| /* |
| * Copyright (c) 2007 Mellanox Technologies. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| * |
| */ |
| |
| #include <asm/page.h> |
| #include <linux/mlx4/cq.h> |
| #include <linux/slab.h> |
| #include <linux/mlx4/qp.h> |
| #include <linux/skbuff.h> |
| #include <linux/if_vlan.h> |
| #include <linux/prefetch.h> |
| #include <linux/vmalloc.h> |
| #include <linux/tcp.h> |
| #include <linux/ip.h> |
| #include <linux/moduleparam.h> |
| |
| #include "mlx4_en.h" |
| |
| int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, |
| struct mlx4_en_tx_ring **pring, u32 size, |
| u16 stride, int node, int queue_index) |
| { |
| struct mlx4_en_dev *mdev = priv->mdev; |
| struct mlx4_en_tx_ring *ring; |
| int tmp; |
| int err; |
| |
| ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node); |
| if (!ring) { |
| ring = kzalloc(sizeof(*ring), GFP_KERNEL); |
| if (!ring) { |
| en_err(priv, "Failed allocating TX ring\n"); |
| return -ENOMEM; |
| } |
| } |
| |
| ring->size = size; |
| ring->size_mask = size - 1; |
| ring->stride = stride; |
| ring->full_size = ring->size - HEADROOM - MAX_DESC_TXBBS; |
| |
| tmp = size * sizeof(struct mlx4_en_tx_info); |
| ring->tx_info = kmalloc_node(tmp, GFP_KERNEL | __GFP_NOWARN, node); |
| if (!ring->tx_info) { |
| ring->tx_info = vmalloc(tmp); |
| if (!ring->tx_info) { |
| err = -ENOMEM; |
| goto err_ring; |
| } |
| } |
| |
| en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n", |
| ring->tx_info, tmp); |
| |
| ring->bounce_buf = kmalloc_node(MAX_DESC_SIZE, GFP_KERNEL, node); |
| if (!ring->bounce_buf) { |
| ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL); |
| if (!ring->bounce_buf) { |
| err = -ENOMEM; |
| goto err_info; |
| } |
| } |
| ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE); |
| |
| /* Allocate HW buffers on provided NUMA node */ |
| set_dev_node(&mdev->dev->persist->pdev->dev, node); |
| err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size, |
| 2 * PAGE_SIZE); |
| set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node); |
| if (err) { |
| en_err(priv, "Failed allocating hwq resources\n"); |
| goto err_bounce; |
| } |
| |
| err = mlx4_en_map_buffer(&ring->wqres.buf); |
| if (err) { |
| en_err(priv, "Failed to map TX buffer\n"); |
| goto err_hwq_res; |
| } |
| |
| ring->buf = ring->wqres.buf.direct.buf; |
| |
| en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d buf_size:%d dma:%llx\n", |
| ring, ring->buf, ring->size, ring->buf_size, |
| (unsigned long long) ring->wqres.buf.direct.map); |
| |
| err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn, |
| MLX4_RESERVE_ETH_BF_QP); |
| if (err) { |
| en_err(priv, "failed reserving qp for TX ring\n"); |
| goto err_map; |
| } |
| |
| err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp, GFP_KERNEL); |
| if (err) { |
| en_err(priv, "Failed allocating qp %d\n", ring->qpn); |
| goto err_reserve; |
| } |
| ring->qp.event = mlx4_en_sqp_event; |
| |
| err = mlx4_bf_alloc(mdev->dev, &ring->bf, node); |
| if (err) { |
| en_dbg(DRV, priv, "working without blueflame (%d)\n", err); |
| ring->bf.uar = &mdev->priv_uar; |
| ring->bf.uar->map = mdev->uar_map; |
| ring->bf_enabled = false; |
| ring->bf_alloced = false; |
| priv->pflags &= ~MLX4_EN_PRIV_FLAGS_BLUEFLAME; |
| } else { |
| ring->bf_alloced = true; |
| ring->bf_enabled = !!(priv->pflags & |
| MLX4_EN_PRIV_FLAGS_BLUEFLAME); |
| } |
| |
| ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type; |
| ring->queue_index = queue_index; |
| |
| if (queue_index < priv->num_tx_rings_p_up) |
| cpumask_set_cpu(cpumask_local_spread(queue_index, |
| priv->mdev->dev->numa_node), |
| &ring->affinity_mask); |
| |
| *pring = ring; |
| return 0; |
| |
| err_reserve: |
| mlx4_qp_release_range(mdev->dev, ring->qpn, 1); |
| err_map: |
| mlx4_en_unmap_buffer(&ring->wqres.buf); |
| err_hwq_res: |
| mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); |
| err_bounce: |
| kfree(ring->bounce_buf); |
| ring->bounce_buf = NULL; |
| err_info: |
| kvfree(ring->tx_info); |
| ring->tx_info = NULL; |
| err_ring: |
| kfree(ring); |
| *pring = NULL; |
| return err; |
| } |
| |
| void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, |
| struct mlx4_en_tx_ring **pring) |
| { |
| struct mlx4_en_dev *mdev = priv->mdev; |
| struct mlx4_en_tx_ring *ring = *pring; |
| en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn); |
| |
| if (ring->bf_alloced) |
| mlx4_bf_free(mdev->dev, &ring->bf); |
| mlx4_qp_remove(mdev->dev, &ring->qp); |
| mlx4_qp_free(mdev->dev, &ring->qp); |
| mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1); |
| mlx4_en_unmap_buffer(&ring->wqres.buf); |
| mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); |
| kfree(ring->bounce_buf); |
| ring->bounce_buf = NULL; |
| kvfree(ring->tx_info); |
| ring->tx_info = NULL; |
| kfree(ring); |
| *pring = NULL; |
| } |
| |
| int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, |
| struct mlx4_en_tx_ring *ring, |
| int cq, int user_prio) |
| { |
| struct mlx4_en_dev *mdev = priv->mdev; |
| int err; |
| |
| ring->cqn = cq; |
| ring->prod = 0; |
| ring->cons = 0xffffffff; |
| ring->last_nr_txbb = 1; |
| memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info)); |
| memset(ring->buf, 0, ring->buf_size); |
| |
| ring->qp_state = MLX4_QP_STATE_RST; |
| ring->doorbell_qpn = cpu_to_be32(ring->qp.qpn << 8); |
| ring->mr_key = cpu_to_be32(mdev->mr.key); |
| |
| mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn, |
| ring->cqn, user_prio, &ring->context); |
| if (ring->bf_alloced) |
| ring->context.usr_page = |
| cpu_to_be32(mlx4_to_hw_uar_index(mdev->dev, |
| ring->bf.uar->index)); |
| |
| err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context, |
| &ring->qp, &ring->qp_state); |
| if (!cpumask_empty(&ring->affinity_mask)) |
| netif_set_xps_queue(priv->dev, &ring->affinity_mask, |
| ring->queue_index); |
| |
| return err; |
| } |
| |
| void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, |
| struct mlx4_en_tx_ring *ring) |
| { |
| struct mlx4_en_dev *mdev = priv->mdev; |
| |
| mlx4_qp_modify(mdev->dev, NULL, ring->qp_state, |
| MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp); |
| } |
| |
| static inline bool mlx4_en_is_tx_ring_full(struct mlx4_en_tx_ring *ring) |
| { |
| return ring->prod - ring->cons > ring->full_size; |
| } |
| |
| static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv, |
| struct mlx4_en_tx_ring *ring, int index, |
| u8 owner) |
| { |
| __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT)); |
| struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE; |
| struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; |
| void *end = ring->buf + ring->buf_size; |
| __be32 *ptr = (__be32 *)tx_desc; |
| int i; |
| |
| /* Optimize the common case when there are no wraparounds */ |
| if (likely((void *)tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) { |
| /* Stamp the freed descriptor */ |
| for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; |
| i += STAMP_STRIDE) { |
| *ptr = stamp; |
| ptr += STAMP_DWORDS; |
| } |
| } else { |
| /* Stamp the freed descriptor */ |
| for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; |
| i += STAMP_STRIDE) { |
| *ptr = stamp; |
| ptr += STAMP_DWORDS; |
| if ((void *)ptr >= end) { |
| ptr = ring->buf; |
| stamp ^= cpu_to_be32(0x80000000); |
| } |
| } |
| } |
| } |
| |
| |
| static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, |
| struct mlx4_en_tx_ring *ring, |
| int index, u8 owner, u64 timestamp) |
| { |
| struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; |
| struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE; |
| struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset; |
| void *end = ring->buf + ring->buf_size; |
| struct sk_buff *skb = tx_info->skb; |
| int nr_maps = tx_info->nr_maps; |
| int i; |
| |
| /* We do not touch skb here, so prefetch skb->users location |
| * to speedup consume_skb() |
| */ |
| prefetchw(&skb->users); |
| |
| if (unlikely(timestamp)) { |
| struct skb_shared_hwtstamps hwts; |
| |
| mlx4_en_fill_hwtstamps(priv->mdev, &hwts, timestamp); |
| skb_tstamp_tx(skb, &hwts); |
| } |
| |
| /* Optimize the common case when there are no wraparounds */ |
| if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) { |
| if (!tx_info->inl) { |
| if (tx_info->linear) |
| dma_unmap_single(priv->ddev, |
| tx_info->map0_dma, |
| tx_info->map0_byte_count, |
| PCI_DMA_TODEVICE); |
| else |
| dma_unmap_page(priv->ddev, |
| tx_info->map0_dma, |
| tx_info->map0_byte_count, |
| PCI_DMA_TODEVICE); |
| for (i = 1; i < nr_maps; i++) { |
| data++; |
| dma_unmap_page(priv->ddev, |
| (dma_addr_t)be64_to_cpu(data->addr), |
| be32_to_cpu(data->byte_count), |
| PCI_DMA_TODEVICE); |
| } |
| } |
| } else { |
| if (!tx_info->inl) { |
| if ((void *) data >= end) { |
| data = ring->buf + ((void *)data - end); |
| } |
| |
| if (tx_info->linear) |
| dma_unmap_single(priv->ddev, |
| tx_info->map0_dma, |
| tx_info->map0_byte_count, |
| PCI_DMA_TODEVICE); |
| else |
| dma_unmap_page(priv->ddev, |
| tx_info->map0_dma, |
| tx_info->map0_byte_count, |
| PCI_DMA_TODEVICE); |
| for (i = 1; i < nr_maps; i++) { |
| data++; |
| /* Check for wraparound before unmapping */ |
| if ((void *) data >= end) |
| data = ring->buf; |
| dma_unmap_page(priv->ddev, |
| (dma_addr_t)be64_to_cpu(data->addr), |
| be32_to_cpu(data->byte_count), |
| PCI_DMA_TODEVICE); |
| } |
| } |
| } |
| dev_consume_skb_any(skb); |
| return tx_info->nr_txbb; |
| } |
| |
| |
| int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring) |
| { |
| struct mlx4_en_priv *priv = netdev_priv(dev); |
| int cnt = 0; |
| |
| /* Skip last polled descriptor */ |
| ring->cons += ring->last_nr_txbb; |
| en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n", |
| ring->cons, ring->prod); |
| |
| if ((u32) (ring->prod - ring->cons) > ring->size) { |
| if (netif_msg_tx_err(priv)) |
| en_warn(priv, "Tx consumer passed producer!\n"); |
| return 0; |
| } |
| |
| while (ring->cons != ring->prod) { |
| ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring, |
| ring->cons & ring->size_mask, |
| !!(ring->cons & ring->size), 0); |
| ring->cons += ring->last_nr_txbb; |
| cnt++; |
| } |
| |
| netdev_tx_reset_queue(ring->tx_queue); |
| |
| if (cnt) |
| en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt); |
| |
| return cnt; |
| } |
| |
| static bool mlx4_en_process_tx_cq(struct net_device *dev, |
| struct mlx4_en_cq *cq) |
| { |
| struct mlx4_en_priv *priv = netdev_priv(dev); |
| struct mlx4_cq *mcq = &cq->mcq; |
| struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; |
| struct mlx4_cqe *cqe; |
| u16 index; |
| u16 new_index, ring_index, stamp_index; |
| u32 txbbs_skipped = 0; |
| u32 txbbs_stamp = 0; |
| u32 cons_index = mcq->cons_index; |
| int size = cq->size; |
| u32 size_mask = ring->size_mask; |
| struct mlx4_cqe *buf = cq->buf; |
| u32 packets = 0; |
| u32 bytes = 0; |
| int factor = priv->cqe_factor; |
| u64 timestamp = 0; |
| int done = 0; |
| int budget = priv->tx_work_limit; |
| u32 last_nr_txbb; |
| u32 ring_cons; |
| |
| if (!priv->port_up) |
| return true; |
| |
| netdev_txq_bql_complete_prefetchw(ring->tx_queue); |
| |
| index = cons_index & size_mask; |
| cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor; |
| last_nr_txbb = ACCESS_ONCE(ring->last_nr_txbb); |
| ring_cons = ACCESS_ONCE(ring->cons); |
| ring_index = ring_cons & size_mask; |
| stamp_index = ring_index; |
| |
| /* Process all completed CQEs */ |
| while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, |
| cons_index & size) && (done < budget)) { |
| /* |
| * make sure we read the CQE after we read the |
| * ownership bit |
| */ |
| dma_rmb(); |
| |
| if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == |
| MLX4_CQE_OPCODE_ERROR)) { |
| struct mlx4_err_cqe *cqe_err = (struct mlx4_err_cqe *)cqe; |
| |
| en_err(priv, "CQE error - vendor syndrome: 0x%x syndrome: 0x%x\n", |
| cqe_err->vendor_err_syndrome, |
| cqe_err->syndrome); |
| } |
| |
| /* Skip over last polled CQE */ |
| new_index = be16_to_cpu(cqe->wqe_index) & size_mask; |
| |
| do { |
| txbbs_skipped += last_nr_txbb; |
| ring_index = (ring_index + last_nr_txbb) & size_mask; |
| if (ring->tx_info[ring_index].ts_requested) |
| timestamp = mlx4_en_get_cqe_ts(cqe); |
| |
| /* free next descriptor */ |
| last_nr_txbb = mlx4_en_free_tx_desc( |
| priv, ring, ring_index, |
| !!((ring_cons + txbbs_skipped) & |
| ring->size), timestamp); |
| |
| mlx4_en_stamp_wqe(priv, ring, stamp_index, |
| !!((ring_cons + txbbs_stamp) & |
| ring->size)); |
| stamp_index = ring_index; |
| txbbs_stamp = txbbs_skipped; |
| packets++; |
| bytes += ring->tx_info[ring_index].nr_bytes; |
| } while ((++done < budget) && (ring_index != new_index)); |
| |
| ++cons_index; |
| index = cons_index & size_mask; |
| cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor; |
| } |
| |
| |
| /* |
| * To prevent CQ overflow we first update CQ consumer and only then |
| * the ring consumer. |
| */ |
| mcq->cons_index = cons_index; |
| mlx4_cq_set_ci(mcq); |
| wmb(); |
| |
| /* we want to dirty this cache line once */ |
| ACCESS_ONCE(ring->last_nr_txbb) = last_nr_txbb; |
| ACCESS_ONCE(ring->cons) = ring_cons + txbbs_skipped; |
| |
| netdev_tx_completed_queue(ring->tx_queue, packets, bytes); |
| |
| /* Wakeup Tx queue if this stopped, and ring is not full. |
| */ |
| if (netif_tx_queue_stopped(ring->tx_queue) && |
| !mlx4_en_is_tx_ring_full(ring)) { |
| netif_tx_wake_queue(ring->tx_queue); |
| ring->wake_queue++; |
| } |
| return done < budget; |
| } |
| |
| void mlx4_en_tx_irq(struct mlx4_cq *mcq) |
| { |
| struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); |
| struct mlx4_en_priv *priv = netdev_priv(cq->dev); |
| |
| if (likely(priv->port_up)) |
| napi_schedule_irqoff(&cq->napi); |
| else |
| mlx4_en_arm_cq(priv, cq); |
| } |
| |
| /* TX CQ polling - called by NAPI */ |
| int mlx4_en_poll_tx_cq(struct napi_struct *napi, int budget) |
| { |
| struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); |
| struct net_device *dev = cq->dev; |
| struct mlx4_en_priv *priv = netdev_priv(dev); |
| int clean_complete; |
| |
| clean_complete = mlx4_en_process_tx_cq(dev, cq); |
| if (!clean_complete) |
| return budget; |
| |
| napi_complete(napi); |
| mlx4_en_arm_cq(priv, cq); |
| |
| return 0; |
| } |
| |
| static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv, |
| struct mlx4_en_tx_ring *ring, |
| u32 index, |
| unsigned int desc_size) |
| { |
| u32 copy = (ring->size - index) * TXBB_SIZE; |
| int i; |
| |
| for (i = desc_size - copy - 4; i >= 0; i -= 4) { |
| if ((i & (TXBB_SIZE - 1)) == 0) |
| wmb(); |
| |
| *((u32 *) (ring->buf + i)) = |
| *((u32 *) (ring->bounce_buf + copy + i)); |
| } |
| |
| for (i = copy - 4; i >= 4 ; i -= 4) { |
| if ((i & (TXBB_SIZE - 1)) == 0) |
| wmb(); |
| |
| *((u32 *) (ring->buf + index * TXBB_SIZE + i)) = |
| *((u32 *) (ring->bounce_buf + i)); |
| } |
| |
| /* Return real descriptor location */ |
| return ring->buf + index * TXBB_SIZE; |
| } |
| |
| /* Decide if skb can be inlined in tx descriptor to avoid dma mapping |
| * |
| * It seems strange we do not simply use skb_copy_bits(). |
| * This would allow to inline all skbs iff skb->len <= inline_thold |
| * |
| * Note that caller already checked skb was not a gso packet |
| */ |
| static bool is_inline(int inline_thold, const struct sk_buff *skb, |
| const struct skb_shared_info *shinfo, |
| void **pfrag) |
| { |
| void *ptr; |
| |
| if (skb->len > inline_thold || !inline_thold) |
| return false; |
| |
| if (shinfo->nr_frags == 1) { |
| ptr = skb_frag_address_safe(&shinfo->frags[0]); |
| if (unlikely(!ptr)) |
| return false; |
| *pfrag = ptr; |
| return true; |
| } |
| if (shinfo->nr_frags) |
| return false; |
| return true; |
| } |
| |
| static int inline_size(const struct sk_buff *skb) |
| { |
| if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg) |
| <= MLX4_INLINE_ALIGN) |
| return ALIGN(skb->len + CTRL_SIZE + |
| sizeof(struct mlx4_wqe_inline_seg), 16); |
| else |
| return ALIGN(skb->len + CTRL_SIZE + 2 * |
| sizeof(struct mlx4_wqe_inline_seg), 16); |
| } |
| |
| static int get_real_size(const struct sk_buff *skb, |
| const struct skb_shared_info *shinfo, |
| struct net_device *dev, |
| int *lso_header_size, |
| bool *inline_ok, |
| void **pfrag) |
| { |
| struct mlx4_en_priv *priv = netdev_priv(dev); |
| int real_size; |
| |
| if (shinfo->gso_size) { |
| *inline_ok = false; |
| if (skb->encapsulation) |
| *lso_header_size = (skb_inner_transport_header(skb) - skb->data) + inner_tcp_hdrlen(skb); |
| else |
| *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| real_size = CTRL_SIZE + shinfo->nr_frags * DS_SIZE + |
| ALIGN(*lso_header_size + 4, DS_SIZE); |
| if (unlikely(*lso_header_size != skb_headlen(skb))) { |
| /* We add a segment for the skb linear buffer only if |
| * it contains data */ |
| if (*lso_header_size < skb_headlen(skb)) |
| real_size += DS_SIZE; |
| else { |
| if (netif_msg_tx_err(priv)) |
| en_warn(priv, "Non-linear headers\n"); |
| return 0; |
| } |
| } |
| } else { |
| *lso_header_size = 0; |
| *inline_ok = is_inline(priv->prof->inline_thold, skb, |
| shinfo, pfrag); |
| |
| if (*inline_ok) |
| real_size = inline_size(skb); |
| else |
| real_size = CTRL_SIZE + |
| (shinfo->nr_frags + 1) * DS_SIZE; |
| } |
| |
| return real_size; |
| } |
| |
| static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, |
| const struct sk_buff *skb, |
| const struct skb_shared_info *shinfo, |
| int real_size, u16 *vlan_tag, |
| int tx_ind, void *fragptr) |
| { |
| struct mlx4_wqe_inline_seg *inl = &tx_desc->inl; |
| int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl; |
| unsigned int hlen = skb_headlen(skb); |
| |
| if (skb->len <= spc) { |
| if (likely(skb->len >= MIN_PKT_LEN)) { |
| inl->byte_count = cpu_to_be32(1 << 31 | skb->len); |
| } else { |
| inl->byte_count = cpu_to_be32(1 << 31 | MIN_PKT_LEN); |
| memset(((void *)(inl + 1)) + skb->len, 0, |
| MIN_PKT_LEN - skb->len); |
| } |
| skb_copy_from_linear_data(skb, inl + 1, hlen); |
| if (shinfo->nr_frags) |
| memcpy(((void *)(inl + 1)) + hlen, fragptr, |
| skb_frag_size(&shinfo->frags[0])); |
| |
| } else { |
| inl->byte_count = cpu_to_be32(1 << 31 | spc); |
| if (hlen <= spc) { |
| skb_copy_from_linear_data(skb, inl + 1, hlen); |
| if (hlen < spc) { |
| memcpy(((void *)(inl + 1)) + hlen, |
| fragptr, spc - hlen); |
| fragptr += spc - hlen; |
| } |
| inl = (void *) (inl + 1) + spc; |
| memcpy(((void *)(inl + 1)), fragptr, skb->len - spc); |
| } else { |
| skb_copy_from_linear_data(skb, inl + 1, spc); |
| inl = (void *) (inl + 1) + spc; |
| skb_copy_from_linear_data_offset(skb, spc, inl + 1, |
| hlen - spc); |
| if (shinfo->nr_frags) |
| memcpy(((void *)(inl + 1)) + hlen - spc, |
| fragptr, |
| skb_frag_size(&shinfo->frags[0])); |
| } |
| |
| dma_wmb(); |
| inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc)); |
| } |
| } |
| |
| u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb, |
| void *accel_priv, select_queue_fallback_t fallback) |
| { |
| struct mlx4_en_priv *priv = netdev_priv(dev); |
| u16 rings_p_up = priv->num_tx_rings_p_up; |
| u8 up = 0; |
| |
| if (dev->num_tc) |
| return skb_tx_hash(dev, skb); |
| |
| if (skb_vlan_tag_present(skb)) |
| up = skb_vlan_tag_get(skb) >> VLAN_PRIO_SHIFT; |
| |
| return fallback(dev, skb) % rings_p_up + up * rings_p_up; |
| } |
| |
| static void mlx4_bf_copy(void __iomem *dst, const void *src, |
| unsigned int bytecnt) |
| { |
| __iowrite64_copy(dst, src, bytecnt / 8); |
| } |
| |
| netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct skb_shared_info *shinfo = skb_shinfo(skb); |
| struct mlx4_en_priv *priv = netdev_priv(dev); |
| struct device *ddev = priv->ddev; |
| struct mlx4_en_tx_ring *ring; |
| struct mlx4_en_tx_desc *tx_desc; |
| struct mlx4_wqe_data_seg *data; |
| struct mlx4_en_tx_info *tx_info; |
| int tx_ind = 0; |
| int nr_txbb; |
| int desc_size; |
| int real_size; |
| u32 index, bf_index; |
| __be32 op_own; |
| u16 vlan_tag = 0; |
| u16 vlan_proto = 0; |
| int i_frag; |
| int lso_header_size; |
| void *fragptr = NULL; |
| bool bounce = false; |
| bool send_doorbell; |
| bool stop_queue; |
| bool inline_ok; |
| u32 ring_cons; |
| |
| if (!priv->port_up) |
| goto tx_drop; |
| |
| tx_ind = skb_get_queue_mapping(skb); |
| ring = priv->tx_ring[tx_ind]; |
| |
| /* fetch ring->cons far ahead before needing it to avoid stall */ |
| ring_cons = ACCESS_ONCE(ring->cons); |
| |
| real_size = get_real_size(skb, shinfo, dev, &lso_header_size, |
| &inline_ok, &fragptr); |
| if (unlikely(!real_size)) |
| goto tx_drop; |
| |
| /* Align descriptor to TXBB size */ |
| desc_size = ALIGN(real_size, TXBB_SIZE); |
| nr_txbb = desc_size / TXBB_SIZE; |
| if (unlikely(nr_txbb > MAX_DESC_TXBBS)) { |
| if (netif_msg_tx_err(priv)) |
| en_warn(priv, "Oversized header or SG list\n"); |
| goto tx_drop; |
| } |
| |
| if (skb_vlan_tag_present(skb)) { |
| vlan_tag = skb_vlan_tag_get(skb); |
| vlan_proto = be16_to_cpu(skb->vlan_proto); |
| } |
| |
| netdev_txq_bql_enqueue_prefetchw(ring->tx_queue); |
| |
| /* Track current inflight packets for performance analysis */ |
| AVG_PERF_COUNTER(priv->pstats.inflight_avg, |
| (u32)(ring->prod - ring_cons - 1)); |
| |
| /* Packet is good - grab an index and transmit it */ |
| index = ring->prod & ring->size_mask; |
| bf_index = ring->prod; |
| |
| /* See if we have enough space for whole descriptor TXBB for setting |
| * SW ownership on next descriptor; if not, use a bounce buffer. */ |
| if (likely(index + nr_txbb <= ring->size)) |
| tx_desc = ring->buf + index * TXBB_SIZE; |
| else { |
| tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf; |
| bounce = true; |
| } |
| |
| /* Save skb in tx_info ring */ |
| tx_info = &ring->tx_info[index]; |
| tx_info->skb = skb; |
| tx_info->nr_txbb = nr_txbb; |
| |
| data = &tx_desc->data; |
| if (lso_header_size) |
| data = ((void *)&tx_desc->lso + ALIGN(lso_header_size + 4, |
| DS_SIZE)); |
| |
| /* valid only for none inline segments */ |
| tx_info->data_offset = (void *)data - (void *)tx_desc; |
| |
| tx_info->inl = inline_ok; |
| |
| tx_info->linear = (lso_header_size < skb_headlen(skb) && |
| !inline_ok) ? 1 : 0; |
| |
| tx_info->nr_maps = shinfo->nr_frags + tx_info->linear; |
| data += tx_info->nr_maps - 1; |
| |
| if (!tx_info->inl) { |
| dma_addr_t dma = 0; |
| u32 byte_count = 0; |
| |
| /* Map fragments if any */ |
| for (i_frag = shinfo->nr_frags - 1; i_frag >= 0; i_frag--) { |
| const struct skb_frag_struct *frag; |
| |
| frag = &shinfo->frags[i_frag]; |
| byte_count = skb_frag_size(frag); |
| dma = skb_frag_dma_map(ddev, frag, |
| 0, byte_count, |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(ddev, dma)) |
| goto tx_drop_unmap; |
| |
| data->addr = cpu_to_be64(dma); |
| data->lkey = ring->mr_key; |
| dma_wmb(); |
| data->byte_count = cpu_to_be32(byte_count); |
| --data; |
| } |
| |
| /* Map linear part if needed */ |
| if (tx_info->linear) { |
| byte_count = skb_headlen(skb) - lso_header_size; |
| |
| dma = dma_map_single(ddev, skb->data + |
| lso_header_size, byte_count, |
| PCI_DMA_TODEVICE); |
| if (dma_mapping_error(ddev, dma)) |
| goto tx_drop_unmap; |
| |
| data->addr = cpu_to_be64(dma); |
| data->lkey = ring->mr_key; |
| dma_wmb(); |
| data->byte_count = cpu_to_be32(byte_count); |
| } |
| /* tx completion can avoid cache line miss for common cases */ |
| tx_info->map0_dma = dma; |
| tx_info->map0_byte_count = byte_count; |
| } |
| |
| /* |
| * For timestamping add flag to skb_shinfo and |
| * set flag for further reference |
| */ |
| tx_info->ts_requested = 0; |
| if (unlikely(ring->hwtstamp_tx_type == HWTSTAMP_TX_ON && |
| shinfo->tx_flags & SKBTX_HW_TSTAMP)) { |
| shinfo->tx_flags |= SKBTX_IN_PROGRESS; |
| tx_info->ts_requested = 1; |
| } |
| |
| /* Prepare ctrl segement apart opcode+ownership, which depends on |
| * whether LSO is used */ |
| tx_desc->ctrl.srcrb_flags = priv->ctrl_flags; |
| if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { |
| if (!skb->encapsulation) |
| tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM | |
| MLX4_WQE_CTRL_TCP_UDP_CSUM); |
| else |
| tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM); |
| ring->tx_csum++; |
| } |
| |
| if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) { |
| struct ethhdr *ethh; |
| |
| /* Copy dst mac address to wqe. This allows loopback in eSwitch, |
| * so that VFs and PF can communicate with each other |
| */ |
| ethh = (struct ethhdr *)skb->data; |
| tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest); |
| tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2)); |
| } |
| |
| /* Handle LSO (TSO) packets */ |
| if (lso_header_size) { |
| int i; |
| |
| /* Mark opcode as LSO */ |
| op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) | |
| ((ring->prod & ring->size) ? |
| cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); |
| |
| /* Fill in the LSO prefix */ |
| tx_desc->lso.mss_hdr_size = cpu_to_be32( |
| shinfo->gso_size << 16 | lso_header_size); |
| |
| /* Copy headers; |
| * note that we already verified that it is linear */ |
| memcpy(tx_desc->lso.header, skb->data, lso_header_size); |
| |
| ring->tso_packets++; |
| |
| i = ((skb->len - lso_header_size) / shinfo->gso_size) + |
| !!((skb->len - lso_header_size) % shinfo->gso_size); |
| tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size; |
| ring->packets += i; |
| } else { |
| /* Normal (Non LSO) packet */ |
| op_own = cpu_to_be32(MLX4_OPCODE_SEND) | |
| ((ring->prod & ring->size) ? |
| cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); |
| tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN); |
| ring->packets++; |
| } |
| ring->bytes += tx_info->nr_bytes; |
| netdev_tx_sent_queue(ring->tx_queue, tx_info->nr_bytes); |
| AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len); |
| |
| if (tx_info->inl) |
| build_inline_wqe(tx_desc, skb, shinfo, real_size, &vlan_tag, |
| tx_ind, fragptr); |
| |
| if (skb->encapsulation) { |
| struct iphdr *ipv4 = (struct iphdr *)skb_inner_network_header(skb); |
| if (ipv4->protocol == IPPROTO_TCP || ipv4->protocol == IPPROTO_UDP) |
| op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP | MLX4_WQE_CTRL_ILP); |
| else |
| op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP); |
| } |
| |
| ring->prod += nr_txbb; |
| |
| /* If we used a bounce buffer then copy descriptor back into place */ |
| if (unlikely(bounce)) |
| tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size); |
| |
| skb_tx_timestamp(skb); |
| |
| /* Check available TXBBs And 2K spare for prefetch */ |
| stop_queue = mlx4_en_is_tx_ring_full(ring); |
| if (unlikely(stop_queue)) { |
| netif_tx_stop_queue(ring->tx_queue); |
| ring->queue_stopped++; |
| } |
| send_doorbell = !skb->xmit_more || netif_xmit_stopped(ring->tx_queue); |
| |
| real_size = (real_size / 16) & 0x3f; |
| |
| if (ring->bf_enabled && desc_size <= MAX_BF && !bounce && |
| !skb_vlan_tag_present(skb) && send_doorbell) { |
| tx_desc->ctrl.bf_qpn = ring->doorbell_qpn | |
| cpu_to_be32(real_size); |
| |
| op_own |= htonl((bf_index & 0xffff) << 8); |
| /* Ensure new descriptor hits memory |
| * before setting ownership of this descriptor to HW |
| */ |
| dma_wmb(); |
| tx_desc->ctrl.owner_opcode = op_own; |
| |
| wmb(); |
| |
| mlx4_bf_copy(ring->bf.reg + ring->bf.offset, &tx_desc->ctrl, |
| desc_size); |
| |
| wmb(); |
| |
| ring->bf.offset ^= ring->bf.buf_size; |
| } else { |
| tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag); |
| if (vlan_proto == ETH_P_8021AD) |
| tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_SVLAN; |
| else if (vlan_proto == ETH_P_8021Q) |
| tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_CVLAN; |
| else |
| tx_desc->ctrl.ins_vlan = 0; |
| |
| tx_desc->ctrl.fence_size = real_size; |
| |
| /* Ensure new descriptor hits memory |
| * before setting ownership of this descriptor to HW |
| */ |
| dma_wmb(); |
| tx_desc->ctrl.owner_opcode = op_own; |
| if (send_doorbell) { |
| wmb(); |
| /* Since there is no iowrite*_native() that writes the |
| * value as is, without byteswapping - using the one |
| * the doesn't do byteswapping in the relevant arch |
| * endianness. |
| */ |
| #if defined(__LITTLE_ENDIAN) |
| iowrite32( |
| #else |
| iowrite32be( |
| #endif |
| ring->doorbell_qpn, |
| ring->bf.uar->map + MLX4_SEND_DOORBELL); |
| } else { |
| ring->xmit_more++; |
| } |
| } |
| |
| if (unlikely(stop_queue)) { |
| /* If queue was emptied after the if (stop_queue) , and before |
| * the netif_tx_stop_queue() - need to wake the queue, |
| * or else it will remain stopped forever. |
| * Need a memory barrier to make sure ring->cons was not |
| * updated before queue was stopped. |
| */ |
| smp_rmb(); |
| |
| ring_cons = ACCESS_ONCE(ring->cons); |
| if (unlikely(!mlx4_en_is_tx_ring_full(ring))) { |
| netif_tx_wake_queue(ring->tx_queue); |
| ring->wake_queue++; |
| } |
| } |
| return NETDEV_TX_OK; |
| |
| tx_drop_unmap: |
| en_err(priv, "DMA mapping error\n"); |
| |
| while (++i_frag < shinfo->nr_frags) { |
| ++data; |
| dma_unmap_page(ddev, (dma_addr_t) be64_to_cpu(data->addr), |
| be32_to_cpu(data->byte_count), |
| PCI_DMA_TODEVICE); |
| } |
| |
| tx_drop: |
| dev_kfree_skb_any(skb); |
| priv->stats.tx_dropped++; |
| return NETDEV_TX_OK; |
| } |
| |