| /* |
| * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. |
| * |
| * Authors: |
| * Paul Mackerras <paulus@au1.ibm.com> |
| * Alexander Graf <agraf@suse.de> |
| * Kevin Wolf <mail@kevin-wolf.de> |
| * |
| * Description: KVM functions specific to running on Book 3S |
| * processors in hypervisor mode (specifically POWER7 and later). |
| * |
| * This file is derived from arch/powerpc/kvm/book3s.c, |
| * by Alexander Graf <agraf@suse.de>. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License, version 2, as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| #include <linux/preempt.h> |
| #include <linux/sched.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/fs.h> |
| #include <linux/anon_inodes.h> |
| #include <linux/cpumask.h> |
| #include <linux/spinlock.h> |
| #include <linux/page-flags.h> |
| |
| #include <asm/reg.h> |
| #include <asm/cputable.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/mmu_context.h> |
| #include <asm/lppaca.h> |
| #include <asm/processor.h> |
| #include <asm/cputhreads.h> |
| #include <asm/page.h> |
| #include <asm/hvcall.h> |
| #include <linux/gfp.h> |
| #include <linux/sched.h> |
| #include <linux/vmalloc.h> |
| #include <linux/highmem.h> |
| |
| /* |
| * For now, limit memory to 64GB and require it to be large pages. |
| * This value is chosen because it makes the ram_pginfo array be |
| * 64kB in size, which is about as large as we want to be trying |
| * to allocate with kmalloc. |
| */ |
| #define MAX_MEM_ORDER 36 |
| |
| #define LARGE_PAGE_ORDER 24 /* 16MB pages */ |
| |
| /* #define EXIT_DEBUG */ |
| /* #define EXIT_DEBUG_SIMPLE */ |
| /* #define EXIT_DEBUG_INT */ |
| |
| static void kvmppc_end_cede(struct kvm_vcpu *vcpu); |
| |
| void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| local_paca->kvm_hstate.kvm_vcpu = vcpu; |
| local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore; |
| } |
| |
| void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| } |
| |
| void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) |
| { |
| vcpu->arch.shregs.msr = msr; |
| kvmppc_end_cede(vcpu); |
| } |
| |
| void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) |
| { |
| vcpu->arch.pvr = pvr; |
| } |
| |
| void kvmppc_dump_regs(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); |
| pr_err("pc = %.16lx msr = %.16llx trap = %x\n", |
| vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); |
| for (r = 0; r < 16; ++r) |
| pr_err("r%2d = %.16lx r%d = %.16lx\n", |
| r, kvmppc_get_gpr(vcpu, r), |
| r+16, kvmppc_get_gpr(vcpu, r+16)); |
| pr_err("ctr = %.16lx lr = %.16lx\n", |
| vcpu->arch.ctr, vcpu->arch.lr); |
| pr_err("srr0 = %.16llx srr1 = %.16llx\n", |
| vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); |
| pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", |
| vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); |
| pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", |
| vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); |
| pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", |
| vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); |
| pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); |
| pr_err("fault dar = %.16lx dsisr = %.8x\n", |
| vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); |
| pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); |
| for (r = 0; r < vcpu->arch.slb_max; ++r) |
| pr_err(" ESID = %.16llx VSID = %.16llx\n", |
| vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); |
| pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", |
| vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1, |
| vcpu->arch.last_inst); |
| } |
| |
| struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) |
| { |
| int r; |
| struct kvm_vcpu *v, *ret = NULL; |
| |
| mutex_lock(&kvm->lock); |
| kvm_for_each_vcpu(r, v, kvm) { |
| if (v->vcpu_id == id) { |
| ret = v; |
| break; |
| } |
| } |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| |
| static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) |
| { |
| vpa->shared_proc = 1; |
| vpa->yield_count = 1; |
| } |
| |
| static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, |
| unsigned long flags, |
| unsigned long vcpuid, unsigned long vpa) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| unsigned long pg_index, ra, len; |
| unsigned long pg_offset; |
| void *va; |
| struct kvm_vcpu *tvcpu; |
| |
| tvcpu = kvmppc_find_vcpu(kvm, vcpuid); |
| if (!tvcpu) |
| return H_PARAMETER; |
| |
| flags >>= 63 - 18; |
| flags &= 7; |
| if (flags == 0 || flags == 4) |
| return H_PARAMETER; |
| if (flags < 4) { |
| if (vpa & 0x7f) |
| return H_PARAMETER; |
| /* registering new area; convert logical addr to real */ |
| pg_index = vpa >> kvm->arch.ram_porder; |
| pg_offset = vpa & (kvm->arch.ram_psize - 1); |
| if (pg_index >= kvm->arch.ram_npages) |
| return H_PARAMETER; |
| if (kvm->arch.ram_pginfo[pg_index].pfn == 0) |
| return H_PARAMETER; |
| ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT; |
| ra |= pg_offset; |
| va = __va(ra); |
| if (flags <= 1) |
| len = *(unsigned short *)(va + 4); |
| else |
| len = *(unsigned int *)(va + 4); |
| if (pg_offset + len > kvm->arch.ram_psize) |
| return H_PARAMETER; |
| switch (flags) { |
| case 1: /* register VPA */ |
| if (len < 640) |
| return H_PARAMETER; |
| tvcpu->arch.vpa = va; |
| init_vpa(vcpu, va); |
| break; |
| case 2: /* register DTL */ |
| if (len < 48) |
| return H_PARAMETER; |
| if (!tvcpu->arch.vpa) |
| return H_RESOURCE; |
| len -= len % 48; |
| tvcpu->arch.dtl = va; |
| tvcpu->arch.dtl_end = va + len; |
| break; |
| case 3: /* register SLB shadow buffer */ |
| if (len < 8) |
| return H_PARAMETER; |
| if (!tvcpu->arch.vpa) |
| return H_RESOURCE; |
| tvcpu->arch.slb_shadow = va; |
| len = (len - 16) / 16; |
| tvcpu->arch.slb_shadow = va; |
| break; |
| } |
| } else { |
| switch (flags) { |
| case 5: /* unregister VPA */ |
| if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl) |
| return H_RESOURCE; |
| tvcpu->arch.vpa = NULL; |
| break; |
| case 6: /* unregister DTL */ |
| tvcpu->arch.dtl = NULL; |
| break; |
| case 7: /* unregister SLB shadow buffer */ |
| tvcpu->arch.slb_shadow = NULL; |
| break; |
| } |
| } |
| return H_SUCCESS; |
| } |
| |
| int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) |
| { |
| unsigned long req = kvmppc_get_gpr(vcpu, 3); |
| unsigned long target, ret = H_SUCCESS; |
| struct kvm_vcpu *tvcpu; |
| |
| switch (req) { |
| case H_CEDE: |
| break; |
| case H_PROD: |
| target = kvmppc_get_gpr(vcpu, 4); |
| tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); |
| if (!tvcpu) { |
| ret = H_PARAMETER; |
| break; |
| } |
| tvcpu->arch.prodded = 1; |
| smp_mb(); |
| if (vcpu->arch.ceded) { |
| if (waitqueue_active(&vcpu->wq)) { |
| wake_up_interruptible(&vcpu->wq); |
| vcpu->stat.halt_wakeup++; |
| } |
| } |
| break; |
| case H_CONFER: |
| break; |
| case H_REGISTER_VPA: |
| ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), |
| kvmppc_get_gpr(vcpu, 5), |
| kvmppc_get_gpr(vcpu, 6)); |
| break; |
| default: |
| return RESUME_HOST; |
| } |
| kvmppc_set_gpr(vcpu, 3, ret); |
| vcpu->arch.hcall_needed = 0; |
| return RESUME_GUEST; |
| } |
| |
| static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| struct task_struct *tsk) |
| { |
| int r = RESUME_HOST; |
| |
| vcpu->stat.sum_exits++; |
| |
| run->exit_reason = KVM_EXIT_UNKNOWN; |
| run->ready_for_interrupt_injection = 1; |
| switch (vcpu->arch.trap) { |
| /* We're good on these - the host merely wanted to get our attention */ |
| case BOOK3S_INTERRUPT_HV_DECREMENTER: |
| vcpu->stat.dec_exits++; |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_EXTERNAL: |
| vcpu->stat.ext_intr_exits++; |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_PERFMON: |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_PROGRAM: |
| { |
| ulong flags; |
| /* |
| * Normally program interrupts are delivered directly |
| * to the guest by the hardware, but we can get here |
| * as a result of a hypervisor emulation interrupt |
| * (e40) getting turned into a 700 by BML RTAS. |
| */ |
| flags = vcpu->arch.shregs.msr & 0x1f0000ull; |
| kvmppc_core_queue_program(vcpu, flags); |
| r = RESUME_GUEST; |
| break; |
| } |
| case BOOK3S_INTERRUPT_SYSCALL: |
| { |
| /* hcall - punt to userspace */ |
| int i; |
| |
| if (vcpu->arch.shregs.msr & MSR_PR) { |
| /* sc 1 from userspace - reflect to guest syscall */ |
| kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); |
| r = RESUME_GUEST; |
| break; |
| } |
| run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); |
| for (i = 0; i < 9; ++i) |
| run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); |
| run->exit_reason = KVM_EXIT_PAPR_HCALL; |
| vcpu->arch.hcall_needed = 1; |
| r = RESUME_HOST; |
| break; |
| } |
| /* |
| * We get these next two if the guest does a bad real-mode access, |
| * as we have enabled VRMA (virtualized real mode area) mode in the |
| * LPCR. We just generate an appropriate DSI/ISI to the guest. |
| */ |
| case BOOK3S_INTERRUPT_H_DATA_STORAGE: |
| vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr; |
| vcpu->arch.shregs.dar = vcpu->arch.fault_dar; |
| kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0); |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_H_INST_STORAGE: |
| kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE, |
| 0x08000000); |
| r = RESUME_GUEST; |
| break; |
| /* |
| * This occurs if the guest executes an illegal instruction. |
| * We just generate a program interrupt to the guest, since |
| * we don't emulate any guest instructions at this stage. |
| */ |
| case BOOK3S_INTERRUPT_H_EMUL_ASSIST: |
| kvmppc_core_queue_program(vcpu, 0x80000); |
| r = RESUME_GUEST; |
| break; |
| default: |
| kvmppc_dump_regs(vcpu); |
| printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", |
| vcpu->arch.trap, kvmppc_get_pc(vcpu), |
| vcpu->arch.shregs.msr); |
| r = RESUME_HOST; |
| BUG(); |
| break; |
| } |
| |
| return r; |
| } |
| |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int i; |
| |
| sregs->pvr = vcpu->arch.pvr; |
| |
| memset(sregs, 0, sizeof(struct kvm_sregs)); |
| for (i = 0; i < vcpu->arch.slb_max; i++) { |
| sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; |
| sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| int i, j; |
| |
| kvmppc_set_pvr(vcpu, sregs->pvr); |
| |
| j = 0; |
| for (i = 0; i < vcpu->arch.slb_nr; i++) { |
| if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { |
| vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; |
| vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; |
| ++j; |
| } |
| } |
| vcpu->arch.slb_max = j; |
| |
| return 0; |
| } |
| |
| int kvmppc_core_check_processor_compat(void) |
| { |
| if (cpu_has_feature(CPU_FTR_HVMODE)) |
| return 0; |
| return -EIO; |
| } |
| |
| struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) |
| { |
| struct kvm_vcpu *vcpu; |
| int err = -EINVAL; |
| int core; |
| struct kvmppc_vcore *vcore; |
| |
| core = id / threads_per_core; |
| if (core >= KVM_MAX_VCORES) |
| goto out; |
| |
| err = -ENOMEM; |
| vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL); |
| if (!vcpu) |
| goto out; |
| |
| err = kvm_vcpu_init(vcpu, kvm, id); |
| if (err) |
| goto free_vcpu; |
| |
| vcpu->arch.shared = &vcpu->arch.shregs; |
| vcpu->arch.last_cpu = -1; |
| vcpu->arch.mmcr[0] = MMCR0_FC; |
| vcpu->arch.ctrl = CTRL_RUNLATCH; |
| /* default to host PVR, since we can't spoof it */ |
| vcpu->arch.pvr = mfspr(SPRN_PVR); |
| kvmppc_set_pvr(vcpu, vcpu->arch.pvr); |
| |
| kvmppc_mmu_book3s_hv_init(vcpu); |
| |
| /* |
| * We consider the vcpu stopped until we see the first run ioctl for it. |
| */ |
| vcpu->arch.state = KVMPPC_VCPU_STOPPED; |
| |
| init_waitqueue_head(&vcpu->arch.cpu_run); |
| |
| mutex_lock(&kvm->lock); |
| vcore = kvm->arch.vcores[core]; |
| if (!vcore) { |
| vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); |
| if (vcore) { |
| INIT_LIST_HEAD(&vcore->runnable_threads); |
| spin_lock_init(&vcore->lock); |
| init_waitqueue_head(&vcore->wq); |
| } |
| kvm->arch.vcores[core] = vcore; |
| } |
| mutex_unlock(&kvm->lock); |
| |
| if (!vcore) |
| goto free_vcpu; |
| |
| spin_lock(&vcore->lock); |
| ++vcore->num_threads; |
| spin_unlock(&vcore->lock); |
| vcpu->arch.vcore = vcore; |
| |
| vcpu->arch.cpu_type = KVM_CPU_3S_64; |
| kvmppc_sanity_check(vcpu); |
| |
| return vcpu; |
| |
| free_vcpu: |
| kfree(vcpu); |
| out: |
| return ERR_PTR(err); |
| } |
| |
| void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) |
| { |
| kvm_vcpu_uninit(vcpu); |
| kfree(vcpu); |
| } |
| |
| static void kvmppc_set_timer(struct kvm_vcpu *vcpu) |
| { |
| unsigned long dec_nsec, now; |
| |
| now = get_tb(); |
| if (now > vcpu->arch.dec_expires) { |
| /* decrementer has already gone negative */ |
| kvmppc_core_queue_dec(vcpu); |
| kvmppc_core_deliver_interrupts(vcpu); |
| return; |
| } |
| dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC |
| / tb_ticks_per_sec; |
| hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), |
| HRTIMER_MODE_REL); |
| vcpu->arch.timer_running = 1; |
| } |
| |
| static void kvmppc_end_cede(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.ceded = 0; |
| if (vcpu->arch.timer_running) { |
| hrtimer_try_to_cancel(&vcpu->arch.dec_timer); |
| vcpu->arch.timer_running = 0; |
| } |
| } |
| |
| extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); |
| extern void xics_wake_cpu(int cpu); |
| |
| static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, |
| struct kvm_vcpu *vcpu) |
| { |
| struct kvm_vcpu *v; |
| |
| if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) |
| return; |
| vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; |
| --vc->n_runnable; |
| ++vc->n_busy; |
| /* decrement the physical thread id of each following vcpu */ |
| v = vcpu; |
| list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list) |
| --v->arch.ptid; |
| list_del(&vcpu->arch.run_list); |
| } |
| |
| static void kvmppc_start_thread(struct kvm_vcpu *vcpu) |
| { |
| int cpu; |
| struct paca_struct *tpaca; |
| struct kvmppc_vcore *vc = vcpu->arch.vcore; |
| |
| if (vcpu->arch.timer_running) { |
| hrtimer_try_to_cancel(&vcpu->arch.dec_timer); |
| vcpu->arch.timer_running = 0; |
| } |
| cpu = vc->pcpu + vcpu->arch.ptid; |
| tpaca = &paca[cpu]; |
| tpaca->kvm_hstate.kvm_vcpu = vcpu; |
| tpaca->kvm_hstate.kvm_vcore = vc; |
| tpaca->kvm_hstate.napping = 0; |
| vcpu->cpu = vc->pcpu; |
| smp_wmb(); |
| #ifdef CONFIG_PPC_ICP_NATIVE |
| if (vcpu->arch.ptid) { |
| tpaca->cpu_start = 0x80; |
| wmb(); |
| xics_wake_cpu(cpu); |
| ++vc->n_woken; |
| } |
| #endif |
| } |
| |
| static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) |
| { |
| int i; |
| |
| HMT_low(); |
| i = 0; |
| while (vc->nap_count < vc->n_woken) { |
| if (++i >= 1000000) { |
| pr_err("kvmppc_wait_for_nap timeout %d %d\n", |
| vc->nap_count, vc->n_woken); |
| break; |
| } |
| cpu_relax(); |
| } |
| HMT_medium(); |
| } |
| |
| /* |
| * Check that we are on thread 0 and that any other threads in |
| * this core are off-line. |
| */ |
| static int on_primary_thread(void) |
| { |
| int cpu = smp_processor_id(); |
| int thr = cpu_thread_in_core(cpu); |
| |
| if (thr) |
| return 0; |
| while (++thr < threads_per_core) |
| if (cpu_online(cpu + thr)) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * Run a set of guest threads on a physical core. |
| * Called with vc->lock held. |
| */ |
| static int kvmppc_run_core(struct kvmppc_vcore *vc) |
| { |
| struct kvm_vcpu *vcpu, *vcpu0, *vnext; |
| long ret; |
| u64 now; |
| int ptid; |
| |
| /* don't start if any threads have a signal pending */ |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) |
| if (signal_pending(vcpu->arch.run_task)) |
| return 0; |
| |
| /* |
| * Make sure we are running on thread 0, and that |
| * secondary threads are offline. |
| * XXX we should also block attempts to bring any |
| * secondary threads online. |
| */ |
| if (threads_per_core > 1 && !on_primary_thread()) { |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) |
| vcpu->arch.ret = -EBUSY; |
| goto out; |
| } |
| |
| /* |
| * Assign physical thread IDs, first to non-ceded vcpus |
| * and then to ceded ones. |
| */ |
| ptid = 0; |
| vcpu0 = NULL; |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { |
| if (!vcpu->arch.ceded) { |
| if (!ptid) |
| vcpu0 = vcpu; |
| vcpu->arch.ptid = ptid++; |
| } |
| } |
| if (!vcpu0) |
| return 0; /* nothing to run */ |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) |
| if (vcpu->arch.ceded) |
| vcpu->arch.ptid = ptid++; |
| |
| vc->n_woken = 0; |
| vc->nap_count = 0; |
| vc->entry_exit_count = 0; |
| vc->vcore_state = VCORE_RUNNING; |
| vc->in_guest = 0; |
| vc->pcpu = smp_processor_id(); |
| vc->napping_threads = 0; |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) |
| kvmppc_start_thread(vcpu); |
| |
| preempt_disable(); |
| spin_unlock(&vc->lock); |
| |
| kvm_guest_enter(); |
| __kvmppc_vcore_entry(NULL, vcpu0); |
| |
| spin_lock(&vc->lock); |
| /* disable sending of IPIs on virtual external irqs */ |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) |
| vcpu->cpu = -1; |
| /* wait for secondary threads to finish writing their state to memory */ |
| if (vc->nap_count < vc->n_woken) |
| kvmppc_wait_for_nap(vc); |
| /* prevent other vcpu threads from doing kvmppc_start_thread() now */ |
| vc->vcore_state = VCORE_EXITING; |
| spin_unlock(&vc->lock); |
| |
| /* make sure updates to secondary vcpu structs are visible now */ |
| smp_mb(); |
| kvm_guest_exit(); |
| |
| preempt_enable(); |
| kvm_resched(vcpu); |
| |
| now = get_tb(); |
| list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { |
| /* cancel pending dec exception if dec is positive */ |
| if (now < vcpu->arch.dec_expires && |
| kvmppc_core_pending_dec(vcpu)) |
| kvmppc_core_dequeue_dec(vcpu); |
| |
| ret = RESUME_GUEST; |
| if (vcpu->arch.trap) |
| ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu, |
| vcpu->arch.run_task); |
| |
| vcpu->arch.ret = ret; |
| vcpu->arch.trap = 0; |
| |
| if (vcpu->arch.ceded) { |
| if (ret != RESUME_GUEST) |
| kvmppc_end_cede(vcpu); |
| else |
| kvmppc_set_timer(vcpu); |
| } |
| } |
| |
| spin_lock(&vc->lock); |
| out: |
| vc->vcore_state = VCORE_INACTIVE; |
| list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, |
| arch.run_list) { |
| if (vcpu->arch.ret != RESUME_GUEST) { |
| kvmppc_remove_runnable(vc, vcpu); |
| wake_up(&vcpu->arch.cpu_run); |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Wait for some other vcpu thread to execute us, and |
| * wake us up when we need to handle something in the host. |
| */ |
| static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) |
| { |
| DEFINE_WAIT(wait); |
| |
| prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); |
| if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) |
| schedule(); |
| finish_wait(&vcpu->arch.cpu_run, &wait); |
| } |
| |
| /* |
| * All the vcpus in this vcore are idle, so wait for a decrementer |
| * or external interrupt to one of the vcpus. vc->lock is held. |
| */ |
| static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) |
| { |
| DEFINE_WAIT(wait); |
| struct kvm_vcpu *v; |
| int all_idle = 1; |
| |
| prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); |
| vc->vcore_state = VCORE_SLEEPING; |
| spin_unlock(&vc->lock); |
| list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { |
| if (!v->arch.ceded || v->arch.pending_exceptions) { |
| all_idle = 0; |
| break; |
| } |
| } |
| if (all_idle) |
| schedule(); |
| finish_wait(&vc->wq, &wait); |
| spin_lock(&vc->lock); |
| vc->vcore_state = VCORE_INACTIVE; |
| } |
| |
| static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) |
| { |
| int n_ceded; |
| int prev_state; |
| struct kvmppc_vcore *vc; |
| struct kvm_vcpu *v, *vn; |
| |
| kvm_run->exit_reason = 0; |
| vcpu->arch.ret = RESUME_GUEST; |
| vcpu->arch.trap = 0; |
| |
| /* |
| * Synchronize with other threads in this virtual core |
| */ |
| vc = vcpu->arch.vcore; |
| spin_lock(&vc->lock); |
| vcpu->arch.ceded = 0; |
| vcpu->arch.run_task = current; |
| vcpu->arch.kvm_run = kvm_run; |
| prev_state = vcpu->arch.state; |
| vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; |
| list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); |
| ++vc->n_runnable; |
| |
| /* |
| * This happens the first time this is called for a vcpu. |
| * If the vcore is already running, we may be able to start |
| * this thread straight away and have it join in. |
| */ |
| if (prev_state == KVMPPC_VCPU_STOPPED) { |
| if (vc->vcore_state == VCORE_RUNNING && |
| VCORE_EXIT_COUNT(vc) == 0) { |
| vcpu->arch.ptid = vc->n_runnable - 1; |
| kvmppc_start_thread(vcpu); |
| } |
| |
| } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST) |
| --vc->n_busy; |
| |
| while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && |
| !signal_pending(current)) { |
| if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) { |
| spin_unlock(&vc->lock); |
| kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); |
| spin_lock(&vc->lock); |
| continue; |
| } |
| n_ceded = 0; |
| list_for_each_entry(v, &vc->runnable_threads, arch.run_list) |
| n_ceded += v->arch.ceded; |
| if (n_ceded == vc->n_runnable) |
| kvmppc_vcore_blocked(vc); |
| else |
| kvmppc_run_core(vc); |
| |
| list_for_each_entry_safe(v, vn, &vc->runnable_threads, |
| arch.run_list) { |
| kvmppc_core_deliver_interrupts(v); |
| if (signal_pending(v->arch.run_task)) { |
| kvmppc_remove_runnable(vc, v); |
| v->stat.signal_exits++; |
| v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; |
| v->arch.ret = -EINTR; |
| wake_up(&v->arch.cpu_run); |
| } |
| } |
| } |
| |
| if (signal_pending(current)) { |
| if (vc->vcore_state == VCORE_RUNNING || |
| vc->vcore_state == VCORE_EXITING) { |
| spin_unlock(&vc->lock); |
| kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); |
| spin_lock(&vc->lock); |
| } |
| if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { |
| kvmppc_remove_runnable(vc, vcpu); |
| vcpu->stat.signal_exits++; |
| kvm_run->exit_reason = KVM_EXIT_INTR; |
| vcpu->arch.ret = -EINTR; |
| } |
| } |
| |
| spin_unlock(&vc->lock); |
| return vcpu->arch.ret; |
| } |
| |
| int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| if (!vcpu->arch.sane) { |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return -EINVAL; |
| } |
| |
| /* No need to go into the guest when all we'll do is come back out */ |
| if (signal_pending(current)) { |
| run->exit_reason = KVM_EXIT_INTR; |
| return -EINTR; |
| } |
| |
| /* On PPC970, check that we have an RMA region */ |
| if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201)) |
| return -EPERM; |
| |
| flush_fp_to_thread(current); |
| flush_altivec_to_thread(current); |
| flush_vsx_to_thread(current); |
| vcpu->arch.wqp = &vcpu->arch.vcore->wq; |
| |
| do { |
| r = kvmppc_run_vcpu(run, vcpu); |
| |
| if (run->exit_reason == KVM_EXIT_PAPR_HCALL && |
| !(vcpu->arch.shregs.msr & MSR_PR)) { |
| r = kvmppc_pseries_do_hcall(vcpu); |
| kvmppc_core_deliver_interrupts(vcpu); |
| } |
| } while (r == RESUME_GUEST); |
| return r; |
| } |
| |
| static long kvmppc_stt_npages(unsigned long window_size) |
| { |
| return ALIGN((window_size >> SPAPR_TCE_SHIFT) |
| * sizeof(u64), PAGE_SIZE) / PAGE_SIZE; |
| } |
| |
| static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt) |
| { |
| struct kvm *kvm = stt->kvm; |
| int i; |
| |
| mutex_lock(&kvm->lock); |
| list_del(&stt->list); |
| for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++) |
| __free_page(stt->pages[i]); |
| kfree(stt); |
| mutex_unlock(&kvm->lock); |
| |
| kvm_put_kvm(kvm); |
| } |
| |
| static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
| { |
| struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data; |
| struct page *page; |
| |
| if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size)) |
| return VM_FAULT_SIGBUS; |
| |
| page = stt->pages[vmf->pgoff]; |
| get_page(page); |
| vmf->page = page; |
| return 0; |
| } |
| |
| static const struct vm_operations_struct kvm_spapr_tce_vm_ops = { |
| .fault = kvm_spapr_tce_fault, |
| }; |
| |
| static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| vma->vm_ops = &kvm_spapr_tce_vm_ops; |
| return 0; |
| } |
| |
| static int kvm_spapr_tce_release(struct inode *inode, struct file *filp) |
| { |
| struct kvmppc_spapr_tce_table *stt = filp->private_data; |
| |
| release_spapr_tce_table(stt); |
| return 0; |
| } |
| |
| static struct file_operations kvm_spapr_tce_fops = { |
| .mmap = kvm_spapr_tce_mmap, |
| .release = kvm_spapr_tce_release, |
| }; |
| |
| long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm, |
| struct kvm_create_spapr_tce *args) |
| { |
| struct kvmppc_spapr_tce_table *stt = NULL; |
| long npages; |
| int ret = -ENOMEM; |
| int i; |
| |
| /* Check this LIOBN hasn't been previously allocated */ |
| list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) { |
| if (stt->liobn == args->liobn) |
| return -EBUSY; |
| } |
| |
| npages = kvmppc_stt_npages(args->window_size); |
| |
| stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *), |
| GFP_KERNEL); |
| if (!stt) |
| goto fail; |
| |
| stt->liobn = args->liobn; |
| stt->window_size = args->window_size; |
| stt->kvm = kvm; |
| |
| for (i = 0; i < npages; i++) { |
| stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| if (!stt->pages[i]) |
| goto fail; |
| } |
| |
| kvm_get_kvm(kvm); |
| |
| mutex_lock(&kvm->lock); |
| list_add(&stt->list, &kvm->arch.spapr_tce_tables); |
| |
| mutex_unlock(&kvm->lock); |
| |
| return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops, |
| stt, O_RDWR); |
| |
| fail: |
| if (stt) { |
| for (i = 0; i < npages; i++) |
| if (stt->pages[i]) |
| __free_page(stt->pages[i]); |
| |
| kfree(stt); |
| } |
| return ret; |
| } |
| |
| /* Work out RMLS (real mode limit selector) field value for a given RMA size. |
| Assumes POWER7 or PPC970. */ |
| static inline int lpcr_rmls(unsigned long rma_size) |
| { |
| switch (rma_size) { |
| case 32ul << 20: /* 32 MB */ |
| if (cpu_has_feature(CPU_FTR_ARCH_206)) |
| return 8; /* only supported on POWER7 */ |
| return -1; |
| case 64ul << 20: /* 64 MB */ |
| return 3; |
| case 128ul << 20: /* 128 MB */ |
| return 7; |
| case 256ul << 20: /* 256 MB */ |
| return 4; |
| case 1ul << 30: /* 1 GB */ |
| return 2; |
| case 16ul << 30: /* 16 GB */ |
| return 1; |
| case 256ul << 30: /* 256 GB */ |
| return 0; |
| default: |
| return -1; |
| } |
| } |
| |
| static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
| { |
| struct kvmppc_rma_info *ri = vma->vm_file->private_data; |
| struct page *page; |
| |
| if (vmf->pgoff >= ri->npages) |
| return VM_FAULT_SIGBUS; |
| |
| page = pfn_to_page(ri->base_pfn + vmf->pgoff); |
| get_page(page); |
| vmf->page = page; |
| return 0; |
| } |
| |
| static const struct vm_operations_struct kvm_rma_vm_ops = { |
| .fault = kvm_rma_fault, |
| }; |
| |
| static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| vma->vm_flags |= VM_RESERVED; |
| vma->vm_ops = &kvm_rma_vm_ops; |
| return 0; |
| } |
| |
| static int kvm_rma_release(struct inode *inode, struct file *filp) |
| { |
| struct kvmppc_rma_info *ri = filp->private_data; |
| |
| kvm_release_rma(ri); |
| return 0; |
| } |
| |
| static struct file_operations kvm_rma_fops = { |
| .mmap = kvm_rma_mmap, |
| .release = kvm_rma_release, |
| }; |
| |
| long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret) |
| { |
| struct kvmppc_rma_info *ri; |
| long fd; |
| |
| ri = kvm_alloc_rma(); |
| if (!ri) |
| return -ENOMEM; |
| |
| fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR); |
| if (fd < 0) |
| kvm_release_rma(ri); |
| |
| ret->rma_size = ri->npages << PAGE_SHIFT; |
| return fd; |
| } |
| |
| static struct page *hva_to_page(unsigned long addr) |
| { |
| struct page *page[1]; |
| int npages; |
| |
| might_sleep(); |
| |
| npages = get_user_pages_fast(addr, 1, 1, page); |
| |
| if (unlikely(npages != 1)) |
| return 0; |
| |
| return page[0]; |
| } |
| |
| int kvmppc_core_prepare_memory_region(struct kvm *kvm, |
| struct kvm_userspace_memory_region *mem) |
| { |
| unsigned long psize, porder; |
| unsigned long i, npages, totalpages; |
| unsigned long pg_ix; |
| struct kvmppc_pginfo *pginfo; |
| unsigned long hva; |
| struct kvmppc_rma_info *ri = NULL; |
| struct page *page; |
| |
| /* For now, only allow 16MB pages */ |
| porder = LARGE_PAGE_ORDER; |
| psize = 1ul << porder; |
| if ((mem->memory_size & (psize - 1)) || |
| (mem->guest_phys_addr & (psize - 1))) { |
| pr_err("bad memory_size=%llx @ %llx\n", |
| mem->memory_size, mem->guest_phys_addr); |
| return -EINVAL; |
| } |
| |
| npages = mem->memory_size >> porder; |
| totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder; |
| |
| /* More memory than we have space to track? */ |
| if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER))) |
| return -EINVAL; |
| |
| /* Do we already have an RMA registered? */ |
| if (mem->guest_phys_addr == 0 && kvm->arch.rma) |
| return -EINVAL; |
| |
| if (totalpages > kvm->arch.ram_npages) |
| kvm->arch.ram_npages = totalpages; |
| |
| /* Is this one of our preallocated RMAs? */ |
| if (mem->guest_phys_addr == 0) { |
| struct vm_area_struct *vma; |
| |
| down_read(¤t->mm->mmap_sem); |
| vma = find_vma(current->mm, mem->userspace_addr); |
| if (vma && vma->vm_file && |
| vma->vm_file->f_op == &kvm_rma_fops && |
| mem->userspace_addr == vma->vm_start) |
| ri = vma->vm_file->private_data; |
| up_read(¤t->mm->mmap_sem); |
| if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) { |
| pr_err("CPU requires an RMO\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if (ri) { |
| unsigned long rma_size; |
| unsigned long lpcr; |
| long rmls; |
| |
| rma_size = ri->npages << PAGE_SHIFT; |
| if (rma_size > mem->memory_size) |
| rma_size = mem->memory_size; |
| rmls = lpcr_rmls(rma_size); |
| if (rmls < 0) { |
| pr_err("Can't use RMA of 0x%lx bytes\n", rma_size); |
| return -EINVAL; |
| } |
| atomic_inc(&ri->use_count); |
| kvm->arch.rma = ri; |
| kvm->arch.n_rma_pages = rma_size >> porder; |
| |
| /* Update LPCR and RMOR */ |
| lpcr = kvm->arch.lpcr; |
| if (cpu_has_feature(CPU_FTR_ARCH_201)) { |
| /* PPC970; insert RMLS value (split field) in HID4 */ |
| lpcr &= ~((1ul << HID4_RMLS0_SH) | |
| (3ul << HID4_RMLS2_SH)); |
| lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) | |
| ((rmls & 3) << HID4_RMLS2_SH); |
| /* RMOR is also in HID4 */ |
| lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) |
| << HID4_RMOR_SH; |
| } else { |
| /* POWER7 */ |
| lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L); |
| lpcr |= rmls << LPCR_RMLS_SH; |
| kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT; |
| } |
| kvm->arch.lpcr = lpcr; |
| pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n", |
| ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); |
| } |
| |
| pg_ix = mem->guest_phys_addr >> porder; |
| pginfo = kvm->arch.ram_pginfo + pg_ix; |
| for (i = 0; i < npages; ++i, ++pg_ix) { |
| if (ri && pg_ix < kvm->arch.n_rma_pages) { |
| pginfo[i].pfn = ri->base_pfn + |
| (pg_ix << (porder - PAGE_SHIFT)); |
| continue; |
| } |
| hva = mem->userspace_addr + (i << porder); |
| page = hva_to_page(hva); |
| if (!page) { |
| pr_err("oops, no pfn for hva %lx\n", hva); |
| goto err; |
| } |
| /* Check it's a 16MB page */ |
| if (!PageHead(page) || |
| compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) { |
| pr_err("page at %lx isn't 16MB (o=%d)\n", |
| hva, compound_order(page)); |
| goto err; |
| } |
| pginfo[i].pfn = page_to_pfn(page); |
| } |
| |
| return 0; |
| |
| err: |
| return -EINVAL; |
| } |
| |
| void kvmppc_core_commit_memory_region(struct kvm *kvm, |
| struct kvm_userspace_memory_region *mem) |
| { |
| if (mem->guest_phys_addr == 0 && mem->memory_size != 0 && |
| !kvm->arch.rma) |
| kvmppc_map_vrma(kvm, mem); |
| } |
| |
| int kvmppc_core_init_vm(struct kvm *kvm) |
| { |
| long r; |
| unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER); |
| long err = -ENOMEM; |
| unsigned long lpcr; |
| |
| /* Allocate hashed page table */ |
| r = kvmppc_alloc_hpt(kvm); |
| if (r) |
| return r; |
| |
| INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); |
| |
| kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo), |
| GFP_KERNEL); |
| if (!kvm->arch.ram_pginfo) { |
| pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n", |
| npages * sizeof(struct kvmppc_pginfo)); |
| goto out_free; |
| } |
| |
| kvm->arch.ram_npages = 0; |
| kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER; |
| kvm->arch.ram_porder = LARGE_PAGE_ORDER; |
| kvm->arch.rma = NULL; |
| kvm->arch.n_rma_pages = 0; |
| |
| kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_201)) { |
| /* PPC970; HID4 is effectively the LPCR */ |
| unsigned long lpid = kvm->arch.lpid; |
| kvm->arch.host_lpid = 0; |
| kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); |
| lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); |
| lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | |
| ((lpid & 0xf) << HID4_LPID5_SH); |
| } else { |
| /* POWER7; init LPCR for virtual RMA mode */ |
| kvm->arch.host_lpid = mfspr(SPRN_LPID); |
| kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); |
| lpcr &= LPCR_PECE | LPCR_LPES; |
| lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | |
| LPCR_VPM0 | LPCR_VRMA_L; |
| } |
| kvm->arch.lpcr = lpcr; |
| |
| return 0; |
| |
| out_free: |
| kvmppc_free_hpt(kvm); |
| return err; |
| } |
| |
| void kvmppc_core_destroy_vm(struct kvm *kvm) |
| { |
| struct kvmppc_pginfo *pginfo; |
| unsigned long i; |
| |
| if (kvm->arch.ram_pginfo) { |
| pginfo = kvm->arch.ram_pginfo; |
| kvm->arch.ram_pginfo = NULL; |
| for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i) |
| if (pginfo[i].pfn) |
| put_page(pfn_to_page(pginfo[i].pfn)); |
| kfree(pginfo); |
| } |
| if (kvm->arch.rma) { |
| kvm_release_rma(kvm->arch.rma); |
| kvm->arch.rma = NULL; |
| } |
| |
| kvmppc_free_hpt(kvm); |
| WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); |
| } |
| |
| /* These are stubs for now */ |
| void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) |
| { |
| } |
| |
| /* We don't need to emulate any privileged instructions or dcbz */ |
| int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| unsigned int inst, int *advance) |
| { |
| return EMULATE_FAIL; |
| } |
| |
| int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs) |
| { |
| return EMULATE_FAIL; |
| } |
| |
| int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt) |
| { |
| return EMULATE_FAIL; |
| } |
| |
| static int kvmppc_book3s_hv_init(void) |
| { |
| int r; |
| |
| r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); |
| |
| if (r) |
| return r; |
| |
| r = kvmppc_mmu_hv_init(); |
| |
| return r; |
| } |
| |
| static void kvmppc_book3s_hv_exit(void) |
| { |
| kvm_exit(); |
| } |
| |
| module_init(kvmppc_book3s_hv_init); |
| module_exit(kvmppc_book3s_hv_exit); |