| /* |
| * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. |
| * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) |
| * |
| * This version of the driver is specific to the FADS implementation, |
| * since the board contains control registers external to the processor |
| * for the control of the LevelOne LXT970 transceiver. The MPC860T manual |
| * describes connections using the internal parallel port I/O, which |
| * is basically all of Port D. |
| * |
| * Right now, I am very wasteful with the buffers. I allocate memory |
| * pages and then divide them into 2K frame buffers. This way I know I |
| * have buffers large enough to hold one frame within one buffer descriptor. |
| * Once I get this working, I will use 64 or 128 byte CPM buffers, which |
| * will be much more memory efficient and will easily handle lots of |
| * small packets. |
| * |
| * Much better multiple PHY support by Magnus Damm. |
| * Copyright (c) 2000 Ericsson Radio Systems AB. |
| * |
| * Support for FEC controller of ColdFire processors. |
| * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) |
| * |
| * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) |
| * Copyright (c) 2004-2006 Macq Electronique SA. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/ptrace.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/spinlock.h> |
| #include <linux/workqueue.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/irq.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/pgtable.h> |
| |
| #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \ |
| defined(CONFIG_M5272) || defined(CONFIG_M528x) || \ |
| defined(CONFIG_M520x) || defined(CONFIG_M532x) |
| #include <asm/coldfire.h> |
| #include <asm/mcfsim.h> |
| #include "fec.h" |
| #else |
| #include <asm/8xx_immap.h> |
| #include <asm/mpc8xx.h> |
| #include "commproc.h" |
| #endif |
| |
| #if defined(CONFIG_FEC2) |
| #define FEC_MAX_PORTS 2 |
| #else |
| #define FEC_MAX_PORTS 1 |
| #endif |
| |
| /* |
| * Define the fixed address of the FEC hardware. |
| */ |
| static unsigned int fec_hw[] = { |
| #if defined(CONFIG_M5272) |
| (MCF_MBAR + 0x840), |
| #elif defined(CONFIG_M527x) |
| (MCF_MBAR + 0x1000), |
| (MCF_MBAR + 0x1800), |
| #elif defined(CONFIG_M523x) || defined(CONFIG_M528x) |
| (MCF_MBAR + 0x1000), |
| #elif defined(CONFIG_M520x) |
| (MCF_MBAR+0x30000), |
| #elif defined(CONFIG_M532x) |
| (MCF_MBAR+0xfc030000), |
| #else |
| &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec), |
| #endif |
| }; |
| |
| static unsigned char fec_mac_default[] = { |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| }; |
| |
| /* |
| * Some hardware gets it MAC address out of local flash memory. |
| * if this is non-zero then assume it is the address to get MAC from. |
| */ |
| #if defined(CONFIG_NETtel) |
| #define FEC_FLASHMAC 0xf0006006 |
| #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) |
| #define FEC_FLASHMAC 0xf0006000 |
| #elif defined (CONFIG_MTD_KeyTechnology) |
| #define FEC_FLASHMAC 0xffe04000 |
| #elif defined(CONFIG_CANCam) |
| #define FEC_FLASHMAC 0xf0020000 |
| #elif defined (CONFIG_M5272C3) |
| #define FEC_FLASHMAC (0xffe04000 + 4) |
| #elif defined(CONFIG_MOD5272) |
| #define FEC_FLASHMAC 0xffc0406b |
| #else |
| #define FEC_FLASHMAC 0 |
| #endif |
| |
| /* Forward declarations of some structures to support different PHYs |
| */ |
| |
| typedef struct { |
| uint mii_data; |
| void (*funct)(uint mii_reg, struct net_device *dev); |
| } phy_cmd_t; |
| |
| typedef struct { |
| uint id; |
| char *name; |
| |
| const phy_cmd_t *config; |
| const phy_cmd_t *startup; |
| const phy_cmd_t *ack_int; |
| const phy_cmd_t *shutdown; |
| } phy_info_t; |
| |
| /* The number of Tx and Rx buffers. These are allocated from the page |
| * pool. The code may assume these are power of two, so it it best |
| * to keep them that size. |
| * We don't need to allocate pages for the transmitter. We just use |
| * the skbuffer directly. |
| */ |
| #define FEC_ENET_RX_PAGES 8 |
| #define FEC_ENET_RX_FRSIZE 2048 |
| #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) |
| #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) |
| #define FEC_ENET_TX_FRSIZE 2048 |
| #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE) |
| #define TX_RING_SIZE 16 /* Must be power of two */ |
| #define TX_RING_MOD_MASK 15 /* for this to work */ |
| |
| #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE) |
| #error "FEC: descriptor ring size constants too large" |
| #endif |
| |
| /* Interrupt events/masks. |
| */ |
| #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ |
| #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ |
| #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ |
| #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ |
| #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ |
| #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ |
| #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ |
| #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ |
| #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ |
| #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ |
| |
| /* The FEC stores dest/src/type, data, and checksum for receive packets. |
| */ |
| #define PKT_MAXBUF_SIZE 1518 |
| #define PKT_MINBUF_SIZE 64 |
| #define PKT_MAXBLR_SIZE 1520 |
| |
| |
| /* |
| * The 5270/5271/5280/5282/532x RX control register also contains maximum frame |
| * size bits. Other FEC hardware does not, so we need to take that into |
| * account when setting it. |
| */ |
| #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ |
| defined(CONFIG_M520x) || defined(CONFIG_M532x) |
| #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) |
| #else |
| #define OPT_FRAME_SIZE 0 |
| #endif |
| |
| /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and |
| * tx_bd_base always point to the base of the buffer descriptors. The |
| * cur_rx and cur_tx point to the currently available buffer. |
| * The dirty_tx tracks the current buffer that is being sent by the |
| * controller. The cur_tx and dirty_tx are equal under both completely |
| * empty and completely full conditions. The empty/ready indicator in |
| * the buffer descriptor determines the actual condition. |
| */ |
| struct fec_enet_private { |
| /* Hardware registers of the FEC device */ |
| volatile fec_t *hwp; |
| |
| /* The saved address of a sent-in-place packet/buffer, for skfree(). */ |
| unsigned char *tx_bounce[TX_RING_SIZE]; |
| struct sk_buff* tx_skbuff[TX_RING_SIZE]; |
| ushort skb_cur; |
| ushort skb_dirty; |
| |
| /* CPM dual port RAM relative addresses. |
| */ |
| cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ |
| cbd_t *tx_bd_base; |
| cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ |
| cbd_t *dirty_tx; /* The ring entries to be free()ed. */ |
| struct net_device_stats stats; |
| uint tx_full; |
| spinlock_t lock; |
| |
| uint phy_id; |
| uint phy_id_done; |
| uint phy_status; |
| uint phy_speed; |
| phy_info_t const *phy; |
| struct work_struct phy_task; |
| |
| uint sequence_done; |
| uint mii_phy_task_queued; |
| |
| uint phy_addr; |
| |
| int index; |
| int opened; |
| int link; |
| int old_link; |
| int full_duplex; |
| }; |
| |
| static int fec_enet_open(struct net_device *dev); |
| static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| static void fec_enet_mii(struct net_device *dev); |
| static irqreturn_t fec_enet_interrupt(int irq, void * dev_id); |
| static void fec_enet_tx(struct net_device *dev); |
| static void fec_enet_rx(struct net_device *dev); |
| static int fec_enet_close(struct net_device *dev); |
| static struct net_device_stats *fec_enet_get_stats(struct net_device *dev); |
| static void set_multicast_list(struct net_device *dev); |
| static void fec_restart(struct net_device *dev, int duplex); |
| static void fec_stop(struct net_device *dev); |
| static void fec_set_mac_address(struct net_device *dev); |
| |
| |
| /* MII processing. We keep this as simple as possible. Requests are |
| * placed on the list (if there is room). When the request is finished |
| * by the MII, an optional function may be called. |
| */ |
| typedef struct mii_list { |
| uint mii_regval; |
| void (*mii_func)(uint val, struct net_device *dev); |
| struct mii_list *mii_next; |
| } mii_list_t; |
| |
| #define NMII 20 |
| static mii_list_t mii_cmds[NMII]; |
| static mii_list_t *mii_free; |
| static mii_list_t *mii_head; |
| static mii_list_t *mii_tail; |
| |
| static int mii_queue(struct net_device *dev, int request, |
| void (*func)(uint, struct net_device *)); |
| |
| /* Make MII read/write commands for the FEC. |
| */ |
| #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) |
| #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ |
| (VAL & 0xffff)) |
| #define mk_mii_end 0 |
| |
| /* Transmitter timeout. |
| */ |
| #define TX_TIMEOUT (2*HZ) |
| |
| /* Register definitions for the PHY. |
| */ |
| |
| #define MII_REG_CR 0 /* Control Register */ |
| #define MII_REG_SR 1 /* Status Register */ |
| #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */ |
| #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */ |
| #define MII_REG_ANAR 4 /* A-N Advertisement Register */ |
| #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */ |
| #define MII_REG_ANER 6 /* A-N Expansion Register */ |
| #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */ |
| #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */ |
| |
| /* values for phy_status */ |
| |
| #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ |
| #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ |
| #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ |
| #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ |
| #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ |
| #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ |
| #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ |
| |
| #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ |
| #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ |
| #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ |
| #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ |
| #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ |
| #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ |
| #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ |
| #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ |
| |
| |
| static int |
| fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct fec_enet_private *fep; |
| volatile fec_t *fecp; |
| volatile cbd_t *bdp; |
| unsigned short status; |
| |
| fep = netdev_priv(dev); |
| fecp = (volatile fec_t*)dev->base_addr; |
| |
| if (!fep->link) { |
| /* Link is down or autonegotiation is in progress. */ |
| return 1; |
| } |
| |
| /* Fill in a Tx ring entry */ |
| bdp = fep->cur_tx; |
| |
| status = bdp->cbd_sc; |
| #ifndef final_version |
| if (status & BD_ENET_TX_READY) { |
| /* Ooops. All transmit buffers are full. Bail out. |
| * This should not happen, since dev->tbusy should be set. |
| */ |
| printk("%s: tx queue full!.\n", dev->name); |
| return 1; |
| } |
| #endif |
| |
| /* Clear all of the status flags. |
| */ |
| status &= ~BD_ENET_TX_STATS; |
| |
| /* Set buffer length and buffer pointer. |
| */ |
| bdp->cbd_bufaddr = __pa(skb->data); |
| bdp->cbd_datlen = skb->len; |
| |
| /* |
| * On some FEC implementations data must be aligned on |
| * 4-byte boundaries. Use bounce buffers to copy data |
| * and get it aligned. Ugh. |
| */ |
| if (bdp->cbd_bufaddr & 0x3) { |
| unsigned int index; |
| index = bdp - fep->tx_bd_base; |
| memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen); |
| bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]); |
| } |
| |
| /* Save skb pointer. |
| */ |
| fep->tx_skbuff[fep->skb_cur] = skb; |
| |
| fep->stats.tx_bytes += skb->len; |
| fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; |
| |
| /* Push the data cache so the CPM does not get stale memory |
| * data. |
| */ |
| flush_dcache_range((unsigned long)skb->data, |
| (unsigned long)skb->data + skb->len); |
| |
| spin_lock_irq(&fep->lock); |
| |
| /* Send it on its way. Tell FEC it's ready, interrupt when done, |
| * it's the last BD of the frame, and to put the CRC on the end. |
| */ |
| |
| status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR |
| | BD_ENET_TX_LAST | BD_ENET_TX_TC); |
| bdp->cbd_sc = status; |
| |
| dev->trans_start = jiffies; |
| |
| /* Trigger transmission start */ |
| fecp->fec_x_des_active = 0; |
| |
| /* If this was the last BD in the ring, start at the beginning again. |
| */ |
| if (status & BD_ENET_TX_WRAP) { |
| bdp = fep->tx_bd_base; |
| } else { |
| bdp++; |
| } |
| |
| if (bdp == fep->dirty_tx) { |
| fep->tx_full = 1; |
| netif_stop_queue(dev); |
| } |
| |
| fep->cur_tx = (cbd_t *)bdp; |
| |
| spin_unlock_irq(&fep->lock); |
| |
| return 0; |
| } |
| |
| static void |
| fec_timeout(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| printk("%s: transmit timed out.\n", dev->name); |
| fep->stats.tx_errors++; |
| #ifndef final_version |
| { |
| int i; |
| cbd_t *bdp; |
| |
| printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n", |
| (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "", |
| (unsigned long)fep->dirty_tx, |
| (unsigned long)fep->cur_rx); |
| |
| bdp = fep->tx_bd_base; |
| printk(" tx: %u buffers\n", TX_RING_SIZE); |
| for (i = 0 ; i < TX_RING_SIZE; i++) { |
| printk(" %08x: %04x %04x %08x\n", |
| (uint) bdp, |
| bdp->cbd_sc, |
| bdp->cbd_datlen, |
| (int) bdp->cbd_bufaddr); |
| bdp++; |
| } |
| |
| bdp = fep->rx_bd_base; |
| printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE); |
| for (i = 0 ; i < RX_RING_SIZE; i++) { |
| printk(" %08x: %04x %04x %08x\n", |
| (uint) bdp, |
| bdp->cbd_sc, |
| bdp->cbd_datlen, |
| (int) bdp->cbd_bufaddr); |
| bdp++; |
| } |
| } |
| #endif |
| fec_restart(dev, fep->full_duplex); |
| netif_wake_queue(dev); |
| } |
| |
| /* The interrupt handler. |
| * This is called from the MPC core interrupt. |
| */ |
| static irqreturn_t |
| fec_enet_interrupt(int irq, void * dev_id) |
| { |
| struct net_device *dev = dev_id; |
| volatile fec_t *fecp; |
| uint int_events; |
| int handled = 0; |
| |
| fecp = (volatile fec_t*)dev->base_addr; |
| |
| /* Get the interrupt events that caused us to be here. |
| */ |
| while ((int_events = fecp->fec_ievent) != 0) { |
| fecp->fec_ievent = int_events; |
| |
| /* Handle receive event in its own function. |
| */ |
| if (int_events & FEC_ENET_RXF) { |
| handled = 1; |
| fec_enet_rx(dev); |
| } |
| |
| /* Transmit OK, or non-fatal error. Update the buffer |
| descriptors. FEC handles all errors, we just discover |
| them as part of the transmit process. |
| */ |
| if (int_events & FEC_ENET_TXF) { |
| handled = 1; |
| fec_enet_tx(dev); |
| } |
| |
| if (int_events & FEC_ENET_MII) { |
| handled = 1; |
| fec_enet_mii(dev); |
| } |
| |
| } |
| return IRQ_RETVAL(handled); |
| } |
| |
| |
| static void |
| fec_enet_tx(struct net_device *dev) |
| { |
| struct fec_enet_private *fep; |
| volatile cbd_t *bdp; |
| unsigned short status; |
| struct sk_buff *skb; |
| |
| fep = netdev_priv(dev); |
| spin_lock(&fep->lock); |
| bdp = fep->dirty_tx; |
| |
| while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) { |
| if (bdp == fep->cur_tx && fep->tx_full == 0) break; |
| |
| skb = fep->tx_skbuff[fep->skb_dirty]; |
| /* Check for errors. */ |
| if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | |
| BD_ENET_TX_RL | BD_ENET_TX_UN | |
| BD_ENET_TX_CSL)) { |
| fep->stats.tx_errors++; |
| if (status & BD_ENET_TX_HB) /* No heartbeat */ |
| fep->stats.tx_heartbeat_errors++; |
| if (status & BD_ENET_TX_LC) /* Late collision */ |
| fep->stats.tx_window_errors++; |
| if (status & BD_ENET_TX_RL) /* Retrans limit */ |
| fep->stats.tx_aborted_errors++; |
| if (status & BD_ENET_TX_UN) /* Underrun */ |
| fep->stats.tx_fifo_errors++; |
| if (status & BD_ENET_TX_CSL) /* Carrier lost */ |
| fep->stats.tx_carrier_errors++; |
| } else { |
| fep->stats.tx_packets++; |
| } |
| |
| #ifndef final_version |
| if (status & BD_ENET_TX_READY) |
| printk("HEY! Enet xmit interrupt and TX_READY.\n"); |
| #endif |
| /* Deferred means some collisions occurred during transmit, |
| * but we eventually sent the packet OK. |
| */ |
| if (status & BD_ENET_TX_DEF) |
| fep->stats.collisions++; |
| |
| /* Free the sk buffer associated with this last transmit. |
| */ |
| dev_kfree_skb_any(skb); |
| fep->tx_skbuff[fep->skb_dirty] = NULL; |
| fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; |
| |
| /* Update pointer to next buffer descriptor to be transmitted. |
| */ |
| if (status & BD_ENET_TX_WRAP) |
| bdp = fep->tx_bd_base; |
| else |
| bdp++; |
| |
| /* Since we have freed up a buffer, the ring is no longer |
| * full. |
| */ |
| if (fep->tx_full) { |
| fep->tx_full = 0; |
| if (netif_queue_stopped(dev)) |
| netif_wake_queue(dev); |
| } |
| } |
| fep->dirty_tx = (cbd_t *)bdp; |
| spin_unlock(&fep->lock); |
| } |
| |
| |
| /* During a receive, the cur_rx points to the current incoming buffer. |
| * When we update through the ring, if the next incoming buffer has |
| * not been given to the system, we just set the empty indicator, |
| * effectively tossing the packet. |
| */ |
| static void |
| fec_enet_rx(struct net_device *dev) |
| { |
| struct fec_enet_private *fep; |
| volatile fec_t *fecp; |
| volatile cbd_t *bdp; |
| unsigned short status; |
| struct sk_buff *skb; |
| ushort pkt_len; |
| __u8 *data; |
| |
| #ifdef CONFIG_M532x |
| flush_cache_all(); |
| #endif |
| |
| fep = netdev_priv(dev); |
| fecp = (volatile fec_t*)dev->base_addr; |
| |
| /* First, grab all of the stats for the incoming packet. |
| * These get messed up if we get called due to a busy condition. |
| */ |
| bdp = fep->cur_rx; |
| |
| while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { |
| |
| #ifndef final_version |
| /* Since we have allocated space to hold a complete frame, |
| * the last indicator should be set. |
| */ |
| if ((status & BD_ENET_RX_LAST) == 0) |
| printk("FEC ENET: rcv is not +last\n"); |
| #endif |
| |
| if (!fep->opened) |
| goto rx_processing_done; |
| |
| /* Check for errors. */ |
| if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | |
| BD_ENET_RX_CR | BD_ENET_RX_OV)) { |
| fep->stats.rx_errors++; |
| if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { |
| /* Frame too long or too short. */ |
| fep->stats.rx_length_errors++; |
| } |
| if (status & BD_ENET_RX_NO) /* Frame alignment */ |
| fep->stats.rx_frame_errors++; |
| if (status & BD_ENET_RX_CR) /* CRC Error */ |
| fep->stats.rx_crc_errors++; |
| if (status & BD_ENET_RX_OV) /* FIFO overrun */ |
| fep->stats.rx_fifo_errors++; |
| } |
| |
| /* Report late collisions as a frame error. |
| * On this error, the BD is closed, but we don't know what we |
| * have in the buffer. So, just drop this frame on the floor. |
| */ |
| if (status & BD_ENET_RX_CL) { |
| fep->stats.rx_errors++; |
| fep->stats.rx_frame_errors++; |
| goto rx_processing_done; |
| } |
| |
| /* Process the incoming frame. |
| */ |
| fep->stats.rx_packets++; |
| pkt_len = bdp->cbd_datlen; |
| fep->stats.rx_bytes += pkt_len; |
| data = (__u8*)__va(bdp->cbd_bufaddr); |
| |
| /* This does 16 byte alignment, exactly what we need. |
| * The packet length includes FCS, but we don't want to |
| * include that when passing upstream as it messes up |
| * bridging applications. |
| */ |
| skb = dev_alloc_skb(pkt_len-4); |
| |
| if (skb == NULL) { |
| printk("%s: Memory squeeze, dropping packet.\n", dev->name); |
| fep->stats.rx_dropped++; |
| } else { |
| skb_put(skb,pkt_len-4); /* Make room */ |
| skb_copy_to_linear_data(skb, data, pkt_len-4); |
| skb->protocol=eth_type_trans(skb,dev); |
| netif_rx(skb); |
| } |
| rx_processing_done: |
| |
| /* Clear the status flags for this buffer. |
| */ |
| status &= ~BD_ENET_RX_STATS; |
| |
| /* Mark the buffer empty. |
| */ |
| status |= BD_ENET_RX_EMPTY; |
| bdp->cbd_sc = status; |
| |
| /* Update BD pointer to next entry. |
| */ |
| if (status & BD_ENET_RX_WRAP) |
| bdp = fep->rx_bd_base; |
| else |
| bdp++; |
| |
| #if 1 |
| /* Doing this here will keep the FEC running while we process |
| * incoming frames. On a heavily loaded network, we should be |
| * able to keep up at the expense of system resources. |
| */ |
| fecp->fec_r_des_active = 0; |
| #endif |
| } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */ |
| fep->cur_rx = (cbd_t *)bdp; |
| |
| #if 0 |
| /* Doing this here will allow us to process all frames in the |
| * ring before the FEC is allowed to put more there. On a heavily |
| * loaded network, some frames may be lost. Unfortunately, this |
| * increases the interrupt overhead since we can potentially work |
| * our way back to the interrupt return only to come right back |
| * here. |
| */ |
| fecp->fec_r_des_active = 0; |
| #endif |
| } |
| |
| |
| /* called from interrupt context */ |
| static void |
| fec_enet_mii(struct net_device *dev) |
| { |
| struct fec_enet_private *fep; |
| volatile fec_t *ep; |
| mii_list_t *mip; |
| uint mii_reg; |
| |
| fep = netdev_priv(dev); |
| ep = fep->hwp; |
| mii_reg = ep->fec_mii_data; |
| |
| spin_lock(&fep->lock); |
| |
| if ((mip = mii_head) == NULL) { |
| printk("MII and no head!\n"); |
| goto unlock; |
| } |
| |
| if (mip->mii_func != NULL) |
| (*(mip->mii_func))(mii_reg, dev); |
| |
| mii_head = mip->mii_next; |
| mip->mii_next = mii_free; |
| mii_free = mip; |
| |
| if ((mip = mii_head) != NULL) |
| ep->fec_mii_data = mip->mii_regval; |
| |
| unlock: |
| spin_unlock(&fep->lock); |
| } |
| |
| static int |
| mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) |
| { |
| struct fec_enet_private *fep; |
| unsigned long flags; |
| mii_list_t *mip; |
| int retval; |
| |
| /* Add PHY address to register command. |
| */ |
| fep = netdev_priv(dev); |
| regval |= fep->phy_addr << 23; |
| |
| retval = 0; |
| |
| spin_lock_irqsave(&fep->lock,flags); |
| |
| if ((mip = mii_free) != NULL) { |
| mii_free = mip->mii_next; |
| mip->mii_regval = regval; |
| mip->mii_func = func; |
| mip->mii_next = NULL; |
| if (mii_head) { |
| mii_tail->mii_next = mip; |
| mii_tail = mip; |
| } |
| else { |
| mii_head = mii_tail = mip; |
| fep->hwp->fec_mii_data = regval; |
| } |
| } |
| else { |
| retval = 1; |
| } |
| |
| spin_unlock_irqrestore(&fep->lock,flags); |
| |
| return(retval); |
| } |
| |
| static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) |
| { |
| int k; |
| |
| if(!c) |
| return; |
| |
| for(k = 0; (c+k)->mii_data != mk_mii_end; k++) { |
| mii_queue(dev, (c+k)->mii_data, (c+k)->funct); |
| } |
| } |
| |
| static void mii_parse_sr(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile uint *s = &(fep->phy_status); |
| uint status; |
| |
| status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); |
| |
| if (mii_reg & 0x0004) |
| status |= PHY_STAT_LINK; |
| if (mii_reg & 0x0010) |
| status |= PHY_STAT_FAULT; |
| if (mii_reg & 0x0020) |
| status |= PHY_STAT_ANC; |
| |
| *s = status; |
| } |
| |
| static void mii_parse_cr(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile uint *s = &(fep->phy_status); |
| uint status; |
| |
| status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP); |
| |
| if (mii_reg & 0x1000) |
| status |= PHY_CONF_ANE; |
| if (mii_reg & 0x4000) |
| status |= PHY_CONF_LOOP; |
| *s = status; |
| } |
| |
| static void mii_parse_anar(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile uint *s = &(fep->phy_status); |
| uint status; |
| |
| status = *s & ~(PHY_CONF_SPMASK); |
| |
| if (mii_reg & 0x0020) |
| status |= PHY_CONF_10HDX; |
| if (mii_reg & 0x0040) |
| status |= PHY_CONF_10FDX; |
| if (mii_reg & 0x0080) |
| status |= PHY_CONF_100HDX; |
| if (mii_reg & 0x00100) |
| status |= PHY_CONF_100FDX; |
| *s = status; |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| /* The Level one LXT970 is used by many boards */ |
| |
| #define MII_LXT970_MIRROR 16 /* Mirror register */ |
| #define MII_LXT970_IER 17 /* Interrupt Enable Register */ |
| #define MII_LXT970_ISR 18 /* Interrupt Status Register */ |
| #define MII_LXT970_CONFIG 19 /* Configuration Register */ |
| #define MII_LXT970_CSR 20 /* Chip Status Register */ |
| |
| static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile uint *s = &(fep->phy_status); |
| uint status; |
| |
| status = *s & ~(PHY_STAT_SPMASK); |
| if (mii_reg & 0x0800) { |
| if (mii_reg & 0x1000) |
| status |= PHY_STAT_100FDX; |
| else |
| status |= PHY_STAT_100HDX; |
| } else { |
| if (mii_reg & 0x1000) |
| status |= PHY_STAT_10FDX; |
| else |
| status |= PHY_STAT_10HDX; |
| } |
| *s = status; |
| } |
| |
| static phy_cmd_t const phy_cmd_lxt970_config[] = { |
| { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */ |
| { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, |
| { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_lxt970_ack_int[] = { |
| /* read SR and ISR to acknowledge */ |
| { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| { mk_mii_read(MII_LXT970_ISR), NULL }, |
| |
| /* find out the current status */ |
| { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */ |
| { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, |
| { mk_mii_end, } |
| }; |
| static phy_info_t const phy_info_lxt970 = { |
| .id = 0x07810000, |
| .name = "LXT970", |
| .config = phy_cmd_lxt970_config, |
| .startup = phy_cmd_lxt970_startup, |
| .ack_int = phy_cmd_lxt970_ack_int, |
| .shutdown = phy_cmd_lxt970_shutdown |
| }; |
| |
| /* ------------------------------------------------------------------------- */ |
| /* The Level one LXT971 is used on some of my custom boards */ |
| |
| /* register definitions for the 971 */ |
| |
| #define MII_LXT971_PCR 16 /* Port Control Register */ |
| #define MII_LXT971_SR2 17 /* Status Register 2 */ |
| #define MII_LXT971_IER 18 /* Interrupt Enable Register */ |
| #define MII_LXT971_ISR 19 /* Interrupt Status Register */ |
| #define MII_LXT971_LCR 20 /* LED Control Register */ |
| #define MII_LXT971_TCR 30 /* Transmit Control Register */ |
| |
| /* |
| * I had some nice ideas of running the MDIO faster... |
| * The 971 should support 8MHz and I tried it, but things acted really |
| * weird, so 2.5 MHz ought to be enough for anyone... |
| */ |
| |
| static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile uint *s = &(fep->phy_status); |
| uint status; |
| |
| status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); |
| |
| if (mii_reg & 0x0400) { |
| fep->link = 1; |
| status |= PHY_STAT_LINK; |
| } else { |
| fep->link = 0; |
| } |
| if (mii_reg & 0x0080) |
| status |= PHY_STAT_ANC; |
| if (mii_reg & 0x4000) { |
| if (mii_reg & 0x0200) |
| status |= PHY_STAT_100FDX; |
| else |
| status |= PHY_STAT_100HDX; |
| } else { |
| if (mii_reg & 0x0200) |
| status |= PHY_STAT_10FDX; |
| else |
| status |= PHY_STAT_10HDX; |
| } |
| if (mii_reg & 0x0008) |
| status |= PHY_STAT_FAULT; |
| |
| *s = status; |
| } |
| |
| static phy_cmd_t const phy_cmd_lxt971_config[] = { |
| /* limit to 10MBit because my prototype board |
| * doesn't work with 100. */ |
| { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */ |
| { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, |
| { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */ |
| /* Somehow does the 971 tell me that the link is down |
| * the first read after power-up. |
| * read here to get a valid value in ack_int */ |
| { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_lxt971_ack_int[] = { |
| /* acknowledge the int before reading status ! */ |
| { mk_mii_read(MII_LXT971_ISR), NULL }, |
| /* find out the current status */ |
| { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */ |
| { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, |
| { mk_mii_end, } |
| }; |
| static phy_info_t const phy_info_lxt971 = { |
| .id = 0x0001378e, |
| .name = "LXT971", |
| .config = phy_cmd_lxt971_config, |
| .startup = phy_cmd_lxt971_startup, |
| .ack_int = phy_cmd_lxt971_ack_int, |
| .shutdown = phy_cmd_lxt971_shutdown |
| }; |
| |
| /* ------------------------------------------------------------------------- */ |
| /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ |
| |
| /* register definitions */ |
| |
| #define MII_QS6612_MCR 17 /* Mode Control Register */ |
| #define MII_QS6612_FTR 27 /* Factory Test Register */ |
| #define MII_QS6612_MCO 28 /* Misc. Control Register */ |
| #define MII_QS6612_ISR 29 /* Interrupt Source Register */ |
| #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ |
| #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ |
| |
| static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile uint *s = &(fep->phy_status); |
| uint status; |
| |
| status = *s & ~(PHY_STAT_SPMASK); |
| |
| switch((mii_reg >> 2) & 7) { |
| case 1: status |= PHY_STAT_10HDX; break; |
| case 2: status |= PHY_STAT_100HDX; break; |
| case 5: status |= PHY_STAT_10FDX; break; |
| case 6: status |= PHY_STAT_100FDX; break; |
| } |
| |
| *s = status; |
| } |
| |
| static phy_cmd_t const phy_cmd_qs6612_config[] = { |
| /* The PHY powers up isolated on the RPX, |
| * so send a command to allow operation. |
| */ |
| { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, |
| |
| /* parse cr and anar to get some info */ |
| { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */ |
| { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, |
| { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_qs6612_ack_int[] = { |
| /* we need to read ISR, SR and ANER to acknowledge */ |
| { mk_mii_read(MII_QS6612_ISR), NULL }, |
| { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| { mk_mii_read(MII_REG_ANER), NULL }, |
| |
| /* read pcr to get info */ |
| { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */ |
| { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, |
| { mk_mii_end, } |
| }; |
| static phy_info_t const phy_info_qs6612 = { |
| .id = 0x00181440, |
| .name = "QS6612", |
| .config = phy_cmd_qs6612_config, |
| .startup = phy_cmd_qs6612_startup, |
| .ack_int = phy_cmd_qs6612_ack_int, |
| .shutdown = phy_cmd_qs6612_shutdown |
| }; |
| |
| /* ------------------------------------------------------------------------- */ |
| /* AMD AM79C874 phy */ |
| |
| /* register definitions for the 874 */ |
| |
| #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */ |
| #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */ |
| #define MII_AM79C874_DR 18 /* Diagnostic Register */ |
| #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */ |
| #define MII_AM79C874_MCR 21 /* ModeControl Register */ |
| #define MII_AM79C874_DC 23 /* Disconnect Counter */ |
| #define MII_AM79C874_REC 24 /* Recieve Error Counter */ |
| |
| static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile uint *s = &(fep->phy_status); |
| uint status; |
| |
| status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC); |
| |
| if (mii_reg & 0x0080) |
| status |= PHY_STAT_ANC; |
| if (mii_reg & 0x0400) |
| status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX); |
| else |
| status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX); |
| |
| *s = status; |
| } |
| |
| static phy_cmd_t const phy_cmd_am79c874_config[] = { |
| { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */ |
| { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL }, |
| { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_am79c874_ack_int[] = { |
| /* find out the current status */ |
| { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, |
| /* we only need to read ISR to acknowledge */ |
| { mk_mii_read(MII_AM79C874_ICSR), NULL }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */ |
| { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL }, |
| { mk_mii_end, } |
| }; |
| static phy_info_t const phy_info_am79c874 = { |
| .id = 0x00022561, |
| .name = "AM79C874", |
| .config = phy_cmd_am79c874_config, |
| .startup = phy_cmd_am79c874_startup, |
| .ack_int = phy_cmd_am79c874_ack_int, |
| .shutdown = phy_cmd_am79c874_shutdown |
| }; |
| |
| |
| /* ------------------------------------------------------------------------- */ |
| /* Kendin KS8721BL phy */ |
| |
| /* register definitions for the 8721 */ |
| |
| #define MII_KS8721BL_RXERCR 21 |
| #define MII_KS8721BL_ICSR 22 |
| #define MII_KS8721BL_PHYCR 31 |
| |
| static phy_cmd_t const phy_cmd_ks8721bl_config[] = { |
| { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */ |
| { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL }, |
| { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = { |
| /* find out the current status */ |
| { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| /* we only need to read ISR to acknowledge */ |
| { mk_mii_read(MII_KS8721BL_ICSR), NULL }, |
| { mk_mii_end, } |
| }; |
| static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */ |
| { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL }, |
| { mk_mii_end, } |
| }; |
| static phy_info_t const phy_info_ks8721bl = { |
| .id = 0x00022161, |
| .name = "KS8721BL", |
| .config = phy_cmd_ks8721bl_config, |
| .startup = phy_cmd_ks8721bl_startup, |
| .ack_int = phy_cmd_ks8721bl_ack_int, |
| .shutdown = phy_cmd_ks8721bl_shutdown |
| }; |
| |
| /* ------------------------------------------------------------------------- */ |
| /* register definitions for the DP83848 */ |
| |
| #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */ |
| |
| static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep = dev->priv; |
| volatile uint *s = &(fep->phy_status); |
| |
| *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); |
| |
| /* Link up */ |
| if (mii_reg & 0x0001) { |
| fep->link = 1; |
| *s |= PHY_STAT_LINK; |
| } else |
| fep->link = 0; |
| /* Status of link */ |
| if (mii_reg & 0x0010) /* Autonegotioation complete */ |
| *s |= PHY_STAT_ANC; |
| if (mii_reg & 0x0002) { /* 10MBps? */ |
| if (mii_reg & 0x0004) /* Full Duplex? */ |
| *s |= PHY_STAT_10FDX; |
| else |
| *s |= PHY_STAT_10HDX; |
| } else { /* 100 Mbps? */ |
| if (mii_reg & 0x0004) /* Full Duplex? */ |
| *s |= PHY_STAT_100FDX; |
| else |
| *s |= PHY_STAT_100HDX; |
| } |
| if (mii_reg & 0x0008) |
| *s |= PHY_STAT_FAULT; |
| } |
| |
| static phy_info_t phy_info_dp83848= { |
| 0x020005c9, |
| "DP83848", |
| |
| (const phy_cmd_t []) { /* config */ |
| { mk_mii_read(MII_REG_CR), mii_parse_cr }, |
| { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, |
| { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* startup - enable interrupts */ |
| { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ |
| { mk_mii_read(MII_REG_SR), mii_parse_sr }, |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */ |
| { mk_mii_end, } |
| }, |
| (const phy_cmd_t []) { /* shutdown */ |
| { mk_mii_end, } |
| }, |
| }; |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| static phy_info_t const * const phy_info[] = { |
| &phy_info_lxt970, |
| &phy_info_lxt971, |
| &phy_info_qs6612, |
| &phy_info_am79c874, |
| &phy_info_ks8721bl, |
| &phy_info_dp83848, |
| NULL |
| }; |
| |
| /* ------------------------------------------------------------------------- */ |
| #if !defined(CONFIG_M532x) |
| #ifdef CONFIG_RPXCLASSIC |
| static void |
| mii_link_interrupt(void *dev_id); |
| #else |
| static irqreturn_t |
| mii_link_interrupt(int irq, void * dev_id); |
| #endif |
| #endif |
| |
| #if defined(CONFIG_M5272) |
| |
| /* |
| * Code specific to Coldfire 5272 setup. |
| */ |
| static void __inline__ fec_request_intrs(struct net_device *dev) |
| { |
| volatile unsigned long *icrp; |
| static const struct idesc { |
| char *name; |
| unsigned short irq; |
| irq_handler_t handler; |
| } *idp, id[] = { |
| { "fec(RX)", 86, fec_enet_interrupt }, |
| { "fec(TX)", 87, fec_enet_interrupt }, |
| { "fec(OTHER)", 88, fec_enet_interrupt }, |
| { "fec(MII)", 66, mii_link_interrupt }, |
| { NULL }, |
| }; |
| |
| /* Setup interrupt handlers. */ |
| for (idp = id; idp->name; idp++) { |
| if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0) |
| printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq); |
| } |
| |
| /* Unmask interrupt at ColdFire 5272 SIM */ |
| icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3); |
| *icrp = 0x00000ddd; |
| icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); |
| *icrp = (*icrp & 0x70777777) | 0x0d000000; |
| } |
| |
| static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) |
| { |
| volatile fec_t *fecp; |
| |
| fecp = fep->hwp; |
| fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; |
| fecp->fec_x_cntrl = 0x00; |
| |
| /* |
| * Set MII speed to 2.5 MHz |
| * See 5272 manual section 11.5.8: MSCR |
| */ |
| fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2; |
| fecp->fec_mii_speed = fep->phy_speed; |
| |
| fec_restart(dev, 0); |
| } |
| |
| static void __inline__ fec_get_mac(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile fec_t *fecp; |
| unsigned char *iap, tmpaddr[ETH_ALEN]; |
| |
| fecp = fep->hwp; |
| |
| if (FEC_FLASHMAC) { |
| /* |
| * Get MAC address from FLASH. |
| * If it is all 1's or 0's, use the default. |
| */ |
| iap = (unsigned char *)FEC_FLASHMAC; |
| if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && |
| (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) |
| iap = fec_mac_default; |
| if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && |
| (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) |
| iap = fec_mac_default; |
| } else { |
| *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; |
| *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); |
| iap = &tmpaddr[0]; |
| } |
| |
| memcpy(dev->dev_addr, iap, ETH_ALEN); |
| |
| /* Adjust MAC if using default MAC address */ |
| if (iap == fec_mac_default) |
| dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; |
| } |
| |
| static void __inline__ fec_enable_phy_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_disable_phy_intr(void) |
| { |
| volatile unsigned long *icrp; |
| icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); |
| *icrp = (*icrp & 0x70777777) | 0x08000000; |
| } |
| |
| static void __inline__ fec_phy_ack_intr(void) |
| { |
| volatile unsigned long *icrp; |
| /* Acknowledge the interrupt */ |
| icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); |
| *icrp = (*icrp & 0x77777777) | 0x08000000; |
| } |
| |
| static void __inline__ fec_localhw_setup(void) |
| { |
| } |
| |
| /* |
| * Do not need to make region uncached on 5272. |
| */ |
| static void __inline__ fec_uncache(unsigned long addr) |
| { |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) |
| |
| /* |
| * Code specific to Coldfire 5230/5231/5232/5234/5235, |
| * the 5270/5271/5274/5275 and 5280/5282 setups. |
| */ |
| static void __inline__ fec_request_intrs(struct net_device *dev) |
| { |
| struct fec_enet_private *fep; |
| int b; |
| static const struct idesc { |
| char *name; |
| unsigned short irq; |
| } *idp, id[] = { |
| { "fec(TXF)", 23 }, |
| { "fec(TXB)", 24 }, |
| { "fec(TXFIFO)", 25 }, |
| { "fec(TXCR)", 26 }, |
| { "fec(RXF)", 27 }, |
| { "fec(RXB)", 28 }, |
| { "fec(MII)", 29 }, |
| { "fec(LC)", 30 }, |
| { "fec(HBERR)", 31 }, |
| { "fec(GRA)", 32 }, |
| { "fec(EBERR)", 33 }, |
| { "fec(BABT)", 34 }, |
| { "fec(BABR)", 35 }, |
| { NULL }, |
| }; |
| |
| fep = netdev_priv(dev); |
| b = (fep->index) ? 128 : 64; |
| |
| /* Setup interrupt handlers. */ |
| for (idp = id; idp->name; idp++) { |
| if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0) |
| printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq); |
| } |
| |
| /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */ |
| { |
| volatile unsigned char *icrp; |
| volatile unsigned long *imrp; |
| int i, ilip; |
| |
| b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0; |
| icrp = (volatile unsigned char *) (MCF_IPSBAR + b + |
| MCFINTC_ICR0); |
| for (i = 23, ilip = 0x28; (i < 36); i++) |
| icrp[i] = ilip--; |
| |
| imrp = (volatile unsigned long *) (MCF_IPSBAR + b + |
| MCFINTC_IMRH); |
| *imrp &= ~0x0000000f; |
| imrp = (volatile unsigned long *) (MCF_IPSBAR + b + |
| MCFINTC_IMRL); |
| *imrp &= ~0xff800001; |
| } |
| |
| #if defined(CONFIG_M528x) |
| /* Set up gpio outputs for MII lines */ |
| { |
| volatile u16 *gpio_paspar; |
| volatile u8 *gpio_pehlpar; |
| |
| gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056); |
| gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058); |
| *gpio_paspar |= 0x0f00; |
| *gpio_pehlpar = 0xc0; |
| } |
| #endif |
| } |
| |
| static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) |
| { |
| volatile fec_t *fecp; |
| |
| fecp = fep->hwp; |
| fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; |
| fecp->fec_x_cntrl = 0x00; |
| |
| /* |
| * Set MII speed to 2.5 MHz |
| * See 5282 manual section 17.5.4.7: MSCR |
| */ |
| fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; |
| fecp->fec_mii_speed = fep->phy_speed; |
| |
| fec_restart(dev, 0); |
| } |
| |
| static void __inline__ fec_get_mac(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile fec_t *fecp; |
| unsigned char *iap, tmpaddr[ETH_ALEN]; |
| |
| fecp = fep->hwp; |
| |
| if (FEC_FLASHMAC) { |
| /* |
| * Get MAC address from FLASH. |
| * If it is all 1's or 0's, use the default. |
| */ |
| iap = FEC_FLASHMAC; |
| if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && |
| (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) |
| iap = fec_mac_default; |
| if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && |
| (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) |
| iap = fec_mac_default; |
| } else { |
| *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; |
| *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); |
| iap = &tmpaddr[0]; |
| } |
| |
| memcpy(dev->dev_addr, iap, ETH_ALEN); |
| |
| /* Adjust MAC if using default MAC address */ |
| if (iap == fec_mac_default) |
| dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; |
| } |
| |
| static void __inline__ fec_enable_phy_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_disable_phy_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_phy_ack_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_localhw_setup(void) |
| { |
| } |
| |
| /* |
| * Do not need to make region uncached on 5272. |
| */ |
| static void __inline__ fec_uncache(unsigned long addr) |
| { |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| #elif defined(CONFIG_M520x) |
| |
| /* |
| * Code specific to Coldfire 520x |
| */ |
| static void __inline__ fec_request_intrs(struct net_device *dev) |
| { |
| struct fec_enet_private *fep; |
| int b; |
| static const struct idesc { |
| char *name; |
| unsigned short irq; |
| } *idp, id[] = { |
| { "fec(TXF)", 23 }, |
| { "fec(TXB)", 24 }, |
| { "fec(TXFIFO)", 25 }, |
| { "fec(TXCR)", 26 }, |
| { "fec(RXF)", 27 }, |
| { "fec(RXB)", 28 }, |
| { "fec(MII)", 29 }, |
| { "fec(LC)", 30 }, |
| { "fec(HBERR)", 31 }, |
| { "fec(GRA)", 32 }, |
| { "fec(EBERR)", 33 }, |
| { "fec(BABT)", 34 }, |
| { "fec(BABR)", 35 }, |
| { NULL }, |
| }; |
| |
| fep = netdev_priv(dev); |
| b = 64 + 13; |
| |
| /* Setup interrupt handlers. */ |
| for (idp = id; idp->name; idp++) { |
| if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0) |
| printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq); |
| } |
| |
| /* Unmask interrupts at ColdFire interrupt controller */ |
| { |
| volatile unsigned char *icrp; |
| volatile unsigned long *imrp; |
| |
| icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 + |
| MCFINTC_ICR0); |
| for (b = 36; (b < 49); b++) |
| icrp[b] = 0x04; |
| imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 + |
| MCFINTC_IMRH); |
| *imrp &= ~0x0001FFF0; |
| } |
| *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0; |
| *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f; |
| } |
| |
| static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) |
| { |
| volatile fec_t *fecp; |
| |
| fecp = fep->hwp; |
| fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; |
| fecp->fec_x_cntrl = 0x00; |
| |
| /* |
| * Set MII speed to 2.5 MHz |
| * See 5282 manual section 17.5.4.7: MSCR |
| */ |
| fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; |
| fecp->fec_mii_speed = fep->phy_speed; |
| |
| fec_restart(dev, 0); |
| } |
| |
| static void __inline__ fec_get_mac(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile fec_t *fecp; |
| unsigned char *iap, tmpaddr[ETH_ALEN]; |
| |
| fecp = fep->hwp; |
| |
| if (FEC_FLASHMAC) { |
| /* |
| * Get MAC address from FLASH. |
| * If it is all 1's or 0's, use the default. |
| */ |
| iap = FEC_FLASHMAC; |
| if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && |
| (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) |
| iap = fec_mac_default; |
| if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && |
| (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) |
| iap = fec_mac_default; |
| } else { |
| *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; |
| *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); |
| iap = &tmpaddr[0]; |
| } |
| |
| memcpy(dev->dev_addr, iap, ETH_ALEN); |
| |
| /* Adjust MAC if using default MAC address */ |
| if (iap == fec_mac_default) |
| dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; |
| } |
| |
| static void __inline__ fec_enable_phy_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_disable_phy_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_phy_ack_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_localhw_setup(void) |
| { |
| } |
| |
| static void __inline__ fec_uncache(unsigned long addr) |
| { |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| #elif defined(CONFIG_M532x) |
| /* |
| * Code specific for M532x |
| */ |
| static void __inline__ fec_request_intrs(struct net_device *dev) |
| { |
| struct fec_enet_private *fep; |
| int b; |
| static const struct idesc { |
| char *name; |
| unsigned short irq; |
| } *idp, id[] = { |
| { "fec(TXF)", 36 }, |
| { "fec(TXB)", 37 }, |
| { "fec(TXFIFO)", 38 }, |
| { "fec(TXCR)", 39 }, |
| { "fec(RXF)", 40 }, |
| { "fec(RXB)", 41 }, |
| { "fec(MII)", 42 }, |
| { "fec(LC)", 43 }, |
| { "fec(HBERR)", 44 }, |
| { "fec(GRA)", 45 }, |
| { "fec(EBERR)", 46 }, |
| { "fec(BABT)", 47 }, |
| { "fec(BABR)", 48 }, |
| { NULL }, |
| }; |
| |
| fep = netdev_priv(dev); |
| b = (fep->index) ? 128 : 64; |
| |
| /* Setup interrupt handlers. */ |
| for (idp = id; idp->name; idp++) { |
| if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0) |
| printk("FEC: Could not allocate %s IRQ(%d)!\n", |
| idp->name, b+idp->irq); |
| } |
| |
| /* Unmask interrupts */ |
| MCF_INTC0_ICR36 = 0x2; |
| MCF_INTC0_ICR37 = 0x2; |
| MCF_INTC0_ICR38 = 0x2; |
| MCF_INTC0_ICR39 = 0x2; |
| MCF_INTC0_ICR40 = 0x2; |
| MCF_INTC0_ICR41 = 0x2; |
| MCF_INTC0_ICR42 = 0x2; |
| MCF_INTC0_ICR43 = 0x2; |
| MCF_INTC0_ICR44 = 0x2; |
| MCF_INTC0_ICR45 = 0x2; |
| MCF_INTC0_ICR46 = 0x2; |
| MCF_INTC0_ICR47 = 0x2; |
| MCF_INTC0_ICR48 = 0x2; |
| |
| MCF_INTC0_IMRH &= ~( |
| MCF_INTC_IMRH_INT_MASK36 | |
| MCF_INTC_IMRH_INT_MASK37 | |
| MCF_INTC_IMRH_INT_MASK38 | |
| MCF_INTC_IMRH_INT_MASK39 | |
| MCF_INTC_IMRH_INT_MASK40 | |
| MCF_INTC_IMRH_INT_MASK41 | |
| MCF_INTC_IMRH_INT_MASK42 | |
| MCF_INTC_IMRH_INT_MASK43 | |
| MCF_INTC_IMRH_INT_MASK44 | |
| MCF_INTC_IMRH_INT_MASK45 | |
| MCF_INTC_IMRH_INT_MASK46 | |
| MCF_INTC_IMRH_INT_MASK47 | |
| MCF_INTC_IMRH_INT_MASK48 ); |
| |
| /* Set up gpio outputs for MII lines */ |
| MCF_GPIO_PAR_FECI2C |= (0 | |
| MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC | |
| MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO); |
| MCF_GPIO_PAR_FEC = (0 | |
| MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC | |
| MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC); |
| } |
| |
| static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) |
| { |
| volatile fec_t *fecp; |
| |
| fecp = fep->hwp; |
| fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; |
| fecp->fec_x_cntrl = 0x00; |
| |
| /* |
| * Set MII speed to 2.5 MHz |
| */ |
| fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; |
| fecp->fec_mii_speed = fep->phy_speed; |
| |
| fec_restart(dev, 0); |
| } |
| |
| static void __inline__ fec_get_mac(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile fec_t *fecp; |
| unsigned char *iap, tmpaddr[ETH_ALEN]; |
| |
| fecp = fep->hwp; |
| |
| if (FEC_FLASHMAC) { |
| /* |
| * Get MAC address from FLASH. |
| * If it is all 1's or 0's, use the default. |
| */ |
| iap = FEC_FLASHMAC; |
| if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && |
| (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) |
| iap = fec_mac_default; |
| if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && |
| (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) |
| iap = fec_mac_default; |
| } else { |
| *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; |
| *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); |
| iap = &tmpaddr[0]; |
| } |
| |
| memcpy(dev->dev_addr, iap, ETH_ALEN); |
| |
| /* Adjust MAC if using default MAC address */ |
| if (iap == fec_mac_default) |
| dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; |
| } |
| |
| static void __inline__ fec_enable_phy_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_disable_phy_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_phy_ack_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_localhw_setup(void) |
| { |
| } |
| |
| /* |
| * Do not need to make region uncached on 532x. |
| */ |
| static void __inline__ fec_uncache(unsigned long addr) |
| { |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| |
| #else |
| |
| /* |
| * Code specific to the MPC860T setup. |
| */ |
| static void __inline__ fec_request_intrs(struct net_device *dev) |
| { |
| volatile immap_t *immap; |
| |
| immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ |
| |
| if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0) |
| panic("Could not allocate FEC IRQ!"); |
| |
| #ifdef CONFIG_RPXCLASSIC |
| /* Make Port C, bit 15 an input that causes interrupts. |
| */ |
| immap->im_ioport.iop_pcpar &= ~0x0001; |
| immap->im_ioport.iop_pcdir &= ~0x0001; |
| immap->im_ioport.iop_pcso &= ~0x0001; |
| immap->im_ioport.iop_pcint |= 0x0001; |
| cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev); |
| |
| /* Make LEDS reflect Link status. |
| */ |
| *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE; |
| #endif |
| #ifdef CONFIG_FADS |
| if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0) |
| panic("Could not allocate MII IRQ!"); |
| #endif |
| } |
| |
| static void __inline__ fec_get_mac(struct net_device *dev) |
| { |
| bd_t *bd; |
| |
| bd = (bd_t *)__res; |
| memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN); |
| |
| #ifdef CONFIG_RPXCLASSIC |
| /* The Embedded Planet boards have only one MAC address in |
| * the EEPROM, but can have two Ethernet ports. For the |
| * FEC port, we create another address by setting one of |
| * the address bits above something that would have (up to |
| * now) been allocated. |
| */ |
| dev->dev_adrd[3] |= 0x80; |
| #endif |
| } |
| |
| static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) |
| { |
| extern uint _get_IMMR(void); |
| volatile immap_t *immap; |
| volatile fec_t *fecp; |
| |
| fecp = fep->hwp; |
| immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ |
| |
| /* Configure all of port D for MII. |
| */ |
| immap->im_ioport.iop_pdpar = 0x1fff; |
| |
| /* Bits moved from Rev. D onward. |
| */ |
| if ((_get_IMMR() & 0xffff) < 0x0501) |
| immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */ |
| else |
| immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */ |
| |
| /* Set MII speed to 2.5 MHz |
| */ |
| fecp->fec_mii_speed = fep->phy_speed = |
| ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e; |
| } |
| |
| static void __inline__ fec_enable_phy_intr(void) |
| { |
| volatile fec_t *fecp; |
| |
| fecp = fep->hwp; |
| |
| /* Enable MII command finished interrupt |
| */ |
| fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; |
| } |
| |
| static void __inline__ fec_disable_phy_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_phy_ack_intr(void) |
| { |
| } |
| |
| static void __inline__ fec_localhw_setup(void) |
| { |
| volatile fec_t *fecp; |
| |
| fecp = fep->hwp; |
| fecp->fec_r_hash = PKT_MAXBUF_SIZE; |
| /* Enable big endian and don't care about SDMA FC. |
| */ |
| fecp->fec_fun_code = 0x78000000; |
| } |
| |
| static void __inline__ fec_uncache(unsigned long addr) |
| { |
| pte_t *pte; |
| pte = va_to_pte(mem_addr); |
| pte_val(*pte) |= _PAGE_NO_CACHE; |
| flush_tlb_page(init_mm.mmap, mem_addr); |
| } |
| |
| #endif |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| static void mii_display_status(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| volatile uint *s = &(fep->phy_status); |
| |
| if (!fep->link && !fep->old_link) { |
| /* Link is still down - don't print anything */ |
| return; |
| } |
| |
| printk("%s: status: ", dev->name); |
| |
| if (!fep->link) { |
| printk("link down"); |
| } else { |
| printk("link up"); |
| |
| switch(*s & PHY_STAT_SPMASK) { |
| case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break; |
| case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break; |
| case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break; |
| case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break; |
| default: |
| printk(", Unknown speed/duplex"); |
| } |
| |
| if (*s & PHY_STAT_ANC) |
| printk(", auto-negotiation complete"); |
| } |
| |
| if (*s & PHY_STAT_FAULT) |
| printk(", remote fault"); |
| |
| printk(".\n"); |
| } |
| |
| static void mii_display_config(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| uint status = fep->phy_status; |
| |
| /* |
| ** When we get here, phy_task is already removed from |
| ** the workqueue. It is thus safe to allow to reuse it. |
| */ |
| fep->mii_phy_task_queued = 0; |
| printk("%s: config: auto-negotiation ", dev->name); |
| |
| if (status & PHY_CONF_ANE) |
| printk("on"); |
| else |
| printk("off"); |
| |
| if (status & PHY_CONF_100FDX) |
| printk(", 100FDX"); |
| if (status & PHY_CONF_100HDX) |
| printk(", 100HDX"); |
| if (status & PHY_CONF_10FDX) |
| printk(", 10FDX"); |
| if (status & PHY_CONF_10HDX) |
| printk(", 10HDX"); |
| if (!(status & PHY_CONF_SPMASK)) |
| printk(", No speed/duplex selected?"); |
| |
| if (status & PHY_CONF_LOOP) |
| printk(", loopback enabled"); |
| |
| printk(".\n"); |
| |
| fep->sequence_done = 1; |
| } |
| |
| static void mii_relink(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| int duplex; |
| |
| /* |
| ** When we get here, phy_task is already removed from |
| ** the workqueue. It is thus safe to allow to reuse it. |
| */ |
| fep->mii_phy_task_queued = 0; |
| fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; |
| mii_display_status(dev); |
| fep->old_link = fep->link; |
| |
| if (fep->link) { |
| duplex = 0; |
| if (fep->phy_status |
| & (PHY_STAT_100FDX | PHY_STAT_10FDX)) |
| duplex = 1; |
| fec_restart(dev, duplex); |
| } |
| else |
| fec_stop(dev); |
| |
| #if 0 |
| enable_irq(fep->mii_irq); |
| #endif |
| |
| } |
| |
| /* mii_queue_relink is called in interrupt context from mii_link_interrupt */ |
| static void mii_queue_relink(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| /* |
| ** We cannot queue phy_task twice in the workqueue. It |
| ** would cause an endless loop in the workqueue. |
| ** Fortunately, if the last mii_relink entry has not yet been |
| ** executed now, it will do the job for the current interrupt, |
| ** which is just what we want. |
| */ |
| if (fep->mii_phy_task_queued) |
| return; |
| |
| fep->mii_phy_task_queued = 1; |
| INIT_WORK(&fep->phy_task, (void*)mii_relink, dev); |
| schedule_work(&fep->phy_task); |
| } |
| |
| /* mii_queue_config is called in interrupt context from fec_enet_mii */ |
| static void mii_queue_config(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| if (fep->mii_phy_task_queued) |
| return; |
| |
| fep->mii_phy_task_queued = 1; |
| INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev); |
| schedule_work(&fep->phy_task); |
| } |
| |
| phy_cmd_t const phy_cmd_relink[] = { |
| { mk_mii_read(MII_REG_CR), mii_queue_relink }, |
| { mk_mii_end, } |
| }; |
| phy_cmd_t const phy_cmd_config[] = { |
| { mk_mii_read(MII_REG_CR), mii_queue_config }, |
| { mk_mii_end, } |
| }; |
| |
| /* Read remainder of PHY ID. |
| */ |
| static void |
| mii_discover_phy3(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep; |
| int i; |
| |
| fep = netdev_priv(dev); |
| fep->phy_id |= (mii_reg & 0xffff); |
| printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id); |
| |
| for(i = 0; phy_info[i]; i++) { |
| if(phy_info[i]->id == (fep->phy_id >> 4)) |
| break; |
| } |
| |
| if (phy_info[i]) |
| printk(" -- %s\n", phy_info[i]->name); |
| else |
| printk(" -- unknown PHY!\n"); |
| |
| fep->phy = phy_info[i]; |
| fep->phy_id_done = 1; |
| } |
| |
| /* Scan all of the MII PHY addresses looking for someone to respond |
| * with a valid ID. This usually happens quickly. |
| */ |
| static void |
| mii_discover_phy(uint mii_reg, struct net_device *dev) |
| { |
| struct fec_enet_private *fep; |
| volatile fec_t *fecp; |
| uint phytype; |
| |
| fep = netdev_priv(dev); |
| fecp = fep->hwp; |
| |
| if (fep->phy_addr < 32) { |
| if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) { |
| |
| /* Got first part of ID, now get remainder. |
| */ |
| fep->phy_id = phytype << 16; |
| mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), |
| mii_discover_phy3); |
| } |
| else { |
| fep->phy_addr++; |
| mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), |
| mii_discover_phy); |
| } |
| } else { |
| printk("FEC: No PHY device found.\n"); |
| /* Disable external MII interface */ |
| fecp->fec_mii_speed = fep->phy_speed = 0; |
| fec_disable_phy_intr(); |
| } |
| } |
| |
| /* This interrupt occurs when the PHY detects a link change. |
| */ |
| #ifdef CONFIG_RPXCLASSIC |
| static void |
| mii_link_interrupt(void *dev_id) |
| #else |
| static irqreturn_t |
| mii_link_interrupt(int irq, void * dev_id) |
| #endif |
| { |
| struct net_device *dev = dev_id; |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| fec_phy_ack_intr(); |
| |
| #if 0 |
| disable_irq(fep->mii_irq); /* disable now, enable later */ |
| #endif |
| |
| mii_do_cmd(dev, fep->phy->ack_int); |
| mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int |
| fec_enet_open(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| /* I should reset the ring buffers here, but I don't yet know |
| * a simple way to do that. |
| */ |
| fec_set_mac_address(dev); |
| |
| fep->sequence_done = 0; |
| fep->link = 0; |
| |
| if (fep->phy) { |
| mii_do_cmd(dev, fep->phy->ack_int); |
| mii_do_cmd(dev, fep->phy->config); |
| mii_do_cmd(dev, phy_cmd_config); /* display configuration */ |
| |
| /* Poll until the PHY tells us its configuration |
| * (not link state). |
| * Request is initiated by mii_do_cmd above, but answer |
| * comes by interrupt. |
| * This should take about 25 usec per register at 2.5 MHz, |
| * and we read approximately 5 registers. |
| */ |
| while(!fep->sequence_done) |
| schedule(); |
| |
| mii_do_cmd(dev, fep->phy->startup); |
| |
| /* Set the initial link state to true. A lot of hardware |
| * based on this device does not implement a PHY interrupt, |
| * so we are never notified of link change. |
| */ |
| fep->link = 1; |
| } else { |
| fep->link = 1; /* lets just try it and see */ |
| /* no phy, go full duplex, it's most likely a hub chip */ |
| fec_restart(dev, 1); |
| } |
| |
| netif_start_queue(dev); |
| fep->opened = 1; |
| return 0; /* Success */ |
| } |
| |
| static int |
| fec_enet_close(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| /* Don't know what to do yet. |
| */ |
| fep->opened = 0; |
| netif_stop_queue(dev); |
| fec_stop(dev); |
| |
| return 0; |
| } |
| |
| static struct net_device_stats *fec_enet_get_stats(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| |
| return &fep->stats; |
| } |
| |
| /* Set or clear the multicast filter for this adaptor. |
| * Skeleton taken from sunlance driver. |
| * The CPM Ethernet implementation allows Multicast as well as individual |
| * MAC address filtering. Some of the drivers check to make sure it is |
| * a group multicast address, and discard those that are not. I guess I |
| * will do the same for now, but just remove the test if you want |
| * individual filtering as well (do the upper net layers want or support |
| * this kind of feature?). |
| */ |
| |
| #define HASH_BITS 6 /* #bits in hash */ |
| #define CRC32_POLY 0xEDB88320 |
| |
| static void set_multicast_list(struct net_device *dev) |
| { |
| struct fec_enet_private *fep; |
| volatile fec_t *ep; |
| struct dev_mc_list *dmi; |
| unsigned int i, j, bit, data, crc; |
| unsigned char hash; |
| |
| fep = netdev_priv(dev); |
| ep = fep->hwp; |
| |
| if (dev->flags&IFF_PROMISC) { |
| ep->fec_r_cntrl |= 0x0008; |
| } else { |
| |
| ep->fec_r_cntrl &= ~0x0008; |
| |
| if (dev->flags & IFF_ALLMULTI) { |
| /* Catch all multicast addresses, so set the |
| * filter to all 1's. |
| */ |
| ep->fec_hash_table_high = 0xffffffff; |
| ep->fec_hash_table_low = 0xffffffff; |
| } else { |
| /* Clear filter and add the addresses in hash register. |
| */ |
| ep->fec_hash_table_high = 0; |
| ep->fec_hash_table_low = 0; |
| |
| dmi = dev->mc_list; |
| |
| for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) |
| { |
| /* Only support group multicast for now. |
| */ |
| if (!(dmi->dmi_addr[0] & 1)) |
| continue; |
| |
| /* calculate crc32 value of mac address |
| */ |
| crc = 0xffffffff; |
| |
| for (i = 0; i < dmi->dmi_addrlen; i++) |
| { |
| data = dmi->dmi_addr[i]; |
| for (bit = 0; bit < 8; bit++, data >>= 1) |
| { |
| crc = (crc >> 1) ^ |
| (((crc ^ data) & 1) ? CRC32_POLY : 0); |
| } |
| } |
| |
| /* only upper 6 bits (HASH_BITS) are used |
| which point to specific bit in he hash registers |
| */ |
| hash = (crc >> (32 - HASH_BITS)) & 0x3f; |
| |
| if (hash > 31) |
| ep->fec_hash_table_high |= 1 << (hash - 32); |
| else |
| ep->fec_hash_table_low |= 1 << hash; |
| } |
| } |
| } |
| } |
| |
| /* Set a MAC change in hardware. |
| */ |
| static void |
| fec_set_mac_address(struct net_device *dev) |
| { |
| volatile fec_t *fecp; |
| |
| fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp; |
| |
| /* Set station address. */ |
| fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) | |
| (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24); |
| fecp->fec_addr_high = (dev->dev_addr[5] << 16) | |
| (dev->dev_addr[4] << 24); |
| |
| } |
| |
| /* Initialize the FEC Ethernet on 860T (or ColdFire 5272). |
| */ |
| /* |
| * XXX: We need to clean up on failure exits here. |
| */ |
| int __init fec_enet_init(struct net_device *dev) |
| { |
| struct fec_enet_private *fep = netdev_priv(dev); |
| unsigned long mem_addr; |
| volatile cbd_t *bdp; |
| cbd_t *cbd_base; |
| volatile fec_t *fecp; |
| int i, j; |
| static int index = 0; |
| |
| /* Only allow us to be probed once. */ |
| if (index >= FEC_MAX_PORTS) |
| return -ENXIO; |
| |
| /* Allocate memory for buffer descriptors. |
| */ |
| mem_addr = __get_free_page(GFP_KERNEL); |
| if (mem_addr == 0) { |
| printk("FEC: allocate descriptor memory failed?\n"); |
| return -ENOMEM; |
| } |
| |
| /* Create an Ethernet device instance. |
| */ |
| fecp = (volatile fec_t *) fec_hw[index]; |
| |
| fep->index = index; |
| fep->hwp = fecp; |
| |
| /* Whack a reset. We should wait for this. |
| */ |
| fecp->fec_ecntrl = 1; |
| udelay(10); |
| |
| /* Set the Ethernet address. If using multiple Enets on the 8xx, |
| * this needs some work to get unique addresses. |
| * |
| * This is our default MAC address unless the user changes |
| * it via eth_mac_addr (our dev->set_mac_addr handler). |
| */ |
| fec_get_mac(dev); |
| |
| cbd_base = (cbd_t *)mem_addr; |
| /* XXX: missing check for allocation failure */ |
| |
| fec_uncache(mem_addr); |
| |
| /* Set receive and transmit descriptor base. |
| */ |
| fep->rx_bd_base = cbd_base; |
| fep->tx_bd_base = cbd_base + RX_RING_SIZE; |
| |
| fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; |
| fep->cur_rx = fep->rx_bd_base; |
| |
| fep->skb_cur = fep->skb_dirty = 0; |
| |
| /* Initialize the receive buffer descriptors. |
| */ |
| bdp = fep->rx_bd_base; |
| for (i=0; i<FEC_ENET_RX_PAGES; i++) { |
| |
| /* Allocate a page. |
| */ |
| mem_addr = __get_free_page(GFP_KERNEL); |
| /* XXX: missing check for allocation failure */ |
| |
| fec_uncache(mem_addr); |
| |
| /* Initialize the BD for every fragment in the page. |
| */ |
| for (j=0; j<FEC_ENET_RX_FRPPG; j++) { |
| bdp->cbd_sc = BD_ENET_RX_EMPTY; |
| bdp->cbd_bufaddr = __pa(mem_addr); |
| mem_addr += FEC_ENET_RX_FRSIZE; |
| bdp++; |
| } |
| } |
| |
| /* Set the last buffer to wrap. |
| */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| /* ...and the same for transmmit. |
| */ |
| bdp = fep->tx_bd_base; |
| for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) { |
| if (j >= FEC_ENET_TX_FRPPG) { |
| mem_addr = __get_free_page(GFP_KERNEL); |
| j = 1; |
| } else { |
| mem_addr += FEC_ENET_TX_FRSIZE; |
| j++; |
| } |
| fep->tx_bounce[i] = (unsigned char *) mem_addr; |
| |
| /* Initialize the BD for every fragment in the page. |
| */ |
| bdp->cbd_sc = 0; |
| bdp->cbd_bufaddr = 0; |
| bdp++; |
| } |
| |
| /* Set the last buffer to wrap. |
| */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| /* Set receive and transmit descriptor base. |
| */ |
| fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); |
| fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); |
| |
| /* Install our interrupt handlers. This varies depending on |
| * the architecture. |
| */ |
| fec_request_intrs(dev); |
| |
| fecp->fec_hash_table_high = 0; |
| fecp->fec_hash_table_low = 0; |
| fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; |
| fecp->fec_ecntrl = 2; |
| fecp->fec_r_des_active = 0; |
| |
| dev->base_addr = (unsigned long)fecp; |
| |
| /* The FEC Ethernet specific entries in the device structure. */ |
| dev->open = fec_enet_open; |
| dev->hard_start_xmit = fec_enet_start_xmit; |
| dev->tx_timeout = fec_timeout; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| dev->stop = fec_enet_close; |
| dev->get_stats = fec_enet_get_stats; |
| dev->set_multicast_list = set_multicast_list; |
| |
| for (i=0; i<NMII-1; i++) |
| mii_cmds[i].mii_next = &mii_cmds[i+1]; |
| mii_free = mii_cmds; |
| |
| /* setup MII interface */ |
| fec_set_mii(dev, fep); |
| |
| /* Clear and enable interrupts */ |
| fecp->fec_ievent = 0xffc00000; |
| fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | |
| FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); |
| |
| /* Queue up command to detect the PHY and initialize the |
| * remainder of the interface. |
| */ |
| fep->phy_id_done = 0; |
| fep->phy_addr = 0; |
| mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); |
| |
| index++; |
| return 0; |
| } |
| |
| /* This function is called to start or restart the FEC during a link |
| * change. This only happens when switching between half and full |
| * duplex. |
| */ |
| static void |
| fec_restart(struct net_device *dev, int duplex) |
| { |
| struct fec_enet_private *fep; |
| volatile cbd_t *bdp; |
| volatile fec_t *fecp; |
| int i; |
| |
| fep = netdev_priv(dev); |
| fecp = fep->hwp; |
| |
| /* Whack a reset. We should wait for this. |
| */ |
| fecp->fec_ecntrl = 1; |
| udelay(10); |
| |
| /* Clear any outstanding interrupt. |
| */ |
| fecp->fec_ievent = 0xffc00000; |
| fec_enable_phy_intr(); |
| |
| /* Set station address. |
| */ |
| fec_set_mac_address(dev); |
| |
| /* Reset all multicast. |
| */ |
| fecp->fec_hash_table_high = 0; |
| fecp->fec_hash_table_low = 0; |
| |
| /* Set maximum receive buffer size. |
| */ |
| fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; |
| |
| fec_localhw_setup(); |
| |
| /* Set receive and transmit descriptor base. |
| */ |
| fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); |
| fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); |
| |
| fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; |
| fep->cur_rx = fep->rx_bd_base; |
| |
| /* Reset SKB transmit buffers. |
| */ |
| fep->skb_cur = fep->skb_dirty = 0; |
| for (i=0; i<=TX_RING_MOD_MASK; i++) { |
| if (fep->tx_skbuff[i] != NULL) { |
| dev_kfree_skb_any(fep->tx_skbuff[i]); |
| fep->tx_skbuff[i] = NULL; |
| } |
| } |
| |
| /* Initialize the receive buffer descriptors. |
| */ |
| bdp = fep->rx_bd_base; |
| for (i=0; i<RX_RING_SIZE; i++) { |
| |
| /* Initialize the BD for every fragment in the page. |
| */ |
| bdp->cbd_sc = BD_ENET_RX_EMPTY; |
| bdp++; |
| } |
| |
| /* Set the last buffer to wrap. |
| */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| /* ...and the same for transmmit. |
| */ |
| bdp = fep->tx_bd_base; |
| for (i=0; i<TX_RING_SIZE; i++) { |
| |
| /* Initialize the BD for every fragment in the page. |
| */ |
| bdp->cbd_sc = 0; |
| bdp->cbd_bufaddr = 0; |
| bdp++; |
| } |
| |
| /* Set the last buffer to wrap. |
| */ |
| bdp--; |
| bdp->cbd_sc |= BD_SC_WRAP; |
| |
| /* Enable MII mode. |
| */ |
| if (duplex) { |
| fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */ |
| fecp->fec_x_cntrl = 0x04; /* FD enable */ |
| } |
| else { |
| /* MII enable|No Rcv on Xmit */ |
| fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06; |
| fecp->fec_x_cntrl = 0x00; |
| } |
| fep->full_duplex = duplex; |
| |
| /* Set MII speed. |
| */ |
| fecp->fec_mii_speed = fep->phy_speed; |
| |
| /* And last, enable the transmit and receive processing. |
| */ |
| fecp->fec_ecntrl = 2; |
| fecp->fec_r_des_active = 0; |
| |
| /* Enable interrupts we wish to service. |
| */ |
| fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | |
| FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); |
| } |
| |
| static void |
| fec_stop(struct net_device *dev) |
| { |
| volatile fec_t *fecp; |
| struct fec_enet_private *fep; |
| |
| fep = netdev_priv(dev); |
| fecp = fep->hwp; |
| |
| /* |
| ** We cannot expect a graceful transmit stop without link !!! |
| */ |
| if (fep->link) |
| { |
| fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */ |
| udelay(10); |
| if (!(fecp->fec_ievent & FEC_ENET_GRA)) |
| printk("fec_stop : Graceful transmit stop did not complete !\n"); |
| } |
| |
| /* Whack a reset. We should wait for this. |
| */ |
| fecp->fec_ecntrl = 1; |
| udelay(10); |
| |
| /* Clear outstanding MII command interrupts. |
| */ |
| fecp->fec_ievent = FEC_ENET_MII; |
| fec_enable_phy_intr(); |
| |
| fecp->fec_imask = FEC_ENET_MII; |
| fecp->fec_mii_speed = fep->phy_speed; |
| } |
| |
| static int __init fec_enet_module_init(void) |
| { |
| struct net_device *dev; |
| int i, j, err; |
| |
| printk("FEC ENET Version 0.2\n"); |
| |
| for (i = 0; (i < FEC_MAX_PORTS); i++) { |
| dev = alloc_etherdev(sizeof(struct fec_enet_private)); |
| if (!dev) |
| return -ENOMEM; |
| err = fec_enet_init(dev); |
| if (err) { |
| free_netdev(dev); |
| continue; |
| } |
| if (register_netdev(dev) != 0) { |
| /* XXX: missing cleanup here */ |
| free_netdev(dev); |
| return -EIO; |
| } |
| |
| printk("%s: ethernet ", dev->name); |
| for (j = 0; (j < 5); j++) |
| printk("%02x:", dev->dev_addr[j]); |
| printk("%02x\n", dev->dev_addr[5]); |
| } |
| return 0; |
| } |
| |
| module_init(fec_enet_module_init); |
| |
| MODULE_LICENSE("GPL"); |