx_packets, |
| adapter->total_tx_bytes); |
| /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) |
| adapter->tx_itr = low_latency; |
| |
| adapter->rx_itr = e1000_update_itr(adapter, |
| adapter->rx_itr, |
| adapter->total_rx_packets, |
| adapter->total_rx_bytes); |
| /* conservative mode (itr 3) eliminates the lowest_latency setting */ |
| if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) |
| adapter->rx_itr = low_latency; |
| |
| current_itr = max(adapter->rx_itr, adapter->tx_itr); |
| |
| switch (current_itr) { |
| /* counts and packets in update_itr are dependent on these numbers */ |
| case lowest_latency: |
| new_itr = 70000; |
| break; |
| case low_latency: |
| new_itr = 20000; /* aka hwitr = ~200 */ |
| break; |
| case bulk_latency: |
| new_itr = 4000; |
| break; |
| default: |
| break; |
| } |
| |
| set_itr_now: |
| if (new_itr != adapter->itr) { |
| /* |
| * this attempts to bias the interrupt rate towards Bulk |
| * by adding intermediate steps when interrupt rate is |
| * increasing |
| */ |
| new_itr = new_itr > adapter->itr ? |
| min(adapter->itr + (new_itr >> 2), new_itr) : |
| new_itr; |
| adapter->itr = new_itr; |
| adapter->rx_ring->itr_val = new_itr; |
| if (adapter->msix_entries) |
| adapter->rx_ring->set_itr = 1; |
| else |
| ew32(ITR, 1000000000 / (new_itr * 256)); |
| } |
| } |
| |
| /** |
| * e1000_alloc_queues - Allocate memory for all rings |
| * @adapter: board private structure to initialize |
| **/ |
| static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) |
| { |
| adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
| if (!adapter->tx_ring) |
| goto err; |
| |
| adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); |
| if (!adapter->rx_ring) |
| goto err; |
| |
| return 0; |
| err: |
| e_err("Unable to allocate memory for queues\n"); |
| kfree(adapter->rx_ring); |
| kfree(adapter->tx_ring); |
| return -ENOMEM; |
| } |
| |
| /** |
| * e1000_clean - NAPI Rx polling callback |
| * @napi: struct associated with this polling callback |
| * @budget: amount of packets driver is allowed to process this poll |
| **/ |
| static int e1000_clean(struct napi_struct *napi, int budget) |
| { |
| struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *poll_dev = adapter->netdev; |
| int tx_cleaned = 0, work_done = 0; |
| |
| /* Must NOT use netdev_priv macro here. */ |
| adapter = poll_dev->priv; |
| |
| if (adapter->msix_entries && |
| !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) |
| goto clean_rx; |
| |
| /* |
| * e1000_clean is called per-cpu. This lock protects |
| * tx_ring from being cleaned by multiple cpus |
| * simultaneously. A failure obtaining the lock means |
| * tx_ring is currently being cleaned anyway. |
| */ |
| if (spin_trylock(&adapter->tx_queue_lock)) { |
| tx_cleaned = e1000_clean_tx_irq(adapter); |
| spin_unlock(&adapter->tx_queue_lock); |
| } |
| |
| clean_rx: |
| adapter->clean_rx(adapter, &work_done, budget); |
| |
| if (tx_cleaned) |
| work_done = budget; |
| |
| /* If budget not fully consumed, exit the polling mode */ |
| if (work_done < budget) { |
| if (adapter->itr_setting & 3) |
| e1000_set_itr(adapter); |
| netif_rx_complete(poll_dev, napi); |
| if (adapter->msix_entries) |
| ew32(IMS, adapter->rx_ring->ims_val); |
| else |
| e1000_irq_enable(adapter); |
| } |
| |
| return work_done; |
| } |
| |
| static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vfta, index; |
| |
| /* don't update vlan cookie if already programmed */ |
| if ((adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
| (vid == adapter->mng_vlan_id)) |
| return; |
| /* add VID to filter table */ |
| index = (vid >> 5) & 0x7F; |
| vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
| vfta |= (1 << (vid & 0x1F)); |
| e1000e_write_vfta(hw, index, vfta); |
| } |
| |
| static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 vfta, index; |
| |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| e1000_irq_disable(adapter); |
| vlan_group_set_device(adapter->vlgrp, vid, NULL); |
| |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| e1000_irq_enable(adapter); |
| |
| if ((adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
| (vid == adapter->mng_vlan_id)) { |
| /* release control to f/w */ |
| e1000_release_hw_control(adapter); |
| return; |
| } |
| |
| /* remove VID from filter table */ |
| index = (vid >> 5) & 0x7F; |
| vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); |
| vfta &= ~(1 << (vid & 0x1F)); |
| e1000e_write_vfta(hw, index, vfta); |
| } |
| |
| static void e1000_update_mng_vlan(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| u16 vid = adapter->hw.mng_cookie.vlan_id; |
| u16 old_vid = adapter->mng_vlan_id; |
| |
| if (!adapter->vlgrp) |
| return; |
| |
| if (!vlan_group_get_device(adapter->vlgrp, vid)) { |
| adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| if (adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { |
| e1000_vlan_rx_add_vid(netdev, vid); |
| adapter->mng_vlan_id = vid; |
| } |
| |
| if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && |
| (vid != old_vid) && |
| !vlan_group_get_device(adapter->vlgrp, old_vid)) |
| e1000_vlan_rx_kill_vid(netdev, old_vid); |
| } else { |
| adapter->mng_vlan_id = vid; |
| } |
| } |
| |
| |
| static void e1000_vlan_rx_register(struct net_device *netdev, |
| struct vlan_group *grp) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl, rctl; |
| |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| e1000_irq_disable(adapter); |
| adapter->vlgrp = grp; |
| |
| if (grp) { |
| /* enable VLAN tag insert/strip */ |
| ctrl = er32(CTRL); |
| ctrl |= E1000_CTRL_VME; |
| ew32(CTRL, ctrl); |
| |
| if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
| /* enable VLAN receive filtering */ |
| rctl = er32(RCTL); |
| rctl &= ~E1000_RCTL_CFIEN; |
| ew32(RCTL, rctl); |
| e1000_update_mng_vlan(adapter); |
| } |
| } else { |
| /* disable VLAN tag insert/strip */ |
| ctrl = er32(CTRL); |
| ctrl &= ~E1000_CTRL_VME; |
| ew32(CTRL, ctrl); |
| |
| if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { |
| if (adapter->mng_vlan_id != |
| (u16)E1000_MNG_VLAN_NONE) { |
| e1000_vlan_rx_kill_vid(netdev, |
| adapter->mng_vlan_id); |
| adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| } |
| } |
| } |
| |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| e1000_irq_enable(adapter); |
| } |
| |
| static void e1000_restore_vlan(struct e1000_adapter *adapter) |
| { |
| u16 vid; |
| |
| e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); |
| |
| if (!adapter->vlgrp) |
| return; |
| |
| for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { |
| if (!vlan_group_get_device(adapter->vlgrp, vid)) |
| continue; |
| e1000_vlan_rx_add_vid(adapter->netdev, vid); |
| } |
| } |
| |
| static void e1000_init_manageability(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 manc, manc2h; |
| |
| if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) |
| return; |
| |
| manc = er32(MANC); |
| |
| /* |
| * enable receiving management packets to the host. this will probably |
| * generate destination unreachable messages from the host OS, but |
| * the packets will be handled on SMBUS |
| */ |
| manc |= E1000_MANC_EN_MNG2HOST; |
| manc2h = er32(MANC2H); |
| #define E1000_MNG2HOST_PORT_623 (1 << 5) |
| #define E1000_MNG2HOST_PORT_664 (1 << 6) |
| manc2h |= E1000_MNG2HOST_PORT_623; |
| manc2h |= E1000_MNG2HOST_PORT_664; |
| ew32(MANC2H, manc2h); |
| ew32(MANC, manc); |
| } |
| |
| /** |
| * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Tx unit of the MAC after a reset. |
| **/ |
| static void e1000_configure_tx(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| u64 tdba; |
| u32 tdlen, tctl, tipg, tarc; |
| u32 ipgr1, ipgr2; |
| |
| /* Setup the HW Tx Head and Tail descriptor pointers */ |
| tdba = tx_ring->dma; |
| tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); |
| ew32(TDBAL, (tdba & DMA_32BIT_MASK)); |
| ew32(TDBAH, (tdba >> 32)); |
| ew32(TDLEN, tdlen); |
| ew32(TDH, 0); |
| ew32(TDT, 0); |
| tx_ring->head = E1000_TDH; |
| tx_ring->tail = E1000_TDT; |
| |
| /* Set the default values for the Tx Inter Packet Gap timer */ |
| tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */ |
| ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */ |
| ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */ |
| |
| if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) |
| ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */ |
| |
| tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
| tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; |
| ew32(TIPG, tipg); |
| |
| /* Set the Tx Interrupt Delay register */ |
| ew32(TIDV, adapter->tx_int_delay); |
| /* Tx irq moderation */ |
| ew32(TADV, adapter->tx_abs_int_delay); |
| |
| /* Program the Transmit Control Register */ |
| tctl = er32(TCTL); |
| tctl &= ~E1000_TCTL_CT; |
| tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | |
| (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| |
| if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { |
| tarc = er32(TARC(0)); |
| /* |
| * set the speed mode bit, we'll clear it if we're not at |
| * gigabit link later |
| */ |
| #define SPEED_MODE_BIT (1 << 21) |
| tarc |= SPEED_MODE_BIT; |
| ew32(TARC(0), tarc); |
| } |
| |
| /* errata: program both queues to unweighted RR */ |
| if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { |
| tarc = er32(TARC(0)); |
| tarc |= 1; |
| ew32(TARC(0), tarc); |
| tarc = er32(TARC(1)); |
| tarc |= 1; |
| ew32(TARC(1), tarc); |
| } |
| |
| e1000e_config_collision_dist(hw); |
| |
| /* Setup Transmit Descriptor Settings for eop descriptor */ |
| adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; |
| |
| /* only set IDE if we are delaying interrupts using the timers */ |
| if (adapter->tx_int_delay) |
| adapter->txd_cmd |= E1000_TXD_CMD_IDE; |
| |
| /* enable Report Status bit */ |
| adapter->txd_cmd |= E1000_TXD_CMD_RS; |
| |
| ew32(TCTL, tctl); |
| |
| adapter->tx_queue_len = adapter->netdev->tx_queue_len; |
| } |
| |
| /** |
| * e1000_setup_rctl - configure the receive control registers |
| * @adapter: Board private structure |
| **/ |
| #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ |
| (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) |
| static void e1000_setup_rctl(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl, rfctl; |
| u32 psrctl = 0; |
| u32 pages = 0; |
| |
| /* Program MC offset vector base */ |
| rctl = er32(RCTL); |
| rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | |
| E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | |
| (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); |
| |
| /* Do not Store bad packets */ |
| rctl &= ~E1000_RCTL_SBP; |
| |
| /* Enable Long Packet receive */ |
| if (adapter->netdev->mtu <= ETH_DATA_LEN) |
| rctl &= ~E1000_RCTL_LPE; |
| else |
| rctl |= E1000_RCTL_LPE; |
| |
| /* Some systems expect that the CRC is included in SMBUS traffic. The |
| * hardware strips the CRC before sending to both SMBUS (BMC) and to |
| * host memory when this is enabled |
| */ |
| if (adapter->flags2 & FLAG2_CRC_STRIPPING) |
| rctl |= E1000_RCTL_SECRC; |
| |
| /* Setup buffer sizes */ |
| rctl &= ~E1000_RCTL_SZ_4096; |
| rctl |= E1000_RCTL_BSEX; |
| switch (adapter->rx_buffer_len) { |
| case 256: |
| rctl |= E1000_RCTL_SZ_256; |
| rctl &= ~E1000_RCTL_BSEX; |
| break; |
| case 512: |
| rctl |= E1000_RCTL_SZ_512; |
| rctl &= ~E1000_RCTL_BSEX; |
| break; |
| case 1024: |
| rctl |= E1000_RCTL_SZ_1024; |
| rctl &= ~E1000_RCTL_BSEX; |
| break; |
| case 2048: |
| default: |
| rctl |= E1000_RCTL_SZ_2048; |
| rctl &= ~E1000_RCTL_BSEX; |
| break; |
| case 4096: |
| rctl |= E1000_RCTL_SZ_4096; |
| break; |
| case 8192: |
| rctl |= E1000_RCTL_SZ_8192; |
| break; |
| case 16384: |
| rctl |= E1000_RCTL_SZ_16384; |
| break; |
| } |
| |
| /* |
| * 82571 and greater support packet-split where the protocol |
| * header is placed in skb->data and the packet data is |
| * placed in pages hanging off of skb_shinfo(skb)->nr_frags. |
| * In the case of a non-split, skb->data is linearly filled, |
| * followed by the page buffers. Therefore, skb->data is |
| * sized to hold the largest protocol header. |
| * |
| * allocations using alloc_page take too long for regular MTU |
| * so only enable packet split for jumbo frames |
| * |
| * Using pages when the page size is greater than 16k wastes |
| * a lot of memory, since we allocate 3 pages at all times |
| * per packet. |
| */ |
| pages = PAGE_USE_COUNT(adapter->netdev->mtu); |
| if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) && |
| (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) |
| adapter->rx_ps_pages = pages; |
| else |
| adapter->rx_ps_pages = 0; |
| |
| if (adapter->rx_ps_pages) { |
| /* Configure extra packet-split registers */ |
| rfctl = er32(RFCTL); |
| rfctl |= E1000_RFCTL_EXTEN; |
| /* |
| * disable packet split support for IPv6 extension headers, |
| * because some malformed IPv6 headers can hang the Rx |
| */ |
| rfctl |= (E1000_RFCTL_IPV6_EX_DIS | |
| E1000_RFCTL_NEW_IPV6_EXT_DIS); |
| |
| ew32(RFCTL, rfctl); |
| |
| /* Enable Packet split descriptors */ |
| rctl |= E1000_RCTL_DTYP_PS; |
| |
| psrctl |= adapter->rx_ps_bsize0 >> |
| E1000_PSRCTL_BSIZE0_SHIFT; |
| |
| switch (adapter->rx_ps_pages) { |
| case 3: |
| psrctl |= PAGE_SIZE << |
| E1000_PSRCTL_BSIZE3_SHIFT; |
| case 2: |
| psrctl |= PAGE_SIZE << |
| E1000_PSRCTL_BSIZE2_SHIFT; |
| case 1: |
| psrctl |= PAGE_SIZE >> |
| E1000_PSRCTL_BSIZE1_SHIFT; |
| break; |
| } |
| |
| ew32(PSRCTL, psrctl); |
| } |
| |
| ew32(RCTL, rctl); |
| /* just started the receive unit, no need to restart */ |
| adapter->flags &= ~FLAG_RX_RESTART_NOW; |
| } |
| |
| /** |
| * e1000_configure_rx - Configure Receive Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Rx unit of the MAC after a reset. |
| **/ |
| static void e1000_configure_rx(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_ring *rx_ring = adapter->rx_ring; |
| u64 rdba; |
| u32 rdlen, rctl, rxcsum, ctrl_ext; |
| |
| if (adapter->rx_ps_pages) { |
| /* this is a 32 byte descriptor */ |
| rdlen = rx_ring->count * |
| sizeof(union e1000_rx_desc_packet_split); |
| adapter->clean_rx = e1000_clean_rx_irq_ps; |
| adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; |
| } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { |
| rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); |
| adapter->clean_rx = e1000_clean_jumbo_rx_irq; |
| adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; |
| } else { |
| rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); |
| adapter->clean_rx = e1000_clean_rx_irq; |
| adapter->alloc_rx_buf = e1000_alloc_rx_buffers; |
| } |
| |
| /* disable receives while setting up the descriptors */ |
| rctl = er32(RCTL); |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| e1e_flush(); |
| msleep(10); |
| |
| /* set the Receive Delay Timer Register */ |
| ew32(RDTR, adapter->rx_int_delay); |
| |
| /* irq moderation */ |
| ew32(RADV, adapter->rx_abs_int_delay); |
| if (adapter->itr_setting != 0) |
| ew32(ITR, 1000000000 / (adapter->itr * 256)); |
| |
| ctrl_ext = er32(CTRL_EXT); |
| /* Reset delay timers after every interrupt */ |
| ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; |
| /* Auto-Mask interrupts upon ICR access */ |
| ctrl_ext |= E1000_CTRL_EXT_IAME; |
| ew32(IAM, 0xffffffff); |
| ew32(CTRL_EXT, ctrl_ext); |
| e1e_flush(); |
| |
| /* |
| * Setup the HW Rx Head and Tail Descriptor Pointers and |
| * the Base and Length of the Rx Descriptor Ring |
| */ |
| rdba = rx_ring->dma; |
| ew32(RDBAL, (rdba & DMA_32BIT_MASK)); |
| ew32(RDBAH, (rdba >> 32)); |
| ew32(RDLEN, rdlen); |
| ew32(RDH, 0); |
| ew32(RDT, 0); |
| rx_ring->head = E1000_RDH; |
| rx_ring->tail = E1000_RDT; |
| |
| /* Enable Receive Checksum Offload for TCP and UDP */ |
| rxcsum = er32(RXCSUM); |
| if (adapter->flags & FLAG_RX_CSUM_ENABLED) { |
| rxcsum |= E1000_RXCSUM_TUOFL; |
| |
| /* |
| * IPv4 payload checksum for UDP fragments must be |
| * used in conjunction with packet-split. |
| */ |
| if (adapter->rx_ps_pages) |
| rxcsum |= E1000_RXCSUM_IPPCSE; |
| } else { |
| rxcsum &= ~E1000_RXCSUM_TUOFL; |
| /* no need to clear IPPCSE as it defaults to 0 */ |
| } |
| ew32(RXCSUM, rxcsum); |
| |
| /* |
| * Enable early receives on supported devices, only takes effect when |
| * packet size is equal or larger than the specified value (in 8 byte |
| * units), e.g. using jumbo frames when setting to E1000_ERT_2048 |
| */ |
| if ((adapter->flags & FLAG_HAS_ERT) && |
| (adapter->netdev->mtu > ETH_DATA_LEN)) { |
| u32 rxdctl = er32(RXDCTL(0)); |
| ew32(RXDCTL(0), rxdctl | 0x3); |
| ew32(ERT, E1000_ERT_2048 | (1 << 13)); |
| /* |
| * With jumbo frames and early-receive enabled, excessive |
| * C4->C2 latencies result in dropped transactions. |
| */ |
| pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, |
| e1000e_driver_name, 55); |
| } else { |
| pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, |
| e1000e_driver_name, |
| PM_QOS_DEFAULT_VALUE); |
| } |
| |
| /* Enable Receives */ |
| ew32(RCTL, rctl); |
| } |
| |
| /** |
| * e1000_update_mc_addr_list - Update Multicast addresses |
| * @hw: pointer to the HW structure |
| * @mc_addr_list: array of multicast addresses to program |
| * @mc_addr_count: number of multicast addresses to program |
| * @rar_used_count: the first RAR register free to program |
| * @rar_count: total number of supported Receive Address Registers |
| * |
| * Updates the Receive Address Registers and Multicast Table Array. |
| * The caller must have a packed mc_addr_list of multicast addresses. |
| * The parameter rar_count will usually be hw->mac.rar_entry_count |
| * unless there are workarounds that change this. Currently no func pointer |
| * exists and all implementations are handled in the generic version of this |
| * function. |
| **/ |
| static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, |
| u32 mc_addr_count, u32 rar_used_count, |
| u32 rar_count) |
| { |
| hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count, |
| rar_used_count, rar_count); |
| } |
| |
| /** |
| * e1000_set_multi - Multicast and Promiscuous mode set |
| * @netdev: network interface device structure |
| * |
| * The set_multi entry point is called whenever the multicast address |
| * list or the network interface flags are updated. This routine is |
| * responsible for configuring the hardware for proper multicast, |
| * promiscuous mode, and all-multi behavior. |
| **/ |
| static void e1000_set_multi(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_mac_info *mac = &hw->mac; |
| struct dev_mc_list *mc_ptr; |
| u8 *mta_list; |
| u32 rctl; |
| int i; |
| |
| /* Check for Promiscuous and All Multicast modes */ |
| |
| rctl = er32(RCTL); |
| |
| if (netdev->flags & IFF_PROMISC) { |
| rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); |
| rctl &= ~E1000_RCTL_VFE; |
| } else { |
| if (netdev->flags & IFF_ALLMULTI) { |
| rctl |= E1000_RCTL_MPE; |
| rctl &= ~E1000_RCTL_UPE; |
| } else { |
| rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); |
| } |
| if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
| rctl |= E1000_RCTL_VFE; |
| } |
| |
| ew32(RCTL, rctl); |
| |
| if (netdev->mc_count) { |
| mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); |
| if (!mta_list) |
| return; |
| |
| /* prepare a packed array of only addresses. */ |
| mc_ptr = netdev->mc_list; |
| |
| for (i = 0; i < netdev->mc_count; i++) { |
| if (!mc_ptr) |
| break; |
| memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, |
| ETH_ALEN); |
| mc_ptr = mc_ptr->next; |
| } |
| |
| e1000_update_mc_addr_list(hw, mta_list, i, 1, |
| mac->rar_entry_count); |
| kfree(mta_list); |
| } else { |
| /* |
| * if we're called from probe, we might not have |
| * anything to do here, so clear out the list |
| */ |
| e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count); |
| } |
| } |
| |
| /** |
| * e1000_configure - configure the hardware for Rx and Tx |
| * @adapter: private board structure |
| **/ |
| static void e1000_configure(struct e1000_adapter *adapter) |
| { |
| e1000_set_multi(adapter->netdev); |
| |
| e1000_restore_vlan(adapter); |
| e1000_init_manageability(adapter); |
| |
| e1000_configure_tx(adapter); |
| e1000_setup_rctl(adapter); |
| e1000_configure_rx(adapter); |
| adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring)); |
| } |
| |
| /** |
| * e1000e_power_up_phy - restore link in case the phy was powered down |
| * @adapter: address of board private structure |
| * |
| * The phy may be powered down to save power and turn off link when the |
| * driver is unloaded and wake on lan is not enabled (among others) |
| * *** this routine MUST be followed by a call to e1000e_reset *** |
| **/ |
| void e1000e_power_up_phy(struct e1000_adapter *adapter) |
| { |
| u16 mii_reg = 0; |
| |
| /* Just clear the power down bit to wake the phy back up */ |
| if (adapter->hw.phy.media_type == e1000_media_type_copper) { |
| /* |
| * According to the manual, the phy will retain its |
| * settings across a power-down/up cycle |
| */ |
| e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); |
| mii_reg &= ~MII_CR_POWER_DOWN; |
| e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); |
| } |
| |
| adapter->hw.mac.ops.setup_link(&adapter->hw); |
| } |
| |
| /** |
| * e1000_power_down_phy - Power down the PHY |
| * |
| * Power down the PHY so no link is implied when interface is down |
| * The PHY cannot be powered down is management or WoL is active |
| */ |
| static void e1000_power_down_phy(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u16 mii_reg; |
| |
| /* WoL is enabled */ |
| if (adapter->wol) |
| return; |
| |
| /* non-copper PHY? */ |
| if (adapter->hw.phy.media_type != e1000_media_type_copper) |
| return; |
| |
| /* reset is blocked because of a SoL/IDER session */ |
| if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw)) |
| return; |
| |
| /* manageability (AMT) is enabled */ |
| if (er32(MANC) & E1000_MANC_SMBUS_EN) |
| return; |
| |
| /* power down the PHY */ |
| e1e_rphy(hw, PHY_CONTROL, &mii_reg); |
| mii_reg |= MII_CR_POWER_DOWN; |
| e1e_wphy(hw, PHY_CONTROL, mii_reg); |
| mdelay(1); |
| } |
| |
| /** |
| * e1000e_reset - bring the hardware into a known good state |
| * |
| * This function boots the hardware and enables some settings that |
| * require a configuration cycle of the hardware - those cannot be |
| * set/changed during runtime. After reset the device needs to be |
| * properly configured for Rx, Tx etc. |
| */ |
| void e1000e_reset(struct e1000_adapter *adapter) |
| { |
| struct e1000_mac_info *mac = &adapter->hw.mac; |
| struct e1000_fc_info *fc = &adapter->hw.fc; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tx_space, min_tx_space, min_rx_space; |
| u32 pba = adapter->pba; |
| u16 hwm; |
| |
| /* reset Packet Buffer Allocation to default */ |
| ew32(PBA, pba); |
| |
| if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { |
| /* |
| * To maintain wire speed transmits, the Tx FIFO should be |
| * large enough to accommodate two full transmit packets, |
| * rounded up to the next 1KB and expressed in KB. Likewise, |
| * the Rx FIFO should be large enough to accommodate at least |
| * one full receive packet and is similarly rounded up and |
| * expressed in KB. |
| */ |
| pba = er32(PBA); |
| /* upper 16 bits has Tx packet buffer allocation size in KB */ |
| tx_space = pba >> 16; |
| /* lower 16 bits has Rx packet buffer allocation size in KB */ |
| pba &= 0xffff; |
| /* |
| * the Tx fifo also stores 16 bytes of information about the tx |
| * but don't include ethernet FCS because hardware appends it |
| */ |
| min_tx_space = (adapter->max_frame_size + |
| sizeof(struct e1000_tx_desc) - |
| ETH_FCS_LEN) * 2; |
| min_tx_space = ALIGN(min_tx_space, 1024); |
| min_tx_space >>= 10; |
| /* software strips receive CRC, so leave room for it */ |
| min_rx_space = adapter->max_frame_size; |
| min_rx_space = ALIGN(min_rx_space, 1024); |
| min_rx_space >>= 10; |
| |
| /* |
| * If current Tx allocation is less than the min Tx FIFO size, |
| * and the min Tx FIFO size is less than the current Rx FIFO |
| * allocation, take space away from current Rx allocation |
| */ |
| if ((tx_space < min_tx_space) && |
| ((min_tx_space - tx_space) < pba)) { |
| pba -= min_tx_space - tx_space; |
| |
| /* |
| * if short on Rx space, Rx wins and must trump tx |
| * adjustment or use Early Receive if available |
| */ |
| if ((pba < min_rx_space) && |
| (!(adapter->flags & FLAG_HAS_ERT))) |
| /* ERT enabled in e1000_configure_rx */ |
| pba = min_rx_space; |
| } |
| |
| ew32(PBA, pba); |
| } |
| |
| |
| /* |
| * flow control settings |
| * |
| * The high water mark must be low enough to fit one full frame |
| * (or the size used for early receive) above it in the Rx FIFO. |
| * Set it to the lower of: |
| * - 90% of the Rx FIFO size, and |
| * - the full Rx FIFO size minus the early receive size (for parts |
| * with ERT support assuming ERT set to E1000_ERT_2048), or |
| * - the full Rx FIFO size minus one full frame |
| */ |
| if (adapter->flags & FLAG_HAS_ERT) |
| hwm = min(((pba << 10) * 9 / 10), |
| ((pba << 10) - (E1000_ERT_2048 << 3))); |
| else |
| hwm = min(((pba << 10) * 9 / 10), |
| ((pba << 10) - adapter->max_frame_size)); |
| |
| fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */ |
| fc->low_water = fc->high_water - 8; |
| |
| if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) |
| fc->pause_time = 0xFFFF; |
| else |
| fc->pause_time = E1000_FC_PAUSE_TIME; |
| fc->send_xon = 1; |
| fc->type = fc->original_type; |
| |
| /* Allow time for pending master requests to run */ |
| mac->ops.reset_hw(hw); |
| |
| /* |
| * For parts with AMT enabled, let the firmware know |
| * that the network interface is in control |
| */ |
| if (adapter->flags & FLAG_HAS_AMT) |
| e1000_get_hw_control(adapter); |
| |
| ew32(WUC, 0); |
| |
| if (mac->ops.init_hw(hw)) |
| e_err("Hardware Error\n"); |
| |
| e1000_update_mng_vlan(adapter); |
| |
| /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
| ew32(VET, ETH_P_8021Q); |
| |
| e1000e_reset_adaptive(hw); |
| e1000_get_phy_info(hw); |
| |
| if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) { |
| u16 phy_data = 0; |
| /* |
| * speed up time to link by disabling smart power down, ignore |
| * the return value of this function because there is nothing |
| * different we would do if it failed |
| */ |
| e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); |
| phy_data &= ~IGP02E1000_PM_SPD; |
| e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); |
| } |
| } |
| |
| int e1000e_up(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| |
| /* hardware has been reset, we need to reload some things */ |
| e1000_configure(adapter); |
| |
| clear_bit(__E1000_DOWN, &adapter->state); |
| |
| napi_enable(&adapter->napi); |
| if (adapter->msix_entries) |
| e1000_configure_msix(adapter); |
| e1000_irq_enable(adapter); |
| |
| /* fire a link change interrupt to start the watchdog */ |
| ew32(ICS, E1000_ICS_LSC); |
| return 0; |
| } |
| |
| void e1000e_down(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 tctl, rctl; |
| |
| /* |
| * signal that we're down so the interrupt handler does not |
| * reschedule our watchdog timer |
| */ |
| set_bit(__E1000_DOWN, &adapter->state); |
| |
| /* disable receives in the hardware */ |
| rctl = er32(RCTL); |
| ew32(RCTL, rctl & ~E1000_RCTL_EN); |
| /* flush and sleep below */ |
| |
| netif_tx_stop_all_queues(netdev); |
| |
| /* disable transmits in the hardware */ |
| tctl = er32(TCTL); |
| tctl &= ~E1000_TCTL_EN; |
| ew32(TCTL, tctl); |
| /* flush both disables and wait for them to finish */ |
| e1e_flush(); |
| msleep(10); |
| |
| napi_disable(&adapter->napi); |
| e1000_irq_disable(adapter); |
| |
| del_timer_sync(&adapter->watchdog_timer); |
| del_timer_sync(&adapter->phy_info_timer); |
| |
| netdev->tx_queue_len = adapter->tx_queue_len; |
| netif_carrier_off(netdev); |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| |
| if (!pci_channel_offline(adapter->pdev)) |
| e1000e_reset(adapter); |
| e1000_clean_tx_ring(adapter); |
| e1000_clean_rx_ring(adapter); |
| |
| /* |
| * TODO: for power management, we could drop the link and |
| * pci_disable_device here. |
| */ |
| } |
| |
| void e1000e_reinit_locked(struct e1000_adapter *adapter) |
| { |
| might_sleep(); |
| while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| msleep(1); |
| e1000e_down(adapter); |
| e1000e_up(adapter); |
| clear_bit(__E1000_RESETTING, &adapter->state); |
| } |
| |
| /** |
| * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
| * @adapter: board private structure to initialize |
| * |
| * e1000_sw_init initializes the Adapter private data structure. |
| * Fields are initialized based on PCI device information and |
| * OS network device settings (MTU size). |
| **/ |
| static int __devinit e1000_sw_init(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| |
| adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; |
| adapter->rx_ps_bsize0 = 128; |
| adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; |
| adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; |
| |
| e1000e_set_interrupt_capability(adapter); |
| |
| if (e1000_alloc_queues(adapter)) |
| return -ENOMEM; |
| |
| spin_lock_init(&adapter->tx_queue_lock); |
| |
| /* Explicitly disable IRQ since the NIC can be in any state. */ |
| e1000_irq_disable(adapter); |
| |
| set_bit(__E1000_DOWN, &adapter->state); |
| return 0; |
| } |
| |
| /** |
| * e1000_intr_msi_test - Interrupt Handler |
| * @irq: interrupt number |
| * @data: pointer to a network interface device structure |
| **/ |
| static irqreturn_t e1000_intr_msi_test(int irq, void *data) |
| { |
| struct net_device *netdev = data; |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 icr = er32(ICR); |
| |
| e_dbg("%s: icr is %08X\n", netdev->name, icr); |
| if (icr & E1000_ICR_RXSEQ) { |
| adapter->flags &= ~FLAG_MSI_TEST_FAILED; |
| wmb(); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * e1000_test_msi_interrupt - Returns 0 for successful test |
| * @adapter: board private struct |
| * |
| * code flow taken from tg3.c |
| **/ |
| static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_hw *hw = &adapter->hw; |
| int err; |
| |
| /* poll_enable hasn't been called yet, so don't need disable */ |
| /* clear any pending events */ |
| er32(ICR); |
| |
| /* free the real vector and request a test handler */ |
| e1000_free_irq(adapter); |
| e1000e_reset_interrupt_capability(adapter); |
| |
| /* Assume that the test fails, if it succeeds then the test |
| * MSI irq handler will unset this flag */ |
| adapter->flags |= FLAG_MSI_TEST_FAILED; |
| |
| err = pci_enable_msi(adapter->pdev); |
| if (err) |
| goto msi_test_failed; |
| |
| err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0, |
| netdev->name, netdev); |
| if (err) { |
| pci_disable_msi(adapter->pdev); |
| goto msi_test_failed; |
| } |
| |
| wmb(); |
| |
| e1000_irq_enable(adapter); |
| |
| /* fire an unusual interrupt on the test handler */ |
| ew32(ICS, E1000_ICS_RXSEQ); |
| e1e_flush(); |
| msleep(50); |
| |
| e1000_irq_disable(adapter); |
| |
| rmb(); |
| |
| if (adapter->flags & FLAG_MSI_TEST_FAILED) { |
| adapter->int_mode = E1000E_INT_MODE_LEGACY; |
| err = -EIO; |
| e_info("MSI interrupt test failed!\n"); |
| } |
| |
| free_irq(adapter->pdev->irq, netdev); |
| pci_disable_msi(adapter->pdev); |
| |
| if (err == -EIO) |
| goto msi_test_failed; |
| |
| /* okay so the test worked, restore settings */ |
| e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name); |
| msi_test_failed: |
| e1000e_set_interrupt_capability(adapter); |
| e1000_request_irq(adapter); |
| return err; |
| } |
| |
| /** |
| * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored |
| * @adapter: board private struct |
| * |
| * code flow taken from tg3.c, called with e1000 interrupts disabled. |
| **/ |
| static int e1000_test_msi(struct e1000_adapter *adapter) |
| { |
| int err; |
| u16 pci_cmd; |
| |
| if (!(adapter->flags & FLAG_MSI_ENABLED)) |
| return 0; |
| |
| /* disable SERR in case the MSI write causes a master abort */ |
| pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); |
| pci_write_config_word(adapter->pdev, PCI_COMMAND, |
| pci_cmd & ~PCI_COMMAND_SERR); |
| |
| err = e1000_test_msi_interrupt(adapter); |
| |
| /* restore previous setting of command word */ |
| pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); |
| |
| /* success ! */ |
| if (!err) |
| return 0; |
| |
| /* EIO means MSI test failed */ |
| if (err != -EIO) |
| return err; |
| |
| /* back to INTx mode */ |
| e_warn("MSI interrupt test failed, using legacy interrupt.\n"); |
| |
| e1000_free_irq(adapter); |
| |
| err = e1000_request_irq(adapter); |
| |
| return err; |
| } |
| |
| /** |
| * e1000_open - Called when a network interface is made active |
| * @netdev: network interface device structure |
| * |
| * Returns 0 on success, negative value on failure |
| * |
| * The open entry point is called when a network interface is made |
| * active by the system (IFF_UP). At this point all resources needed |
| * for transmit and receive operations are allocated, the interrupt |
| * handler is registered with the OS, the watchdog timer is started, |
| * and the stack is notified that the interface is ready. |
| **/ |
| static int e1000_open(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int err; |
| |
| /* disallow open during test */ |
| if (test_bit(__E1000_TESTING, &adapter->state)) |
| return -EBUSY; |
| |
| /* allocate transmit descriptors */ |
| err = e1000e_setup_tx_resources(adapter); |
| if (err) |
| goto err_setup_tx; |
| |
| /* allocate receive descriptors */ |
| err = e1000e_setup_rx_resources(adapter); |
| if (err) |
| goto err_setup_rx; |
| |
| e1000e_power_up_phy(adapter); |
| |
| adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; |
| if ((adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) |
| e1000_update_mng_vlan(adapter); |
| |
| /* |
| * If AMT is enabled, let the firmware know that the network |
| * interface is now open |
| */ |
| if (adapter->flags & FLAG_HAS_AMT) |
| e1000_get_hw_control(adapter); |
| |
| /* |
| * before we allocate an interrupt, we must be ready to handle it. |
| * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt |
| * as soon as we call pci_request_irq, so we have to setup our |
| * clean_rx handler before we do so. |
| */ |
| e1000_configure(adapter); |
| |
| err = e1000_request_irq(adapter); |
| if (err) |
| goto err_req_irq; |
| |
| /* |
| * Work around PCIe errata with MSI interrupts causing some chipsets to |
| * ignore e1000e MSI messages, which means we need to test our MSI |
| * interrupt now |
| */ |
| if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { |
| err = e1000_test_msi(adapter); |
| if (err) { |
| e_err("Interrupt allocation failed\n"); |
| goto err_req_irq; |
| } |
| } |
| |
| /* From here on the code is the same as e1000e_up() */ |
| clear_bit(__E1000_DOWN, &adapter->state); |
| |
| napi_enable(&adapter->napi); |
| |
| e1000_irq_enable(adapter); |
| |
| netif_tx_start_all_queues(netdev); |
| |
| /* fire a link status change interrupt to start the watchdog */ |
| ew32(ICS, E1000_ICS_LSC); |
| |
| return 0; |
| |
| err_req_irq: |
| e1000_release_hw_control(adapter); |
| e1000_power_down_phy(adapter); |
| e1000e_free_rx_resources(adapter); |
| err_setup_rx: |
| e1000e_free_tx_resources(adapter); |
| err_setup_tx: |
| e1000e_reset(adapter); |
| |
| return err; |
| } |
| |
| /** |
| * e1000_close - Disables a network interface |
| * @netdev: network interface device structure |
| * |
| * Returns 0, this is not allowed to fail |
| * |
| * The close entry point is called when an interface is de-activated |
| * by the OS. The hardware is still under the drivers control, but |
| * needs to be disabled. A global MAC reset is issued to stop the |
| * hardware, and all transmit and receive resources are freed. |
| **/ |
| static int e1000_close(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
| e1000e_down(adapter); |
| e1000_power_down_phy(adapter); |
| e1000_free_irq(adapter); |
| |
| e1000e_free_tx_resources(adapter); |
| e1000e_free_rx_resources(adapter); |
| |
| /* |
| * kill manageability vlan ID if supported, but not if a vlan with |
| * the same ID is registered on the host OS (let 8021q kill it) |
| */ |
| if ((adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && |
| !(adapter->vlgrp && |
| vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) |
| e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); |
| |
| /* |
| * If AMT is enabled, let the firmware know that the network |
| * interface is now closed |
| */ |
| if (adapter->flags & FLAG_HAS_AMT) |
| e1000_release_hw_control(adapter); |
| |
| return 0; |
| } |
| /** |
| * e1000_set_mac - Change the Ethernet Address of the NIC |
| * @netdev: network interface device structure |
| * @p: pointer to an address structure |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int e1000_set_mac(struct net_device *netdev, void *p) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); |
| memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); |
| |
| e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); |
| |
| if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { |
| /* activate the work around */ |
| e1000e_set_laa_state_82571(&adapter->hw, 1); |
| |
| /* |
| * Hold a copy of the LAA in RAR[14] This is done so that |
| * between the time RAR[0] gets clobbered and the time it |
| * gets fixed (in e1000_watchdog), the actual LAA is in one |
| * of the RARs and no incoming packets directed to this port |
| * are dropped. Eventually the LAA will be in RAR[0] and |
| * RAR[14] |
| */ |
| e1000e_rar_set(&adapter->hw, |
| adapter->hw.mac.addr, |
| adapter->hw.mac.rar_entry_count - 1); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000e_update_phy_task - work thread to update phy |
| * @work: pointer to our work struct |
| * |
| * this worker thread exists because we must acquire a |
| * semaphore to read the phy, which we could msleep while |
| * waiting for it, and we can't msleep in a timer. |
| **/ |
| static void e1000e_update_phy_task(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, |
| struct e1000_adapter, update_phy_task); |
| e1000_get_phy_info(&adapter->hw); |
| } |
| |
| /* |
| * Need to wait a few seconds after link up to get diagnostic information from |
| * the phy |
| */ |
| static void e1000_update_phy_info(unsigned long data) |
| { |
| struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
| schedule_work(&adapter->update_phy_task); |
| } |
| |
| /** |
| * e1000e_update_stats - Update the board statistics counters |
| * @adapter: board private structure |
| **/ |
| void e1000e_update_stats(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct pci_dev *pdev = adapter->pdev; |
| |
| /* |
| * Prevent stats update while adapter is being reset, or if the pci |
| * connection is down. |
| */ |
| if (adapter->link_speed == 0) |
| return; |
| if (pci_channel_offline(pdev)) |
| return; |
| |
| adapter->stats.crcerrs += er32(CRCERRS); |
| adapter->stats.gprc += er32(GPRC); |
| adapter->stats.gorc += er32(GORCL); |
| er32(GORCH); /* Clear gorc */ |
| adapter->stats.bprc += er32(BPRC); |
| adapter->stats.mprc += er32(MPRC); |
| adapter->stats.roc += er32(ROC); |
| |
| adapter->stats.mpc += er32(MPC); |
| adapter->stats.scc += er32(SCC); |
| adapter->stats.ecol += er32(ECOL); |
| adapter->stats.mcc += er32(MCC); |
| adapter->stats.latecol += er32(LATECOL); |
| adapter->stats.dc += er32(DC); |
| adapter->stats.xonrxc += er32(XONRXC); |
| adapter->stats.xontxc += er32(XONTXC); |
| adapter->stats.xoffrxc += er32(XOFFRXC); |
| adapter->stats.xofftxc += er32(XOFFTXC); |
| adapter->stats.gptc += er32(GPTC); |
| adapter->stats.gotc += er32(GOTCL); |
| er32(GOTCH); /* Clear gotc */ |
| adapter->stats.rnbc += er32(RNBC); |
| adapter->stats.ruc += er32(RUC); |
| |
| adapter->stats.mptc += er32(MPTC); |
| adapter->stats.bptc += er32(BPTC); |
| |
| /* used for adaptive IFS */ |
| |
| hw->mac.tx_packet_delta = er32(TPT); |
| adapter->stats.tpt += hw->mac.tx_packet_delta; |
| hw->mac.collision_delta = er32(COLC); |
| adapter->stats.colc += hw->mac.collision_delta; |
| |
| adapter->stats.algnerrc += er32(ALGNERRC); |
| adapter->stats.rxerrc += er32(RXERRC); |
| if (hw->mac.type != e1000_82574) |
| adapter->stats.tncrs += er32(TNCRS); |
| adapter->stats.cexterr += er32(CEXTERR); |
| adapter->stats.tsctc += er32(TSCTC); |
| adapter->stats.tsctfc += er32(TSCTFC); |
| |
| /* Fill out the OS statistics structure */ |
| adapter->net_stats.multicast = adapter->stats.mprc; |
| adapter->net_stats.collisions = adapter->stats.colc; |
| |
| /* Rx Errors */ |
| |
| /* |
| * RLEC on some newer hardware can be incorrect so build |
| * our own version based on RUC and ROC |
| */ |
| adapter->net_stats.rx_errors = adapter->stats.rxerrc + |
| adapter->stats.crcerrs + adapter->stats.algnerrc + |
| adapter->stats.ruc + adapter->stats.roc + |
| adapter->stats.cexterr; |
| adapter->net_stats.rx_length_errors = adapter->stats.ruc + |
| adapter->stats.roc; |
| adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; |
| adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; |
| adapter->net_stats.rx_missed_errors = adapter->stats.mpc; |
| |
| /* Tx Errors */ |
| adapter->net_stats.tx_errors = adapter->stats.ecol + |
| adapter->stats.latecol; |
| adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; |
| adapter->net_stats.tx_window_errors = adapter->stats.latecol; |
| adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; |
| |
| /* Tx Dropped needs to be maintained elsewhere */ |
| |
| /* Management Stats */ |
| adapter->stats.mgptc += er32(MGTPTC); |
| adapter->stats.mgprc += er32(MGTPRC); |
| adapter->stats.mgpdc += er32(MGTPDC); |
| } |
| |
| /** |
| * e1000_phy_read_status - Update the PHY register status snapshot |
| * @adapter: board private structure |
| **/ |
| static void e1000_phy_read_status(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_phy_regs *phy = &adapter->phy_regs; |
| int ret_val; |
| |
| if ((er32(STATUS) & E1000_STATUS_LU) && |
| (adapter->hw.phy.media_type == e1000_media_type_copper)) { |
| ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); |
| ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); |
| ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); |
| ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); |
| ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); |
| ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); |
| ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); |
| ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); |
| if (ret_val) |
| e_warn("Error reading PHY register\n"); |
| } else { |
| /* |
| * Do not read PHY registers if link is not up |
| * Set values to typical power-on defaults |
| */ |
| phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); |
| phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | |
| BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | |
| BMSR_ERCAP); |
| phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | |
| ADVERTISE_ALL | ADVERTISE_CSMA); |
| phy->lpa = 0; |
| phy->expansion = EXPANSION_ENABLENPAGE; |
| phy->ctrl1000 = ADVERTISE_1000FULL; |
| phy->stat1000 = 0; |
| phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); |
| } |
| } |
| |
| static void e1000_print_link_info(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl = er32(CTRL); |
| |
| e_info("Link is Up %d Mbps %s, Flow Control: %s\n", |
| adapter->link_speed, |
| (adapter->link_duplex == FULL_DUPLEX) ? |
| "Full Duplex" : "Half Duplex", |
| ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? |
| "RX/TX" : |
| ((ctrl & E1000_CTRL_RFCE) ? "RX" : |
| ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); |
| } |
| |
| static bool e1000_has_link(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| bool link_active = 0; |
| s32 ret_val = 0; |
| |
| /* |
| * get_link_status is set on LSC (link status) interrupt or |
| * Rx sequence error interrupt. get_link_status will stay |
| * false until the check_for_link establishes link |
| * for copper adapters ONLY |
| */ |
| switch (hw->phy.media_type) { |
| case e1000_media_type_copper: |
| if (hw->mac.get_link_status) { |
| ret_val = hw->mac.ops.check_for_link(hw); |
| link_active = !hw->mac.get_link_status; |
| } else { |
| link_active = 1; |
| } |
| break; |
| case e1000_media_type_fiber: |
| ret_val = hw->mac.ops.check_for_link(hw); |
| link_active = !!(er32(STATUS) & E1000_STATUS_LU); |
| break; |
| case e1000_media_type_internal_serdes: |
| ret_val = hw->mac.ops.check_for_link(hw); |
| link_active = adapter->hw.mac.serdes_has_link; |
| break; |
| default: |
| case e1000_media_type_unknown: |
| break; |
| } |
| |
| if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && |
| (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { |
| /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ |
| e_info("Gigabit has been disabled, downgrading speed\n"); |
| } |
| |
| return link_active; |
| } |
| |
| static void e1000e_enable_receives(struct e1000_adapter *adapter) |
| { |
| /* make sure the receive unit is started */ |
| if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && |
| (adapter->flags & FLAG_RX_RESTART_NOW)) { |
| struct e1000_hw *hw = &adapter->hw; |
| u32 rctl = er32(RCTL); |
| ew32(RCTL, rctl | E1000_RCTL_EN); |
| adapter->flags &= ~FLAG_RX_RESTART_NOW; |
| } |
| } |
| |
| /** |
| * e1000_watchdog - Timer Call-back |
| * @data: pointer to adapter cast into an unsigned long |
| **/ |
| static void e1000_watchdog(unsigned long data) |
| { |
| struct e1000_adapter *adapter = (struct e1000_adapter *) data; |
| |
| /* Do the rest outside of interrupt context */ |
| schedule_work(&adapter->watchdog_task); |
| |
| /* TODO: make this use queue_delayed_work() */ |
| } |
| |
| static void e1000_watchdog_task(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter = container_of(work, |
| struct e1000_adapter, watchdog_task); |
| struct net_device *netdev = adapter->netdev; |
| struct e1000_mac_info *mac = &adapter->hw.mac; |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| struct e1000_hw *hw = &adapter->hw; |
| u32 link, tctl; |
| int tx_pending = 0; |
| |
| link = e1000_has_link(adapter); |
| if ((netif_carrier_ok(netdev)) && link) { |
| e1000e_enable_receives(adapter); |
| goto link_up; |
| } |
| |
| if ((e1000e_enable_tx_pkt_filtering(hw)) && |
| (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) |
| e1000_update_mng_vlan(adapter); |
| |
| if (link) { |
| if (!netif_carrier_ok(netdev)) { |
| bool txb2b = 1; |
| /* update snapshot of PHY registers on LSC */ |
| e1000_phy_read_status(adapter); |
| mac->ops.get_link_up_info(&adapter->hw, |
| &adapter->link_speed, |
| &adapter->link_duplex); |
| e1000_print_link_info(adapter); |
| /* |
| * On supported PHYs, check for duplex mismatch only |
| * if link has autonegotiated at 10/100 half |
| */ |
| if ((hw->phy.type == e1000_phy_igp_3 || |
| hw->phy.type == e1000_phy_bm) && |
| (hw->mac.autoneg == true) && |
| (adapter->link_speed == SPEED_10 || |
| adapter->link_speed == SPEED_100) && |
| (adapter->link_duplex == HALF_DUPLEX)) { |
| u16 autoneg_exp; |
| |
| e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); |
| |
| if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) |
| e_info("Autonegotiated half duplex but" |
| " link partner cannot autoneg. " |
| " Try forcing full duplex if " |
| "link gets many collisions.\n"); |
| } |
| |
| /* |
| * tweak tx_queue_len according to speed/duplex |
| * and adjust the timeout factor |
| */ |
| netdev->tx_queue_len = adapter->tx_queue_len; |
| adapter->tx_timeout_factor = 1; |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| txb2b = 0; |
| netdev->tx_queue_len = 10; |
| adapter->tx_timeout_factor = 16; |
| break; |
| case SPEED_100: |
| txb2b = 0; |
| netdev->tx_queue_len = 100; |
| /* maybe add some timeout factor ? */ |
| break; |
| } |
| |
| /* |
| * workaround: re-program speed mode bit after |
| * link-up event |
| */ |
| if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && |
| !txb2b) { |
| u32 tarc0; |
| tarc0 = er32(TARC(0)); |
| tarc0 &= ~SPEED_MODE_BIT; |
| ew32(TARC(0), tarc0); |
| } |
| |
| /* |
| * disable TSO for pcie and 10/100 speeds, to avoid |
| * some hardware issues |
| */ |
| if (!(adapter->flags & FLAG_TSO_FORCE)) { |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| case SPEED_100: |
| e_info("10/100 speed: disabling TSO\n"); |
| netdev->features &= ~NETIF_F_TSO; |
| netdev->features &= ~NETIF_F_TSO6; |
| break; |
| case SPEED_1000: |
| netdev->features |= NETIF_F_TSO; |
| netdev->features |= NETIF_F_TSO6; |
| break; |
| default: |
| /* oops */ |
| break; |
| } |
| } |
| |
| /* |
| * enable transmits in the hardware, need to do this |
| * after setting TARC(0) |
| */ |
| tctl = er32(TCTL); |
| tctl |= E1000_TCTL_EN; |
| ew32(TCTL, tctl); |
| |
| netif_carrier_on(netdev); |
| netif_tx_wake_all_queues(netdev); |
| |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->phy_info_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| } |
| } else { |
| if (netif_carrier_ok(netdev)) { |
| adapter->link_speed = 0; |
| adapter->link_duplex = 0; |
| e_info("Link is Down\n"); |
| netif_carrier_off(netdev); |
| netif_tx_stop_all_queues(netdev); |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->phy_info_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| |
| if (adapter->flags & FLAG_RX_NEEDS_RESTART) |
| schedule_work(&adapter->reset_task); |
| } |
| } |
| |
| link_up: |
| e1000e_update_stats(adapter); |
| |
| mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; |
| adapter->tpt_old = adapter->stats.tpt; |
| mac->collision_delta = adapter->stats.colc - adapter->colc_old; |
| adapter->colc_old = adapter->stats.colc; |
| |
| adapter->gorc = adapter->stats.gorc - adapter->gorc_old; |
| adapter->gorc_old = adapter->stats.gorc; |
| adapter->gotc = adapter->stats.gotc - adapter->gotc_old; |
| adapter->gotc_old = adapter->stats.gotc; |
| |
| e1000e_update_adaptive(&adapter->hw); |
| |
| if (!netif_carrier_ok(netdev)) { |
| tx_pending = (e1000_desc_unused(tx_ring) + 1 < |
| tx_ring->count); |
| if (tx_pending) { |
| /* |
| * We've lost link, so the controller stops DMA, |
| * but we've got queued Tx work that's never going |
| * to get done, so reset controller to flush Tx. |
| * (Do the reset outside of interrupt context). |
| */ |
| adapter->tx_timeout_count++; |
| schedule_work(&adapter->reset_task); |
| } |
| } |
| |
| /* Cause software interrupt to ensure Rx ring is cleaned */ |
| if (adapter->msix_entries) |
| ew32(ICS, adapter->rx_ring->ims_val); |
| else |
| ew32(ICS, E1000_ICS_RXDMT0); |
| |
| /* Force detection of hung controller every watchdog period */ |
| adapter->detect_tx_hung = 1; |
| |
| /* |
| * With 82571 controllers, LAA may be overwritten due to controller |
| * reset from the other port. Set the appropriate LAA in RAR[0] |
| */ |
| if (e1000e_get_laa_state_82571(hw)) |
| e1000e_rar_set(hw, adapter->hw.mac.addr, 0); |
| |
| /* Reset the timer */ |
| if (!test_bit(__E1000_DOWN, &adapter->state)) |
| mod_timer(&adapter->watchdog_timer, |
| round_jiffies(jiffies + 2 * HZ)); |
| } |
| |
| #define E1000_TX_FLAGS_CSUM 0x00000001 |
| #define E1000_TX_FLAGS_VLAN 0x00000002 |
| #define E1000_TX_FLAGS_TSO 0x00000004 |
| #define E1000_TX_FLAGS_IPV4 0x00000008 |
| #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
| #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
| |
| static int e1000_tso(struct e1000_adapter *adapter, |
| struct sk_buff *skb) |
| { |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| struct e1000_context_desc *context_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i; |
| u32 cmd_length = 0; |
| u16 ipcse = 0, tucse, mss; |
| u8 ipcss, ipcso, tucss, tucso, hdr_len; |
| int err; |
| |
| if (skb_is_gso(skb)) { |
| if (skb_header_cloned(skb)) { |
| err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); |
| if (err) |
| return err; |
| } |
| |
| hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| mss = skb_shinfo(skb)->gso_size; |
| if (skb->protocol == htons(ETH_P_IP)) { |
| struct iphdr *iph = ip_hdr(skb); |
| iph->tot_len = 0; |
| iph->check = 0; |
| tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, |
| iph->daddr, 0, |
| IPPROTO_TCP, |
| 0); |
| cmd_length = E1000_TXD_CMD_IP; |
| ipcse = skb_transport_offset(skb) - 1; |
| } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { |
| ipv6_hdr(skb)->payload_len = 0; |
| tcp_hdr(skb)->check = |
| ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, |
| &ipv6_hdr(skb)->daddr, |
| 0, IPPROTO_TCP, 0); |
| ipcse = 0; |
| } |
| ipcss = skb_network_offset(skb); |
| ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; |
| tucss = skb_transport_offset(skb); |
| tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; |
| tucse = 0; |
| |
| cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
| E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
| |
| i = tx_ring->next_to_use; |
| context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
| buffer_info = &tx_ring->buffer_info[i]; |
| |
| context_desc->lower_setup.ip_fields.ipcss = ipcss; |
| context_desc->lower_setup.ip_fields.ipcso = ipcso; |
| context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); |
| context_desc->upper_setup.tcp_fields.tucss = tucss; |
| context_desc->upper_setup.tcp_fields.tucso = tucso; |
| context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); |
| context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); |
| context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; |
| context_desc->cmd_and_length = cpu_to_le32(cmd_length); |
| |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| tx_ring->next_to_use = i; |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) |
| { |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| struct e1000_context_desc *context_desc; |
| struct e1000_buffer *buffer_info; |
| unsigned int i; |
| u8 css; |
| u32 cmd_len = E1000_TXD_CMD_DEXT; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| switch (skb->protocol) { |
| case __constant_htons(ETH_P_IP): |
| if (ip_hdr(skb)->protocol == IPPROTO_TCP) |
| cmd_len |= E1000_TXD_CMD_TCP; |
| break; |
| case __constant_htons(ETH_P_IPV6): |
| /* XXX not handling all IPV6 headers */ |
| if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) |
| cmd_len |= E1000_TXD_CMD_TCP; |
| break; |
| default: |
| if (unlikely(net_ratelimit())) |
| e_warn("checksum_partial proto=%x!\n", skb->protocol); |
| break; |
| } |
| |
| css = skb_transport_offset(skb); |
| |
| i = tx_ring->next_to_use; |
| buffer_info = &tx_ring->buffer_info[i]; |
| context_desc = E1000_CONTEXT_DESC(*tx_ring, i); |
| |
| context_desc->lower_setup.ip_config = 0; |
| context_desc->upper_setup.tcp_fields.tucss = css; |
| context_desc->upper_setup.tcp_fields.tucso = |
| css + skb->csum_offset; |
| context_desc->upper_setup.tcp_fields.tucse = 0; |
| context_desc->tcp_seg_setup.data = 0; |
| context_desc->cmd_and_length = cpu_to_le32(cmd_len); |
| |
| buffer_info->time_stamp = jiffies; |
| buffer_info->next_to_watch = i; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| tx_ring->next_to_use = i; |
| |
| return 1; |
| } |
| |
| #define E1000_MAX_PER_TXD 8192 |
| #define E1000_MAX_TXD_PWR 12 |
| |
| static int e1000_tx_map(struct e1000_adapter *adapter, |
| struct sk_buff *skb, unsigned int first, |
| unsigned int max_per_txd, unsigned int nr_frags, |
| unsigned int mss) |
| { |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| struct e1000_buffer *buffer_info; |
| unsigned int len = skb->len - skb->data_len; |
| unsigned int offset = 0, size, count = 0, i; |
| unsigned int f; |
| |
| i = tx_ring->next_to_use; |
| |
| while (len) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| size = min(len, max_per_txd); |
| |
| /* Workaround for premature desc write-backs |
| * in TSO mode. Append 4-byte sentinel desc */ |
| if (mss && !nr_frags && size == len && size > 8) |
| size -= 4; |
| |
| buffer_info->length = size; |
| /* set time_stamp *before* dma to help avoid a possible race */ |
| buffer_info->time_stamp = jiffies; |
| buffer_info->dma = |
| pci_map_single(adapter->pdev, |
| skb->data + offset, |
| size, |
| PCI_DMA_TODEVICE); |
| if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) { |
| dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); |
| adapter->tx_dma_failed++; |
| return -1; |
| } |
| buffer_info->next_to_watch = i; |
| |
| len -= size; |
| offset += size; |
| count++; |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| } |
| |
| for (f = 0; f < nr_frags; f++) { |
| struct skb_frag_struct *frag; |
| |
| frag = &skb_shinfo(skb)->frags[f]; |
| len = frag->size; |
| offset = frag->page_offset; |
| |
| while (len) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| size = min(len, max_per_txd); |
| /* Workaround for premature desc write-backs |
| * in TSO mode. Append 4-byte sentinel desc */ |
| if (mss && f == (nr_frags-1) && size == len && size > 8) |
| size -= 4; |
| |
| buffer_info->length = size; |
| buffer_info->time_stamp = jiffies; |
| buffer_info->dma = |
| pci_map_page(adapter->pdev, |
| frag->page, |
| offset, |
| size, |
| PCI_DMA_TODEVICE); |
| if (pci_dma_mapping_error(adapter->pdev, |
| buffer_info->dma)) { |
| dev_err(&adapter->pdev->dev, |
| "TX DMA page map failed\n"); |
| adapter->tx_dma_failed++; |
| return -1; |
| } |
| |
| buffer_info->next_to_watch = i; |
| |
| len -= size; |
| offset += size; |
| count++; |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| } |
| } |
| |
| if (i == 0) |
| i = tx_ring->count - 1; |
| else |
| i--; |
| |
| tx_ring->buffer_info[i].skb = skb; |
| tx_ring->buffer_info[first].next_to_watch = i; |
| |
| return count; |
| } |
| |
| static void e1000_tx_queue(struct e1000_adapter *adapter, |
| int tx_flags, int count) |
| { |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| struct e1000_tx_desc *tx_desc = NULL; |
| struct e1000_buffer *buffer_info; |
| u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; |
| unsigned int i; |
| |
| if (tx_flags & E1000_TX_FLAGS_TSO) { |
| txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
| E1000_TXD_CMD_TSE; |
| txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
| |
| if (tx_flags & E1000_TX_FLAGS_IPV4) |
| txd_upper |= E1000_TXD_POPTS_IXSM << 8; |
| } |
| |
| if (tx_flags & E1000_TX_FLAGS_CSUM) { |
| txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; |
| txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
| } |
| |
| if (tx_flags & E1000_TX_FLAGS_VLAN) { |
| txd_lower |= E1000_TXD_CMD_VLE; |
| txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); |
| } |
| |
| i = tx_ring->next_to_use; |
| |
| while (count--) { |
| buffer_info = &tx_ring->buffer_info[i]; |
| tx_desc = E1000_TX_DESC(*tx_ring, i); |
| tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); |
| tx_desc->lower.data = |
| cpu_to_le32(txd_lower | buffer_info->length); |
| tx_desc->upper.data = cpu_to_le32(txd_upper); |
| |
| i++; |
| if (i == tx_ring->count) |
| i = 0; |
| } |
| |
| tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); |
| |
| /* |
| * Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| |
| tx_ring->next_to_use = i; |
| writel(i, adapter->hw.hw_addr + tx_ring->tail); |
| /* |
| * we need this if more than one processor can write to our tail |
| * at a time, it synchronizes IO on IA64/Altix systems |
| */ |
| mmiowb(); |
| } |
| |
| #define MINIMUM_DHCP_PACKET_SIZE 282 |
| static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, |
| struct sk_buff *skb) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| u16 length, offset; |
| |
| if (vlan_tx_tag_present(skb)) { |
| if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) |
| && (adapter->hw.mng_cookie.status & |
| E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) |
| return 0; |
| } |
| |
| if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) |
| return 0; |
| |
| if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) |
| return 0; |
| |
| { |
| const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); |
| struct udphdr *udp; |
| |
| if (ip->protocol != IPPROTO_UDP) |
| return 0; |
| |
| udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); |
| if (ntohs(udp->dest) != 67) |
| return 0; |
| |
| offset = (u8 *)udp + 8 - skb->data; |
| length = skb->len - offset; |
| return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); |
| } |
| |
| return 0; |
| } |
| |
| static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| netif_stop_queue(netdev); |
| /* |
| * Herbert's original patch had: |
| * smp_mb__after_netif_stop_queue(); |
| * but since that doesn't exist yet, just open code it. |
| */ |
| smp_mb(); |
| |
| /* |
| * We need to check again in a case another CPU has just |
| * made room available. |
| */ |
| if (e1000_desc_unused(adapter->tx_ring) < size) |
| return -EBUSY; |
| |
| /* A reprieve! */ |
| netif_start_queue(netdev); |
| ++adapter->restart_queue; |
| return 0; |
| } |
| |
| static int e1000_maybe_stop_tx(struct net_device *netdev, int size) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| if (e1000_desc_unused(adapter->tx_ring) >= size) |
| return 0; |
| return __e1000_maybe_stop_tx(netdev, size); |
| } |
| |
| #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
| static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_ring *tx_ring = adapter->tx_ring; |
| unsigned int first; |
| unsigned int max_per_txd = E1000_MAX_PER_TXD; |
| unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; |
| unsigned int tx_flags = 0; |
| unsigned int len = skb->len - skb->data_len; |
| unsigned long irq_flags; |
| unsigned int nr_frags; |
| unsigned int mss; |
| int count = 0; |
| int tso; |
| unsigned int f; |
| |
| if (test_bit(__E1000_DOWN, &adapter->state)) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| if (skb->len <= 0) { |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| mss = skb_shinfo(skb)->gso_size; |
| /* |
| * The controller does a simple calculation to |
| * make sure there is enough room in the FIFO before |
| * initiating the DMA for each buffer. The calc is: |
| * 4 = ceil(buffer len/mss). To make sure we don't |
| * overrun the FIFO, adjust the max buffer len if mss |
| * drops. |
| */ |
| if (mss) { |
| u8 hdr_len; |
| max_per_txd = min(mss << 2, max_per_txd); |
| max_txd_pwr = fls(max_per_txd) - 1; |
| |
| /* |
| * TSO Workaround for 82571/2/3 Controllers -- if skb->data |
| * points to just header, pull a few bytes of payload from |
| * frags into skb->data |
| */ |
| hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| /* |
| * we do this workaround for ES2LAN, but it is un-necessary, |
| * avoiding it could save a lot of cycles |
| */ |
| if (skb->data_len && (hdr_len == len)) { |
| unsigned int pull_size; |
| |
| pull_size = min((unsigned int)4, skb->data_len); |
| if (!__pskb_pull_tail(skb, pull_size)) { |
| e_err("__pskb_pull_tail failed.\n"); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| len = skb->len - skb->data_len; |
| } |
| } |
| |
| /* reserve a descriptor for the offload context */ |
| if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) |
| count++; |
| count++; |
| |
| count += TXD_USE_COUNT(len, max_txd_pwr); |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| for (f = 0; f < nr_frags; f++) |
| count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, |
| max_txd_pwr); |
| |
| if (adapter->hw.mac.tx_pkt_filtering) |
| e1000_transfer_dhcp_info(adapter, skb); |
| |
| if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags)) |
| /* Collision - tell upper layer to requeue */ |
| return NETDEV_TX_LOCKED; |
| |
| /* |
| * need: count + 2 desc gap to keep tail from touching |
| * head, otherwise try next time |
| */ |
| if (e1000_maybe_stop_tx(netdev, count + 2)) { |
| spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (adapter->vlgrp && vlan_tx_tag_present(skb)) { |
| tx_flags |= E1000_TX_FLAGS_VLAN; |
| tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); |
| } |
| |
| first = tx_ring->next_to_use; |
| |
| tso = e1000_tso(adapter, skb); |
| if (tso < 0) { |
| dev_kfree_skb_any(skb); |
| spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); |
| return NETDEV_TX_OK; |
| } |
| |
| if (tso) |
| tx_flags |= E1000_TX_FLAGS_TSO; |
| else if (e1000_tx_csum(adapter, skb)) |
| tx_flags |= E1000_TX_FLAGS_CSUM; |
| |
| /* |
| * Old method was to assume IPv4 packet by default if TSO was enabled. |
| * 82571 hardware supports TSO capabilities for IPv6 as well... |
| * no longer assume, we must. |
| */ |
| if (skb->protocol == htons(ETH_P_IP)) |
| tx_flags |= E1000_TX_FLAGS_IPV4; |
| |
| count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); |
| if (count < 0) { |
| /* handle pci_map_single() error in e1000_tx_map */ |
| dev_kfree_skb_any(skb); |
| spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); |
| return NETDEV_TX_OK; |
| } |
| |
| e1000_tx_queue(adapter, tx_flags, count); |
| |
| netdev->trans_start = jiffies; |
| |
| /* Make sure there is space in the ring for the next send. */ |
| e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); |
| |
| spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * e1000_tx_timeout - Respond to a Tx Hang |
| * @netdev: network interface device structure |
| **/ |
| static void e1000_tx_timeout(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| /* Do the reset outside of interrupt context */ |
| adapter->tx_timeout_count++; |
| schedule_work(&adapter->reset_task); |
| } |
| |
| static void e1000_reset_task(struct work_struct *work) |
| { |
| struct e1000_adapter *adapter; |
| adapter = container_of(work, struct e1000_adapter, reset_task); |
| |
| e1000e_reinit_locked(adapter); |
| } |
| |
| /** |
| * e1000_get_stats - Get System Network Statistics |
| * @netdev: network interface device structure |
| * |
| * Returns the address of the device statistics structure. |
| * The statistics are actually updated from the timer callback. |
| **/ |
| static struct net_device_stats *e1000_get_stats(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| /* only return the current stats */ |
| return &adapter->net_stats; |
| } |
| |
| /** |
| * e1000_change_mtu - Change the Maximum Transfer Unit |
| * @netdev: network interface device structure |
| * @new_mtu: new value for maximum frame size |
| * |
| * Returns 0 on success, negative on failure |
| **/ |
| static int e1000_change_mtu(struct net_device *netdev, int new_mtu) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; |
| |
| if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || |
| (max_frame > MAX_JUMBO_FRAME_SIZE)) { |
| e_err("Invalid MTU setting\n"); |
| return -EINVAL; |
| } |
| |
| /* Jumbo frame size limits */ |
| if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { |
| if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { |
| e_err("Jumbo Frames not supported.\n"); |
| return -EINVAL; |
| } |
| if (adapter->hw.phy.type == e1000_phy_ife) { |
| e_err("Jumbo Frames not supported.\n"); |
| return -EINVAL; |
| } |
| } |
| |
| #define MAX_STD_JUMBO_FRAME_SIZE 9234 |
| if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { |
| e_err("MTU > 9216 not supported.\n"); |
| return -EINVAL; |
| } |
| |
| while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) |
| msleep(1); |
| /* e1000e_down has a dependency on max_frame_size */ |
| adapter->max_frame_size = max_frame; |
| if (netif_running(netdev)) |
| e1000e_down(adapter); |
| |
| /* |
| * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN |
| * means we reserve 2 more, this pushes us to allocate from the next |
| * larger slab size. |
| * i.e. RXBUFFER_2048 --> size-4096 slab |
| * However with the new *_jumbo_rx* routines, jumbo receives will use |
| * fragmented skbs |
| */ |
| |
| if (max_frame <= 256) |
| adapter->rx_buffer_len = 256; |
| else if (max_frame <= 512) |
| adapter->rx_buffer_len = 512; |
| else if (max_frame <= 1024) |
| adapter->rx_buffer_len = 1024; |
| else if (max_frame <= 2048) |
| adapter->rx_buffer_len = 2048; |
| else |
| adapter->rx_buffer_len = 4096; |
| |
| /* adjust allocation if LPE protects us, and we aren't using SBP */ |
| if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || |
| (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) |
| adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN |
| + ETH_FCS_LEN; |
| |
| e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); |
| netdev->mtu = new_mtu; |
| |
| if (netif_running(netdev)) |
| e1000e_up(adapter); |
| else |
| e1000e_reset(adapter); |
| |
| clear_bit(__E1000_RESETTING, &adapter->state); |
| |
| return 0; |
| } |
| |
| static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
| int cmd) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct mii_ioctl_data *data = if_mii(ifr); |
| |
| if (adapter->hw.phy.media_type != e1000_media_type_copper) |
| return -EOPNOTSUPP; |
| |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| data->phy_id = adapter->hw.phy.addr; |
| break; |
| case SIOCGMIIREG: |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| switch (data->reg_num & 0x1F) { |
| case MII_BMCR: |
| data->val_out = adapter->phy_regs.bmcr; |
| break; |
| case MII_BMSR: |
| data->val_out = adapter->phy_regs.bmsr; |
| break; |
| case MII_PHYSID1: |
| data->val_out = (adapter->hw.phy.id >> 16); |
| break; |
| case MII_PHYSID2: |
| data->val_out = (adapter->hw.phy.id & 0xFFFF); |
| break; |
| case MII_ADVERTISE: |
| data->val_out = adapter->phy_regs.advertise; |
| break; |
| case MII_LPA: |
| data->val_out = adapter->phy_regs.lpa; |
| break; |
| case MII_EXPANSION: |
| data->val_out = adapter->phy_regs.expansion; |
| break; |
| case MII_CTRL1000: |
| data->val_out = adapter->phy_regs.ctrl1000; |
| break; |
| case MII_STAT1000: |
| data->val_out = adapter->phy_regs.stat1000; |
| break; |
| case MII_ESTATUS: |
| data->val_out = adapter->phy_regs.estatus; |
| break; |
| default: |
| return -EIO; |
| } |
| break; |
| case SIOCSMIIREG: |
| default: |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| } |
| |
| static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) |
| { |
| switch (cmd) { |
| case SIOCGMIIPHY: |
| case SIOCGMIIREG: |
| case SIOCSMIIREG: |
| return e1000_mii_ioctl(netdev, ifr, cmd); |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 ctrl, ctrl_ext, rctl, status; |
| u32 wufc = adapter->wol; |
| int retval = 0; |
| |
| netif_device_detach(netdev); |
| |
| if (netif_running(netdev)) { |
| WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); |
| e1000e_down(adapter); |
| e1000_free_irq(adapter); |
| } |
| e1000e_reset_interrupt_capability(adapter); |
| |
| retval = pci_save_state(pdev); |
| if (retval) |
| return retval; |
| |
| status = er32(STATUS); |
| if (status & E1000_STATUS_LU) |
| wufc &= ~E1000_WUFC_LNKC; |
| |
| if (wufc) { |
| e1000_setup_rctl(adapter); |
| e1000_set_multi(netdev); |
| |
| /* turn on all-multi mode if wake on multicast is enabled */ |
| if (wufc & E1000_WUFC_MC) { |
| rctl = er32(RCTL); |
| rctl |= E1000_RCTL_MPE; |
| ew32(RCTL, rctl); |
| } |
| |
| ctrl = er32(CTRL); |
| /* advertise wake from D3Cold */ |
| #define E1000_CTRL_ADVD3WUC 0x00100000 |
| /* phy power management enable */ |
| #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 |
| ctrl |= E1000_CTRL_ADVD3WUC | |
| E1000_CTRL_EN_PHY_PWR_MGMT; |
| ew32(CTRL, ctrl); |
| |
| if (adapter->hw.phy.media_type == e1000_media_type_fiber || |
| adapter->hw.phy.media_type == |
| e1000_media_type_internal_serdes) { |
| /* keep the laser running in D3 */ |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; |
| ew32(CTRL_EXT, ctrl_ext); |
| } |
| |
| if (adapter->flags & FLAG_IS_ICH) |
| e1000e_disable_gig_wol_ich8lan(&adapter->hw); |
| |
| /* Allow time for pending master requests to run */ |
| e1000e_disable_pcie_master(&adapter->hw); |
| |
| ew32(WUC, E1000_WUC_PME_EN); |
| ew32(WUFC, wufc); |
| pci_enable_wake(pdev, PCI_D3hot, 1); |
| pci_enable_wake(pdev, PCI_D3cold, 1); |
| } else { |
| ew32(WUC, 0); |
| ew32(WUFC, 0); |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| } |
| |
| /* make sure adapter isn't asleep if manageability is enabled */ |
| if (adapter->flags & FLAG_MNG_PT_ENABLED) { |
| pci_enable_wake(pdev, PCI_D3hot, 1); |
| pci_enable_wake(pdev, PCI_D3cold, 1); |
| } |
| |
| if (adapter->hw.phy.type == e1000_phy_igp_3) |
| e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); |
| |
| /* |
| * Release control of h/w to f/w. If f/w is AMT enabled, this |
| * would have already happened in close and is redundant. |
| */ |
| e1000_release_hw_control(adapter); |
| |
| pci_disable_device(pdev); |
| |
| pci_set_power_state(pdev, pci_choose_state(pdev, state)); |
| |
| return 0; |
| } |
| |
| static void e1000e_disable_l1aspm(struct pci_dev *pdev) |
| { |
| int pos; |
| u16 val; |
| |
| /* |
| * 82573 workaround - disable L1 ASPM on mobile chipsets |
| * |
| * L1 ASPM on various mobile (ich7) chipsets do not behave properly |
| * resulting in lost data or garbage information on the pci-e link |
| * level. This could result in (false) bad EEPROM checksum errors, |
| * long ping times (up to 2s) or even a system freeze/hang. |
| * |
| * Unfortunately this feature saves about 1W power consumption when |
| * active. |
| */ |
| pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); |
| pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val); |
| if (val & 0x2) { |
| dev_warn(&pdev->dev, "Disabling L1 ASPM\n"); |
| val &= ~0x2; |
| pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val); |
| } |
| } |
| |
| #ifdef CONFIG_PM |
| static int e1000_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| u32 err; |
| |
| pci_set_power_state(pdev, PCI_D0); |
| pci_restore_state(pdev); |
| e1000e_disable_l1aspm(pdev); |
| |
| err = pci_enable_device_mem(pdev); |
| if (err) { |
| dev_err(&pdev->dev, |
| "Cannot enable PCI device from suspend\n"); |
| return err; |
| } |
| |
| pci_set_master(pdev); |
| |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| |
| e1000e_set_interrupt_capability(adapter); |
| if (netif_running(netdev)) { |
| err = e1000_request_irq(adapter); |
| if (err) |
| return err; |
| } |
| |
| e1000e_power_up_phy(adapter); |
| e1000e_reset(adapter); |
| ew32(WUS, ~0); |
| |
| e1000_init_manageability(adapter); |
| |
| if (netif_running(netdev)) |
| e1000e_up(adapter); |
| |
| netif_device_attach(netdev); |
| |
| /* |
| * If the controller has AMT, do not set DRV_LOAD until the interface |
| * is up. For all other cases, let the f/w know that the h/w is now |
| * under the control of the driver. |
| */ |
| if (!(adapter->flags & FLAG_HAS_AMT)) |
| e1000_get_hw_control(adapter); |
| |
| return 0; |
| } |
| #endif |
| |
| static void e1000_shutdown(struct pci_dev *pdev) |
| { |
| e1000_suspend(pdev, PMSG_SUSPEND); |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* |
| * Polling 'interrupt' - used by things like netconsole to send skbs |
| * without having to re-enable interrupts. It's not called while |
| * the interrupt routine is executing. |
| */ |
| static void e1000_netpoll(struct net_device *netdev) |
| { |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| disable_irq(adapter->pdev->irq); |
| e1000_intr(adapter->pdev->irq, netdev); |
| |
| enable_irq(adapter->pdev->irq); |
| } |
| #endif |
| |
| /** |
| * e1000_io_error_detected - called when PCI error is detected |
| * @pdev: Pointer to PCI device |
| * @state: The current pci connection state |
| * |
| * This function is called after a PCI bus error affecting |
| * this device has been detected. |
| */ |
| static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| netif_device_detach(netdev); |
| |
| if (netif_running(netdev)) |
| e1000e_down(adapter); |
| pci_disable_device(pdev); |
| |
| /* Request a slot slot reset. */ |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| /** |
| * e1000_io_slot_reset - called after the pci bus has been reset. |
| * @pdev: Pointer to PCI device |
| * |
| * Restart the card from scratch, as if from a cold-boot. Implementation |
| * resembles the first-half of the e1000_resume routine. |
| */ |
| static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| struct e1000_hw *hw = &adapter->hw; |
| int err; |
| |
| e1000e_disable_l1aspm(pdev); |
| err = pci_enable_device_mem(pdev); |
| if (err) { |
| dev_err(&pdev->dev, |
| "Cannot re-enable PCI device after reset.\n"); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| pci_set_master(pdev); |
| pci_restore_state(pdev); |
| |
| pci_enable_wake(pdev, PCI_D3hot, 0); |
| pci_enable_wake(pdev, PCI_D3cold, 0); |
| |
| e1000e_reset(adapter); |
| ew32(WUS, ~0); |
| |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| /** |
| * e1000_io_resume - called when traffic can start flowing again. |
| * @pdev: Pointer to PCI device |
| * |
| * This callback is called when the error recovery driver tells us that |
| * its OK to resume normal operation. Implementation resembles the |
| * second-half of the e1000_resume routine. |
| */ |
| static void e1000_io_resume(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| e1000_init_manageability(adapter); |
| |
| if (netif_running(netdev)) { |
| if (e1000e_up(adapter)) { |
| dev_err(&pdev->dev, |
| "can't bring device back up after reset\n"); |
| return; |
| } |
| } |
| |
| netif_device_attach(netdev); |
| |
| /* |
| * If the controller has AMT, do not set DRV_LOAD until the interface |
| * is up. For all other cases, let the f/w know that the h/w is now |
| * under the control of the driver. |
| */ |
| if (!(adapter->flags & FLAG_HAS_AMT)) |
| e1000_get_hw_control(adapter); |
| |
| } |
| |
| static void e1000_print_device_info(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct net_device *netdev = adapter->netdev; |
| u32 pba_num; |
| |
| /* print bus type/speed/width info */ |
| e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n", |
| /* bus width */ |
| ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : |
| "Width x1"), |
| /* MAC address */ |
| netdev->dev_addr[0], netdev->dev_addr[1], |
| netdev->dev_addr[2], netdev->dev_addr[3], |
| netdev->dev_addr[4], netdev->dev_addr[5]); |
| e_info("Intel(R) PRO/%s Network Connection\n", |
| (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); |
| e1000e_read_pba_num(hw, &pba_num); |
| e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n", |
| hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff)); |
| } |
| |
| static void e1000_eeprom_checks(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| int ret_val; |
| u16 buf = 0; |
| |
| if (hw->mac.type != e1000_82573) |
| return; |
| |
| ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); |
| if (!(le16_to_cpu(buf) & (1 << 0))) { |
| /* Deep Smart Power Down (DSPD) */ |
| dev_warn(&adapter->pdev->dev, |
| "Warning: detected DSPD enabled in EEPROM\n"); |
| } |
| |
| ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf); |
| if (le16_to_cpu(buf) & (3 << 2)) { |
| /* ASPM enable */ |
| dev_warn(&adapter->pdev->dev, |
| "Warning: detected ASPM enabled in EEPROM\n"); |
| } |
| } |
| |
| /** |
| * e1000_probe - Device Initialization Routine |
| * @pdev: PCI device information struct |
| * @ent: entry in e1000_pci_tbl |
| * |
| * Returns 0 on success, negative on failure |
| * |
| * e1000_probe initializes an adapter identified by a pci_dev structure. |
| * The OS initialization, configuring of the adapter private structure, |
| * and a hardware reset occur. |
| **/ |
| static int __devinit e1000_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct net_device *netdev; |
| struct e1000_adapter *adapter; |
| struct e1000_hw *hw; |
| const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; |
| resource_size_t mmio_start, mmio_len; |
| resource_size_t flash_start, flash_len; |
| |
| static int cards_found; |
| int i, err, pci_using_dac; |
| u16 eeprom_data = 0; |
| u16 eeprom_apme_mask = E1000_EEPROM_APME; |
| |
| e1000e_disable_l1aspm(pdev); |
| |
| err = pci_enable_device_mem(pdev); |
| if (err) |
| return err; |
| |
| pci_using_dac = 0; |
| err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); |
| if (!err) { |
| err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); |
| if (!err) |
| pci_using_dac = 1; |
| } else { |
| err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
| if (err) { |
| err = pci_set_consistent_dma_mask(pdev, |
| DMA_32BIT_MASK); |
| if (err) { |
| dev_err(&pdev->dev, "No usable DMA " |
| "configuration, aborting\n"); |
| goto err_dma; |
| } |
| } |
| } |
| |
| err = pci_request_selected_regions(pdev, |
| pci_select_bars(pdev, IORESOURCE_MEM), |
| e1000e_driver_name); |
| if (err) |
| goto err_pci_reg; |
| |
| pci_set_master(pdev); |
| pci_save_state(pdev); |
| |
| err = -ENOMEM; |
| netdev = alloc_etherdev(sizeof(struct e1000_adapter)); |
| if (!netdev) |
| goto err_alloc_etherdev; |
| |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| |
| pci_set_drvdata(pdev, netdev); |
| adapter = netdev_priv(netdev); |
| hw = &adapter->hw; |
| adapter->netdev = netdev; |
| adapter->pdev = pdev; |
| adapter->ei = ei; |
| adapter->pba = ei->pba; |
| adapter->flags = ei->flags; |
| adapter->flags2 = ei->flags2; |
| adapter->hw.adapter = adapter; |
| adapter->hw.mac.type = ei->mac; |
| adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; |
| |
| mmio_start = pci_resource_start(pdev, 0); |
| mmio_len = pci_resource_len(pdev, 0); |
| |
| err = -EIO; |
| adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); |
| if (!adapter->hw.hw_addr) |
| goto err_ioremap; |
| |
| if ((adapter->flags & FLAG_HAS_FLASH) && |
| (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { |
| flash_start = pci_resource_start(pdev, 1); |
| flash_len = pci_resource_len(pdev, 1); |
| adapter->hw.flash_address = ioremap(flash_start, flash_len); |
| if (!adapter->hw.flash_address) |
| goto err_flashmap; |
| } |
| |
| /* construct the net_device struct */ |
| netdev->open = &e1000_open; |
| netdev->stop = &e1000_close; |
| netdev->hard_start_xmit = &e1000_xmit_frame; |
| netdev->get_stats = &e1000_get_stats; |
| netdev->set_multicast_list = &e1000_set_multi; |
| netdev->set_mac_address = &e1000_set_mac; |
| netdev->change_mtu = &e1000_change_mtu; |
| netdev->do_ioctl = &e1000_ioctl; |
| e1000e_set_ethtool_ops(netdev); |
| netdev->tx_timeout = &e1000_tx_timeout; |
| netdev->watchdog_timeo = 5 * HZ; |
| netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); |
| netdev->vlan_rx_register = e1000_vlan_rx_register; |
| netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid; |
| netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid; |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| netdev->poll_controller = e1000_netpoll; |
| #endif |
| strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); |
| |
| netdev->mem_start = mmio_start; |
| netdev->mem_end = mmio_start + mmio_len; |
| |
| adapter->bd_number = cards_found++; |
| |
| e1000e_check_options(adapter); |
| |
| /* setup adapter struct */ |
| err = e1000_sw_init(adapter); |
| if (err) |
| goto err_sw_init; |
| |
| err = -EIO; |
| |
| memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); |
| memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); |
| memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); |
| |
| err = ei->get_variants(adapter); |
| if (err) |
| goto err_hw_init; |
| |
| if ((adapter->flags & FLAG_IS_ICH) && |
| (adapter->flags & FLAG_READ_ONLY_NVM)) |
| e1000e_write_protect_nvm_ich8lan(&adapter->hw); |
| |
| hw->mac.ops.get_bus_info(&adapter->hw); |
| |
| adapter->hw.phy.autoneg_wait_to_complete = 0; |
| |
| /* Copper options */ |
| if (adapter->hw.phy.media_type == e1000_media_type_copper) { |
| adapter->hw.phy.mdix = AUTO_ALL_MODES; |
| adapter->hw.phy.disable_polarity_correction = 0; |
| adapter->hw.phy.ms_type = e1000_ms_hw_default; |
| } |
| |
| if (e1000_check_reset_block(&adapter->hw)) |
| e_info("PHY reset is blocked due to SOL/IDER session.\n"); |
| |
| netdev->features = NETIF_F_SG | |
| NETIF_F_HW_CSUM | |
| NETIF_F_HW_VLAN_TX | |
| NETIF_F_HW_VLAN_RX; |
| |
| if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) |
| netdev->features |= NETIF_F_HW_VLAN_FILTER; |
| |
| netdev->features |= NETIF_F_TSO; |
| netdev->features |= NETIF_F_TSO6; |
| |
| netdev->vlan_features |= NETIF_F_TSO; |
| netdev->vlan_features |= NETIF_F_TSO6; |
| netdev->vlan_features |= NETIF_F_HW_CSUM; |
| netdev->vlan_features |= NETIF_F_SG; |
| |
| if (pci_using_dac) |
| netdev->features |= NETIF_F_HIGHDMA; |
| |
| /* |
| * We should not be using LLTX anymore, but we are still Tx faster with |
| * it. |
| */ |
| netdev->features |= NETIF_F_LLTX; |
| |
| if (e1000e_enable_mng_pass_thru(&adapter->hw)) |
| adapter->flags |= FLAG_MNG_PT_ENABLED; |
| |
| /* |
| * before reading the NVM, reset the controller to |
| * put the device in a known good starting state |
| */ |
| adapter->hw.mac.ops.reset_hw(&adapter->hw); |
| |
| /* |
| * systems with ASPM and others may see the checksum fail on the first |
| * attempt. Let's give it a few tries |
| */ |
| for (i = 0;; i++) { |
| if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) |
| break; |
| if (i == 2) { |
| e_err("The NVM Checksum Is Not Valid\n"); |
| err = -EIO; |
| goto err_eeprom; |
| } |
| } |
| |
| e1000_eeprom_checks(adapter); |
| |
| /* copy the MAC address out of the NVM */ |
| if (e1000e_read_mac_addr(&adapter->hw)) |
| e_err("NVM Read Error while reading MAC address\n"); |
| |
| memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); |
| memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); |
| |
| if (!is_valid_ether_addr(netdev->perm_addr)) { |
| e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| netdev->perm_addr[0], netdev->perm_addr[1], |
| netdev->perm_addr[2], netdev->perm_addr[3], |
| netdev->perm_addr[4], netdev->perm_addr[5]); |
| err = -EIO; |
| goto err_eeprom; |
| } |
| |
| init_timer(&adapter->watchdog_timer); |
| adapter->watchdog_timer.function = &e1000_watchdog; |
| adapter->watchdog_timer.data = (unsigned long) adapter; |
| |
| init_timer(&adapter->phy_info_timer); |
| adapter->phy_info_timer.function = &e1000_update_phy_info; |
| adapter->phy_info_timer.data = (unsigned long) adapter; |
| |
| INIT_WORK(&adapter->reset_task, e1000_reset_task); |
| INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); |
| INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); |
| INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); |
| |
| /* Initialize link parameters. User can change them with ethtool */ |
| adapter->hw.mac.autoneg = 1; |
| adapter->fc_autoneg = 1; |
| adapter->hw.fc.original_type = e1000_fc_default; |
| adapter->hw.fc.type = e1000_fc_default; |
| adapter->hw.phy.autoneg_advertised = 0x2f; |
| |
| /* ring size defaults */ |
| adapter->rx_ring->count = 256; |
| adapter->tx_ring->count = 256; |
| |
| /* |
| * Initial Wake on LAN setting - If APM wake is enabled in |
| * the EEPROM, enable the ACPI Magic Packet filter |
| */ |
| if (adapter->flags & FLAG_APME_IN_WUC) { |
| /* APME bit in EEPROM is mapped to WUC.APME */ |
| eeprom_data = er32(WUC); |
| eeprom_apme_mask = E1000_WUC_APME; |
| } else if (adapter->flags & FLAG_APME_IN_CTRL3) { |
| if (adapter->flags & FLAG_APME_CHECK_PORT_B && |
| (adapter->hw.bus.func == 1)) |
| e1000_read_nvm(&adapter->hw, |
| NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); |
| else |
| e1000_read_nvm(&adapter->hw, |
| NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); |
| } |
| |
| /* fetch WoL from EEPROM */ |
| if (eeprom_data & eeprom_apme_mask) |
| adapter->eeprom_wol |= E1000_WUFC_MAG; |
| |
| /* |
| * now that we have the eeprom settings, apply the special cases |
| * where the eeprom may be wrong or the board simply won't support |
| * wake on lan on a particular port |
| */ |
| if (!(adapter->flags & FLAG_HAS_WOL)) |
| adapter->eeprom_wol = 0; |
| |
| /* initialize the wol settings based on the eeprom settings */ |
| adapter->wol = adapter->eeprom_wol; |
| device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); |
| |
| /* reset the hardware with the new settings */ |
| e1000e_reset(adapter); |
| |
| /* |
| * If the controller has AMT, do not set DRV_LOAD until the interface |
| * is up. For all other cases, let the f/w know that the h/w is now |
| * under the control of the driver. |
| */ |
| if (!(adapter->flags & FLAG_HAS_AMT)) |
| e1000_get_hw_control(adapter); |
| |
| /* tell the stack to leave us alone until e1000_open() is called */ |
| netif_carrier_off(netdev); |
| netif_tx_stop_all_queues(netdev); |
| |
| strcpy(netdev->name, "eth%d"); |
| err = register_netdev(netdev); |
| if (err) |
| goto err_register; |
| |
| e1000_print_device_info(adapter); |
| |
| return 0; |
| |
| err_register: |
| if (!(adapter->flags & FLAG_HAS_AMT)) |
| e1000_release_hw_control(adapter); |
| err_eeprom: |
| if (!e1000_check_reset_block(&adapter->hw)) |
| e1000_phy_hw_reset(&adapter->hw); |
| err_hw_init: |
| |
| kfree(adapter->tx_ring); |
| kfree(adapter->rx_ring); |
| err_sw_init: |
| if (adapter->hw.flash_address) |
| iounmap(adapter->hw.flash_address); |
| e1000e_reset_interrupt_capability(adapter); |
| err_flashmap: |
| iounmap(adapter->hw.hw_addr); |
| err_ioremap: |
| free_netdev(netdev); |
| err_alloc_etherdev: |
| pci_release_selected_regions(pdev, |
| pci_select_bars(pdev, IORESOURCE_MEM)); |
| err_pci_reg: |
| err_dma: |
| pci_disable_device(pdev); |
| return err; |
| } |
| |
| /** |
| * e1000_remove - Device Removal Routine |
| * @pdev: PCI device information struct |
| * |
| * e1000_remove is called by the PCI subsystem to alert the driver |
| * that it should release a PCI device. The could be caused by a |
| * Hot-Plug event, or because the driver is going to be removed from |
| * memory. |
| **/ |
| static void __devexit e1000_remove(struct pci_dev *pdev) |
| { |
| struct net_device *netdev = pci_get_drvdata(pdev); |
| struct e1000_adapter *adapter = netdev_priv(netdev); |
| |
| /* |
| * flush_scheduled work may reschedule our watchdog task, so |
| * explicitly disable watchdog tasks from being rescheduled |
| */ |
| set_bit(__E1000_DOWN, &adapter->state); |
| del_timer_sync(&adapter->watchdog_timer); |
| del_timer_sync(&adapter->phy_info_timer); |
| |
| flush_scheduled_work(); |
| |
| /* |
| * Release control of h/w to f/w. If f/w is AMT enabled, this |
| * would have already happened in close and is redundant. |
| */ |
| e1000_release_hw_control(adapter); |
| |
| unregister_netdev(netdev); |
| |
| if (!e1000_check_reset_block(&adapter->hw)) |
| e1000_phy_hw_reset(&adapter->hw); |
| |
| e1000e_reset_interrupt_capability(adapter); |
| kfree(adapter->tx_ring); |
| kfree(adapter->rx_ring); |
| |
| iounmap(adapter->hw.hw_addr); |
| if (adapter->hw.flash_address) |
| iounmap(adapter->hw.flash_address); |
| pci_release_selected_regions(pdev, |
| pci_select_bars(pdev, IORESOURCE_MEM)); |
| |
| free_netdev(netdev); |
| |
| pci_disable_device(pdev); |
| } |
| |
| /* PCI Error Recovery (ERS) */ |
| static struct pci_error_handlers e1000_err_handler = { |
| .error_detected = e1000_io_error_detected, |
| .slot_reset = e1000_io_slot_reset, |
| .resume = e1000_io_resume, |
| }; |
| |
| static struct pci_device_id e1000_pci_tbl[] = { |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), |
| board_80003es2lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), |
| board_80003es2lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), |
| board_80003es2lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), |
| board_80003es2lan }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, |
| |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, |
| { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, |
| |
| { } /* terminate list */ |
| }; |
| MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); |
| |
| /* PCI Device API Driver */ |
| static struct pci_driver e1000_driver = { |
| .name = e1000e_driver_name, |
| .id_table = e1000_pci_tbl, |
| .probe = e1000_probe, |
| .remove = __devexit_p(e1000_remove), |
| #ifdef CONFIG_PM |
| /* Power Management Hooks */ |
| .suspend = e1000_suspend, |
| .resume = e1000_resume, |
| #endif |
| .shutdown = e1000_shutdown, |
| .err_handler = &e1000_err_handler |
| }; |
| |
| /** |
| * e1000_init_module - Driver Registration Routine |
| * |
| * e1000_init_module is the first routine called when the driver is |
| * loaded. All it does is register with the PCI subsystem. |
| **/ |
| static int __init e1000_init_module(void) |
| { |
| int ret; |
| printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", |
| e1000e_driver_name, e1000e_driver_version); |
| printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n", |
| e1000e_driver_name); |
| ret = pci_register_driver(&e1000_driver); |
| pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name, |
| PM_QOS_DEFAULT_VALUE); |
| |
| return ret; |
| } |
| module_init(e1000_init_module); |
| |
| /** |
| * e1000_exit_module - Driver Exit Cleanup Routine |
| * |
| * e1000_exit_module is called just before the driver is removed |
| * from memory. |
| **/ |
| static void __exit e1000_exit_module(void) |
| { |
| pci_unregister_driver(&e1000_driver); |
| pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name); |
| } |
| module_exit(e1000_exit_module); |
| |
| |
| MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
| MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_VERSION); |
| |
| /* e1000_main.c */ |