| /* |
| * This file contains an ECC algorithm that detects and corrects 1 bit |
| * errors in a 256 byte block of data. |
| * |
| * drivers/mtd/nand/nand_ecc.c |
| * |
| * Copyright © 2008 Koninklijke Philips Electronics NV. |
| * Author: Frans Meulenbroeks |
| * |
| * Completely replaces the previous ECC implementation which was written by: |
| * Steven J. Hill (sjhill@realitydiluted.com) |
| * Thomas Gleixner (tglx@linutronix.de) |
| * |
| * Information on how this algorithm works and how it was developed |
| * can be found in Documentation/mtd/nand_ecc.txt |
| * |
| * This file is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 or (at your option) any |
| * later version. |
| * |
| * This file is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this file; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
| * |
| */ |
| |
| /* |
| * The STANDALONE macro is useful when running the code outside the kernel |
| * e.g. when running the code in a testbed or a benchmark program. |
| * When STANDALONE is used, the module related macros are commented out |
| * as well as the linux include files. |
| * Instead a private definition of mtd_info is given to satisfy the compiler |
| * (the code does not use mtd_info, so the code does not care) |
| */ |
| #ifndef STANDALONE |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <asm/byteorder.h> |
| #else |
| #include <stdint.h> |
| struct mtd_info; |
| #define EXPORT_SYMBOL(x) /* x */ |
| |
| #define MODULE_LICENSE(x) /* x */ |
| #define MODULE_AUTHOR(x) /* x */ |
| #define MODULE_DESCRIPTION(x) /* x */ |
| |
| #define printk printf |
| #define KERN_ERR "" |
| #endif |
| |
| /* |
| * invparity is a 256 byte table that contains the odd parity |
| * for each byte. So if the number of bits in a byte is even, |
| * the array element is 1, and when the number of bits is odd |
| * the array eleemnt is 0. |
| */ |
| static const char invparity[256] = { |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
| 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 |
| }; |
| |
| /* |
| * bitsperbyte contains the number of bits per byte |
| * this is only used for testing and repairing parity |
| * (a precalculated value slightly improves performance) |
| */ |
| static const char bitsperbyte[256] = { |
| 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, |
| 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
| 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
| 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
| 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
| 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
| 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, |
| }; |
| |
| /* |
| * addressbits is a lookup table to filter out the bits from the xor-ed |
| * ecc data that identify the faulty location. |
| * this is only used for repairing parity |
| * see the comments in nand_correct_data for more details |
| */ |
| static const char addressbits[256] = { |
| 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
| 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
| 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
| 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
| 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
| 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
| 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
| 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
| 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
| 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
| 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, |
| 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, |
| 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
| 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
| 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, |
| 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, |
| 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
| 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
| 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
| 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
| 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
| 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, |
| 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
| 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, |
| 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
| 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
| 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, |
| 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, |
| 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
| 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, |
| 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, |
| 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f |
| }; |
| |
| /** |
| * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte |
| * block |
| * @mtd: MTD block structure |
| * @buf: input buffer with raw data |
| * @code: output buffer with ECC |
| */ |
| int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf, |
| unsigned char *code) |
| { |
| int i; |
| const uint32_t *bp = (uint32_t *)buf; |
| /* 256 or 512 bytes/ecc */ |
| const uint32_t eccsize_mult = |
| (((struct nand_chip *)mtd->priv)->ecc.size) >> 8; |
| uint32_t cur; /* current value in buffer */ |
| /* rp0..rp15..rp17 are the various accumulated parities (per byte) */ |
| uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7; |
| uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16; |
| uint32_t uninitialized_var(rp17); /* to make compiler happy */ |
| uint32_t par; /* the cumulative parity for all data */ |
| uint32_t tmppar; /* the cumulative parity for this iteration; |
| for rp12, rp14 and rp16 at the end of the |
| loop */ |
| |
| par = 0; |
| rp4 = 0; |
| rp6 = 0; |
| rp8 = 0; |
| rp10 = 0; |
| rp12 = 0; |
| rp14 = 0; |
| rp16 = 0; |
| |
| /* |
| * The loop is unrolled a number of times; |
| * This avoids if statements to decide on which rp value to update |
| * Also we process the data by longwords. |
| * Note: passing unaligned data might give a performance penalty. |
| * It is assumed that the buffers are aligned. |
| * tmppar is the cumulative sum of this iteration. |
| * needed for calculating rp12, rp14, rp16 and par |
| * also used as a performance improvement for rp6, rp8 and rp10 |
| */ |
| for (i = 0; i < eccsize_mult << 2; i++) { |
| cur = *bp++; |
| tmppar = cur; |
| rp4 ^= cur; |
| cur = *bp++; |
| tmppar ^= cur; |
| rp6 ^= tmppar; |
| cur = *bp++; |
| tmppar ^= cur; |
| rp4 ^= cur; |
| cur = *bp++; |
| tmppar ^= cur; |
| rp8 ^= tmppar; |
| |
| cur = *bp++; |
| tmppar ^= cur; |
| rp4 ^= cur; |
| rp6 ^= cur; |
| cur = *bp++; |
| tmppar ^= cur; |
| rp6 ^= cur; |
| cur = *bp++; |
| tmppar ^= cur; |
| rp4 ^= cur; |
| cur = *bp++; |
| tmppar ^= cur; |
| rp10 ^= tmppar; |
| |
| cur = *bp++; |
| tmppar ^= cur; |
| rp4 ^= cur; |
| rp6 ^= cur; |
| rp8 ^= cur; |
| cur = *bp++; |
| tmppar ^= cur; |
| rp6 ^= cur; |
| rp8 ^= cur; |
| cur = *bp++; |
| tmppar ^= cur; |
| rp4 ^= cur; |
| rp8 ^= cur; |
| cur = *bp++; |
| tmppar ^= cur; |
| rp8 ^= cur; |
| |
| cur = *bp++; |
| tmppar ^= cur; |
| rp4 ^= cur; |
| rp6 ^= cur; |
| cur = *bp++; |
| tmppar ^= cur; |
| rp6 ^= cur; |
| cur = *bp++; |
| tmppar ^= cur; |
| rp4 ^= cur; |
| cur = *bp++; |
| tmppar ^= cur; |
| |
| par ^= tmppar; |
| if ((i & 0x1) == 0) |
| rp12 ^= tmppar; |
| if ((i & 0x2) == 0) |
| rp14 ^= tmppar; |
| if (eccsize_mult == 2 && (i & 0x4) == 0) |
| rp16 ^= tmppar; |
| } |
| |
| /* |
| * handle the fact that we use longword operations |
| * we'll bring rp4..rp14..rp16 back to single byte entities by |
| * shifting and xoring first fold the upper and lower 16 bits, |
| * then the upper and lower 8 bits. |
| */ |
| rp4 ^= (rp4 >> 16); |
| rp4 ^= (rp4 >> 8); |
| rp4 &= 0xff; |
| rp6 ^= (rp6 >> 16); |
| rp6 ^= (rp6 >> 8); |
| rp6 &= 0xff; |
| rp8 ^= (rp8 >> 16); |
| rp8 ^= (rp8 >> 8); |
| rp8 &= 0xff; |
| rp10 ^= (rp10 >> 16); |
| rp10 ^= (rp10 >> 8); |
| rp10 &= 0xff; |
| rp12 ^= (rp12 >> 16); |
| rp12 ^= (rp12 >> 8); |
| rp12 &= 0xff; |
| rp14 ^= (rp14 >> 16); |
| rp14 ^= (rp14 >> 8); |
| rp14 &= 0xff; |
| if (eccsize_mult == 2) { |
| rp16 ^= (rp16 >> 16); |
| rp16 ^= (rp16 >> 8); |
| rp16 &= 0xff; |
| } |
| |
| /* |
| * we also need to calculate the row parity for rp0..rp3 |
| * This is present in par, because par is now |
| * rp3 rp3 rp2 rp2 in little endian and |
| * rp2 rp2 rp3 rp3 in big endian |
| * as well as |
| * rp1 rp0 rp1 rp0 in little endian and |
| * rp0 rp1 rp0 rp1 in big endian |
| * First calculate rp2 and rp3 |
| */ |
| #ifdef __BIG_ENDIAN |
| rp2 = (par >> 16); |
| rp2 ^= (rp2 >> 8); |
| rp2 &= 0xff; |
| rp3 = par & 0xffff; |
| rp3 ^= (rp3 >> 8); |
| rp3 &= 0xff; |
| #else |
| rp3 = (par >> 16); |
| rp3 ^= (rp3 >> 8); |
| rp3 &= 0xff; |
| rp2 = par & 0xffff; |
| rp2 ^= (rp2 >> 8); |
| rp2 &= 0xff; |
| #endif |
| |
| /* reduce par to 16 bits then calculate rp1 and rp0 */ |
| par ^= (par >> 16); |
| #ifdef __BIG_ENDIAN |
| rp0 = (par >> 8) & 0xff; |
| rp1 = (par & 0xff); |
| #else |
| rp1 = (par >> 8) & 0xff; |
| rp0 = (par & 0xff); |
| #endif |
| |
| /* finally reduce par to 8 bits */ |
| par ^= (par >> 8); |
| par &= 0xff; |
| |
| /* |
| * and calculate rp5..rp15..rp17 |
| * note that par = rp4 ^ rp5 and due to the commutative property |
| * of the ^ operator we can say: |
| * rp5 = (par ^ rp4); |
| * The & 0xff seems superfluous, but benchmarking learned that |
| * leaving it out gives slightly worse results. No idea why, probably |
| * it has to do with the way the pipeline in pentium is organized. |
| */ |
| rp5 = (par ^ rp4) & 0xff; |
| rp7 = (par ^ rp6) & 0xff; |
| rp9 = (par ^ rp8) & 0xff; |
| rp11 = (par ^ rp10) & 0xff; |
| rp13 = (par ^ rp12) & 0xff; |
| rp15 = (par ^ rp14) & 0xff; |
| if (eccsize_mult == 2) |
| rp17 = (par ^ rp16) & 0xff; |
| |
| /* |
| * Finally calculate the ecc bits. |
| * Again here it might seem that there are performance optimisations |
| * possible, but benchmarks showed that on the system this is developed |
| * the code below is the fastest |
| */ |
| #ifdef CONFIG_MTD_NAND_ECC_SMC |
| code[0] = |
| (invparity[rp7] << 7) | |
| (invparity[rp6] << 6) | |
| (invparity[rp5] << 5) | |
| (invparity[rp4] << 4) | |
| (invparity[rp3] << 3) | |
| (invparity[rp2] << 2) | |
| (invparity[rp1] << 1) | |
| (invparity[rp0]); |
| code[1] = |
| (invparity[rp15] << 7) | |
| (invparity[rp14] << 6) | |
| (invparity[rp13] << 5) | |
| (invparity[rp12] << 4) | |
| (invparity[rp11] << 3) | |
| (invparity[rp10] << 2) | |
| (invparity[rp9] << 1) | |
| (invparity[rp8]); |
| #else |
| code[1] = |
| (invparity[rp7] << 7) | |
| (invparity[rp6] << 6) | |
| (invparity[rp5] << 5) | |
| (invparity[rp4] << 4) | |
| (invparity[rp3] << 3) | |
| (invparity[rp2] << 2) | |
| (invparity[rp1] << 1) | |
| (invparity[rp0]); |
| code[0] = |
| (invparity[rp15] << 7) | |
| (invparity[rp14] << 6) | |
| (invparity[rp13] << 5) | |
| (invparity[rp12] << 4) | |
| (invparity[rp11] << 3) | |
| (invparity[rp10] << 2) | |
| (invparity[rp9] << 1) | |
| (invparity[rp8]); |
| #endif |
| if (eccsize_mult == 1) |
| code[2] = |
| (invparity[par & 0xf0] << 7) | |
| (invparity[par & 0x0f] << 6) | |
| (invparity[par & 0xcc] << 5) | |
| (invparity[par & 0x33] << 4) | |
| (invparity[par & 0xaa] << 3) | |
| (invparity[par & 0x55] << 2) | |
| 3; |
| else |
| code[2] = |
| (invparity[par & 0xf0] << 7) | |
| (invparity[par & 0x0f] << 6) | |
| (invparity[par & 0xcc] << 5) | |
| (invparity[par & 0x33] << 4) | |
| (invparity[par & 0xaa] << 3) | |
| (invparity[par & 0x55] << 2) | |
| (invparity[rp17] << 1) | |
| (invparity[rp16] << 0); |
| return 0; |
| } |
| EXPORT_SYMBOL(nand_calculate_ecc); |
| |
| /** |
| * nand_correct_data - [NAND Interface] Detect and correct bit error(s) |
| * @mtd: MTD block structure |
| * @buf: raw data read from the chip |
| * @read_ecc: ECC from the chip |
| * @calc_ecc: the ECC calculated from raw data |
| * |
| * Detect and correct a 1 bit error for 256/512 byte block |
| */ |
| int nand_correct_data(struct mtd_info *mtd, unsigned char *buf, |
| unsigned char *read_ecc, unsigned char *calc_ecc) |
| { |
| unsigned char b0, b1, b2; |
| unsigned char byte_addr, bit_addr; |
| /* 256 or 512 bytes/ecc */ |
| const uint32_t eccsize_mult = |
| (((struct nand_chip *)mtd->priv)->ecc.size) >> 8; |
| |
| /* |
| * b0 to b2 indicate which bit is faulty (if any) |
| * we might need the xor result more than once, |
| * so keep them in a local var |
| */ |
| #ifdef CONFIG_MTD_NAND_ECC_SMC |
| b0 = read_ecc[0] ^ calc_ecc[0]; |
| b1 = read_ecc[1] ^ calc_ecc[1]; |
| #else |
| b0 = read_ecc[1] ^ calc_ecc[1]; |
| b1 = read_ecc[0] ^ calc_ecc[0]; |
| #endif |
| b2 = read_ecc[2] ^ calc_ecc[2]; |
| |
| /* check if there are any bitfaults */ |
| |
| /* repeated if statements are slightly more efficient than switch ... */ |
| /* ordered in order of likelihood */ |
| |
| if ((b0 | b1 | b2) == 0) |
| return 0; /* no error */ |
| |
| if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) && |
| (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) && |
| ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) || |
| (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) { |
| /* single bit error */ |
| /* |
| * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty |
| * byte, cp 5/3/1 indicate the faulty bit. |
| * A lookup table (called addressbits) is used to filter |
| * the bits from the byte they are in. |
| * A marginal optimisation is possible by having three |
| * different lookup tables. |
| * One as we have now (for b0), one for b2 |
| * (that would avoid the >> 1), and one for b1 (with all values |
| * << 4). However it was felt that introducing two more tables |
| * hardly justify the gain. |
| * |
| * The b2 shift is there to get rid of the lowest two bits. |
| * We could also do addressbits[b2] >> 1 but for the |
| * performace it does not make any difference |
| */ |
| if (eccsize_mult == 1) |
| byte_addr = (addressbits[b1] << 4) + addressbits[b0]; |
| else |
| byte_addr = (addressbits[b2 & 0x3] << 8) + |
| (addressbits[b1] << 4) + addressbits[b0]; |
| bit_addr = addressbits[b2 >> 2]; |
| /* flip the bit */ |
| buf[byte_addr] ^= (1 << bit_addr); |
| return 1; |
| |
| } |
| /* count nr of bits; use table lookup, faster than calculating it */ |
| if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) |
| return 1; /* error in ecc data; no action needed */ |
| |
| printk(KERN_ERR "uncorrectable error : "); |
| return -1; |
| } |
| EXPORT_SYMBOL(nand_correct_data); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>"); |
| MODULE_DESCRIPTION("Generic NAND ECC support"); |