blob: 981bfa32121a16c11c53fea23f0e734617755bfa [file] [log] [blame]
/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License version 2.
*/
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include <linux/gfs2_ondisk.h>
#include <linux/prefetch.h>
#include <linux/blkdev.h>
#include <linux/rbtree.h>
#include "gfs2.h"
#include "incore.h"
#include "glock.h"
#include "glops.h"
#include "lops.h"
#include "meta_io.h"
#include "quota.h"
#include "rgrp.h"
#include "super.h"
#include "trans.h"
#include "util.h"
#include "log.h"
#include "inode.h"
#include "trace_gfs2.h"
#define BFITNOENT ((u32)~0)
#define NO_BLOCK ((u64)~0)
#if BITS_PER_LONG == 32
#define LBITMASK (0x55555555UL)
#define LBITSKIP55 (0x55555555UL)
#define LBITSKIP00 (0x00000000UL)
#else
#define LBITMASK (0x5555555555555555UL)
#define LBITSKIP55 (0x5555555555555555UL)
#define LBITSKIP00 (0x0000000000000000UL)
#endif
/*
* These routines are used by the resource group routines (rgrp.c)
* to keep track of block allocation. Each block is represented by two
* bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
*
* 0 = Free
* 1 = Used (not metadata)
* 2 = Unlinked (still in use) inode
* 3 = Used (metadata)
*/
static const char valid_change[16] = {
/* current */
/* n */ 0, 1, 1, 1,
/* e */ 1, 0, 0, 0,
/* w */ 0, 0, 0, 1,
1, 0, 0, 0
};
static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
unsigned char old_state,
struct gfs2_bitmap **rbi);
/**
* gfs2_setbit - Set a bit in the bitmaps
* @buffer: the buffer that holds the bitmaps
* @buflen: the length (in bytes) of the buffer
* @block: the block to set
* @new_state: the new state of the block
*
*/
static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf1,
unsigned char *buf2, unsigned int offset,
struct gfs2_bitmap *bi, u32 block,
unsigned char new_state)
{
unsigned char *byte1, *byte2, *end, cur_state;
unsigned int buflen = bi->bi_len;
const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
byte1 = buf1 + offset + (block / GFS2_NBBY);
end = buf1 + offset + buflen;
BUG_ON(byte1 >= end);
cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
if (unlikely(!valid_change[new_state * 4 + cur_state])) {
printk(KERN_WARNING "GFS2: buf_blk = 0x%llx old_state=%d, "
"new_state=%d\n",
(unsigned long long)block, cur_state, new_state);
printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%lx\n",
(unsigned long long)rgd->rd_addr,
(unsigned long)bi->bi_start);
printk(KERN_WARNING "GFS2: bi_offset=0x%lx bi_len=0x%lx\n",
(unsigned long)bi->bi_offset,
(unsigned long)bi->bi_len);
dump_stack();
gfs2_consist_rgrpd(rgd);
return;
}
*byte1 ^= (cur_state ^ new_state) << bit;
if (buf2) {
byte2 = buf2 + offset + (block / GFS2_NBBY);
cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
*byte2 ^= (cur_state ^ new_state) << bit;
}
}
/**
* gfs2_testbit - test a bit in the bitmaps
* @buffer: the buffer that holds the bitmaps
* @buflen: the length (in bytes) of the buffer
* @block: the block to read
*
*/
static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
const unsigned char *buffer,
unsigned int buflen, u32 block)
{
const unsigned char *byte, *end;
unsigned char cur_state;
unsigned int bit;
byte = buffer + (block / GFS2_NBBY);
bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
end = buffer + buflen;
gfs2_assert(rgd->rd_sbd, byte < end);
cur_state = (*byte >> bit) & GFS2_BIT_MASK;
return cur_state;
}
/**
* gfs2_bit_search
* @ptr: Pointer to bitmap data
* @mask: Mask to use (normally 0x55555.... but adjusted for search start)
* @state: The state we are searching for
*
* We xor the bitmap data with a patter which is the bitwise opposite
* of what we are looking for, this gives rise to a pattern of ones
* wherever there is a match. Since we have two bits per entry, we
* take this pattern, shift it down by one place and then and it with
* the original. All the even bit positions (0,2,4, etc) then represent
* successful matches, so we mask with 0x55555..... to remove the unwanted
* odd bit positions.
*
* This allows searching of a whole u64 at once (32 blocks) with a
* single test (on 64 bit arches).
*/
static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
{
u64 tmp;
static const u64 search[] = {
[0] = 0xffffffffffffffffULL,
[1] = 0xaaaaaaaaaaaaaaaaULL,
[2] = 0x5555555555555555ULL,
[3] = 0x0000000000000000ULL,
};
tmp = le64_to_cpu(*ptr) ^ search[state];
tmp &= (tmp >> 1);
tmp &= mask;
return tmp;
}
/**
* gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
* a block in a given allocation state.
* @buffer: the buffer that holds the bitmaps
* @len: the length (in bytes) of the buffer
* @goal: start search at this block's bit-pair (within @buffer)
* @state: GFS2_BLKST_XXX the state of the block we're looking for.
*
* Scope of @goal and returned block number is only within this bitmap buffer,
* not entire rgrp or filesystem. @buffer will be offset from the actual
* beginning of a bitmap block buffer, skipping any header structures, but
* headers are always a multiple of 64 bits long so that the buffer is
* always aligned to a 64 bit boundary.
*
* The size of the buffer is in bytes, but is it assumed that it is
* always ok to read a complete multiple of 64 bits at the end
* of the block in case the end is no aligned to a natural boundary.
*
* Return: the block number (bitmap buffer scope) that was found
*/
static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
u32 goal, u8 state)
{
u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
u64 tmp;
u64 mask = 0x5555555555555555ULL;
u32 bit;
BUG_ON(state > 3);
/* Mask off bits we don't care about at the start of the search */
mask <<= spoint;
tmp = gfs2_bit_search(ptr, mask, state);
ptr++;
while(tmp == 0 && ptr < end) {
tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
ptr++;
}
/* Mask off any bits which are more than len bytes from the start */
if (ptr == end && (len & (sizeof(u64) - 1)))
tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
/* Didn't find anything, so return */
if (tmp == 0)
return BFITNOENT;
ptr--;
bit = __ffs64(tmp);
bit /= 2; /* two bits per entry in the bitmap */
return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
}
/**
* gfs2_bitcount - count the number of bits in a certain state
* @buffer: the buffer that holds the bitmaps
* @buflen: the length (in bytes) of the buffer
* @state: the state of the block we're looking for
*
* Returns: The number of bits
*/
static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
unsigned int buflen, u8 state)
{
const u8 *byte = buffer;
const u8 *end = buffer + buflen;
const u8 state1 = state << 2;
const u8 state2 = state << 4;
const u8 state3 = state << 6;
u32 count = 0;
for (; byte < end; byte++) {
if (((*byte) & 0x03) == state)
count++;
if (((*byte) & 0x0C) == state1)
count++;
if (((*byte) & 0x30) == state2)
count++;
if (((*byte) & 0xC0) == state3)
count++;
}
return count;
}
/**
* gfs2_rgrp_verify - Verify that a resource group is consistent
* @sdp: the filesystem
* @rgd: the rgrp
*
*/
void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct gfs2_bitmap *bi = NULL;
u32 length = rgd->rd_length;
u32 count[4], tmp;
int buf, x;
memset(count, 0, 4 * sizeof(u32));
/* Count # blocks in each of 4 possible allocation states */
for (buf = 0; buf < length; buf++) {
bi = rgd->rd_bits + buf;
for (x = 0; x < 4; x++)
count[x] += gfs2_bitcount(rgd,
bi->bi_bh->b_data +
bi->bi_offset,
bi->bi_len, x);
}
if (count[0] != rgd->rd_free) {
if (gfs2_consist_rgrpd(rgd))
fs_err(sdp, "free data mismatch: %u != %u\n",
count[0], rgd->rd_free);
return;
}
tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
if (count[1] != tmp) {
if (gfs2_consist_rgrpd(rgd))
fs_err(sdp, "used data mismatch: %u != %u\n",
count[1], tmp);
return;
}
if (count[2] + count[3] != rgd->rd_dinodes) {
if (gfs2_consist_rgrpd(rgd))
fs_err(sdp, "used metadata mismatch: %u != %u\n",
count[2] + count[3], rgd->rd_dinodes);
return;
}
}
static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
{
u64 first = rgd->rd_data0;
u64 last = first + rgd->rd_data;
return first <= block && block < last;
}
/**
* gfs2_blk2rgrpd - Find resource group for a given data/meta block number
* @sdp: The GFS2 superblock
* @n: The data block number
*
* Returns: The resource group, or NULL if not found
*/
struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk)
{
struct rb_node **newn;
struct gfs2_rgrpd *cur;
spin_lock(&sdp->sd_rindex_spin);
newn = &sdp->sd_rindex_tree.rb_node;
while (*newn) {
cur = rb_entry(*newn, struct gfs2_rgrpd, rd_node);
if (blk < cur->rd_addr)
newn = &((*newn)->rb_left);
else if (blk >= cur->rd_data0 + cur->rd_data)
newn = &((*newn)->rb_right);
else {
spin_unlock(&sdp->sd_rindex_spin);
return cur;
}
}
spin_unlock(&sdp->sd_rindex_spin);
return NULL;
}
/**
* gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
* @sdp: The GFS2 superblock
*
* Returns: The first rgrp in the filesystem
*/
struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
{
const struct rb_node *n;
struct gfs2_rgrpd *rgd;
spin_lock(&sdp->sd_rindex_spin);
n = rb_first(&sdp->sd_rindex_tree);
rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
spin_unlock(&sdp->sd_rindex_spin);
return rgd;
}
/**
* gfs2_rgrpd_get_next - get the next RG
* @rgd: A RG
*
* Returns: The next rgrp
*/
struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
const struct rb_node *n;
spin_lock(&sdp->sd_rindex_spin);
n = rb_next(&rgd->rd_node);
if (n == NULL)
n = rb_first(&sdp->sd_rindex_tree);
if (unlikely(&rgd->rd_node == n)) {
spin_unlock(&sdp->sd_rindex_spin);
return NULL;
}
rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
spin_unlock(&sdp->sd_rindex_spin);
return rgd;
}
void gfs2_free_clones(struct gfs2_rgrpd *rgd)
{
int x;
for (x = 0; x < rgd->rd_length; x++) {
struct gfs2_bitmap *bi = rgd->rd_bits + x;
kfree(bi->bi_clone);
bi->bi_clone = NULL;
}
}
void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
{
struct rb_node *n;
struct gfs2_rgrpd *rgd;
struct gfs2_glock *gl;
while ((n = rb_first(&sdp->sd_rindex_tree))) {
rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
gl = rgd->rd_gl;
rb_erase(n, &sdp->sd_rindex_tree);
if (gl) {
spin_lock(&gl->gl_spin);
gl->gl_object = NULL;
spin_unlock(&gl->gl_spin);
gfs2_glock_add_to_lru(gl);
gfs2_glock_put(gl);
}
gfs2_free_clones(rgd);
kfree(rgd->rd_bits);
kmem_cache_free(gfs2_rgrpd_cachep, rgd);
}
}
static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
{
printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
}
/**
* gfs2_compute_bitstructs - Compute the bitmap sizes
* @rgd: The resource group descriptor
*
* Calculates bitmap descriptors, one for each block that contains bitmap data
*
* Returns: errno
*/
static int compute_bitstructs(struct gfs2_rgrpd *rgd)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct gfs2_bitmap *bi;
u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
u32 bytes_left, bytes;
int x;
if (!length)
return -EINVAL;
rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
if (!rgd->rd_bits)
return -ENOMEM;
bytes_left = rgd->rd_bitbytes;
for (x = 0; x < length; x++) {
bi = rgd->rd_bits + x;
bi->bi_flags = 0;
/* small rgrp; bitmap stored completely in header block */
if (length == 1) {
bytes = bytes_left;
bi->bi_offset = sizeof(struct gfs2_rgrp);
bi->bi_start = 0;
bi->bi_len = bytes;
/* header block */
} else if (x == 0) {
bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
bi->bi_offset = sizeof(struct gfs2_rgrp);
bi->bi_start = 0;
bi->bi_len = bytes;
/* last block */
} else if (x + 1 == length) {
bytes = bytes_left;
bi->bi_offset = sizeof(struct gfs2_meta_header);
bi->bi_start = rgd->rd_bitbytes - bytes_left;
bi->bi_len = bytes;
/* other blocks */
} else {
bytes = sdp->sd_sb.sb_bsize -
sizeof(struct gfs2_meta_header);
bi->bi_offset = sizeof(struct gfs2_meta_header);
bi->bi_start = rgd->rd_bitbytes - bytes_left;
bi->bi_len = bytes;
}
bytes_left -= bytes;
}
if (bytes_left) {
gfs2_consist_rgrpd(rgd);
return -EIO;
}
bi = rgd->rd_bits + (length - 1);
if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
if (gfs2_consist_rgrpd(rgd)) {
gfs2_rindex_print(rgd);
fs_err(sdp, "start=%u len=%u offset=%u\n",
bi->bi_start, bi->bi_len, bi->bi_offset);
}
return -EIO;
}
return 0;
}
/**
* gfs2_ri_total - Total up the file system space, according to the rindex.
*
*/
u64 gfs2_ri_total(struct gfs2_sbd *sdp)
{
u64 total_data = 0;
struct inode *inode = sdp->sd_rindex;
struct gfs2_inode *ip = GFS2_I(inode);
char buf[sizeof(struct gfs2_rindex)];
struct file_ra_state ra_state;
int error, rgrps;
mutex_lock(&sdp->sd_rindex_mutex);
file_ra_state_init(&ra_state, inode->i_mapping);
for (rgrps = 0;; rgrps++) {
loff_t pos = rgrps * sizeof(struct gfs2_rindex);
if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
break;
error = gfs2_internal_read(ip, &ra_state, buf, &pos,
sizeof(struct gfs2_rindex));
if (error != sizeof(struct gfs2_rindex))
break;
total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
}
mutex_unlock(&sdp->sd_rindex_mutex);
return total_data;
}
static void rgd_insert(struct gfs2_rgrpd *rgd)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
/* Figure out where to put new node */
while (*newn) {
struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
rd_node);
parent = *newn;
if (rgd->rd_addr < cur->rd_addr)
newn = &((*newn)->rb_left);
else if (rgd->rd_addr > cur->rd_addr)
newn = &((*newn)->rb_right);
else
return;
}
rb_link_node(&rgd->rd_node, parent, newn);
rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
}
/**
* read_rindex_entry - Pull in a new resource index entry from the disk
* @gl: The glock covering the rindex inode
*
* Returns: 0 on success, > 0 on EOF, error code otherwise
*/
static int read_rindex_entry(struct gfs2_inode *ip,
struct file_ra_state *ra_state)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
struct gfs2_rindex buf;
int error;
struct gfs2_rgrpd *rgd;
if (pos >= i_size_read(&ip->i_inode))
return 1;
error = gfs2_internal_read(ip, ra_state, (char *)&buf, &pos,
sizeof(struct gfs2_rindex));
if (error != sizeof(struct gfs2_rindex))
return (error == 0) ? 1 : error;
rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
error = -ENOMEM;
if (!rgd)
return error;
rgd->rd_sbd = sdp;
rgd->rd_addr = be64_to_cpu(buf.ri_addr);
rgd->rd_length = be32_to_cpu(buf.ri_length);
rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
rgd->rd_data = be32_to_cpu(buf.ri_data);
rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
error = compute_bitstructs(rgd);
if (error)
goto fail;
error = gfs2_glock_get(sdp, rgd->rd_addr,
&gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
if (error)
goto fail;
rgd->rd_gl->gl_object = rgd;
rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
if (rgd->rd_data > sdp->sd_max_rg_data)
sdp->sd_max_rg_data = rgd->rd_data;
spin_lock(&sdp->sd_rindex_spin);
rgd_insert(rgd);
sdp->sd_rgrps++;
spin_unlock(&sdp->sd_rindex_spin);
return error;
fail:
kfree(rgd->rd_bits);
kmem_cache_free(gfs2_rgrpd_cachep, rgd);
return error;
}
/**
* gfs2_ri_update - Pull in a new resource index from the disk
* @ip: pointer to the rindex inode
*
* Returns: 0 on successful update, error code otherwise
*/
static int gfs2_ri_update(struct gfs2_inode *ip)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
struct inode *inode = &ip->i_inode;
struct file_ra_state ra_state;
int error;
file_ra_state_init(&ra_state, inode->i_mapping);
do {
error = read_rindex_entry(ip, &ra_state);
} while (error == 0);
if (error < 0)
return error;
sdp->sd_rindex_uptodate = 1;
return 0;
}
/**
* gfs2_rindex_update - Update the rindex if required
* @sdp: The GFS2 superblock
*
* We grab a lock on the rindex inode to make sure that it doesn't
* change whilst we are performing an operation. We keep this lock
* for quite long periods of time compared to other locks. This
* doesn't matter, since it is shared and it is very, very rarely
* accessed in the exclusive mode (i.e. only when expanding the filesystem).
*
* This makes sure that we're using the latest copy of the resource index
* special file, which might have been updated if someone expanded the
* filesystem (via gfs2_grow utility), which adds new resource groups.
*
* Returns: 0 on succeess, error code otherwise
*/
int gfs2_rindex_update(struct gfs2_sbd *sdp)
{
struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
struct gfs2_glock *gl = ip->i_gl;
struct gfs2_holder ri_gh;
int error = 0;
/* Read new copy from disk if we don't have the latest */
if (!sdp->sd_rindex_uptodate) {
mutex_lock(&sdp->sd_rindex_mutex);
error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
if (error)
return error;
if (!sdp->sd_rindex_uptodate)
error = gfs2_ri_update(ip);
gfs2_glock_dq_uninit(&ri_gh);
mutex_unlock(&sdp->sd_rindex_mutex);
}
return error;
}
static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
{
const struct gfs2_rgrp *str = buf;
u32 rg_flags;
rg_flags = be32_to_cpu(str->rg_flags);
rg_flags &= ~GFS2_RDF_MASK;
rgd->rd_flags &= GFS2_RDF_MASK;
rgd->rd_flags |= rg_flags;
rgd->rd_free = be32_to_cpu(str->rg_free);
rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
}
static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
{
struct gfs2_rgrp *str = buf;
str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
str->rg_free = cpu_to_be32(rgd->rd_free);
str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
str->__pad = cpu_to_be32(0);
str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
}
/**
* gfs2_rgrp_go_lock - Read in a RG's header and bitmaps
* @rgd: the struct gfs2_rgrpd describing the RG to read in
*
* Read in all of a Resource Group's header and bitmap blocks.
* Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
*
* Returns: errno
*/
int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
{
struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct gfs2_glock *gl = rgd->rd_gl;
unsigned int length = rgd->rd_length;
struct gfs2_bitmap *bi;
unsigned int x, y;
int error;
for (x = 0; x < length; x++) {
bi = rgd->rd_bits + x;
error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
if (error)
goto fail;
}
for (y = length; y--;) {
bi = rgd->rd_bits + y;
error = gfs2_meta_wait(sdp, bi->bi_bh);
if (error)
goto fail;
if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
GFS2_METATYPE_RG)) {
error = -EIO;
goto fail;
}
}
if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
for (x = 0; x < length; x++)
clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
rgd->rd_free_clone = rgd->rd_free;
}
return 0;
fail:
while (x--) {
bi = rgd->rd_bits + x;
brelse(bi->bi_bh);
bi->bi_bh = NULL;
gfs2_assert_warn(sdp, !bi->bi_clone);
}
return error;
}
/**
* gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
* @rgd: the struct gfs2_rgrpd describing the RG to read in
*
*/
void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
{
struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
int x, length = rgd->rd_length;
for (x = 0; x < length; x++) {
struct gfs2_bitmap *bi = rgd->rd_bits + x;
brelse(bi->bi_bh);
bi->bi_bh = NULL;
}
}
void gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
struct buffer_head *bh,
const struct gfs2_bitmap *bi)
{
struct super_block *sb = sdp->sd_vfs;
struct block_device *bdev = sb->s_bdev;
const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
bdev_logical_block_size(sb->s_bdev);
u64 blk;
sector_t start = 0;
sector_t nr_sects = 0;
int rv;
unsigned int x;
for (x = 0; x < bi->bi_len; x++) {
const u8 *orig = bh->b_data + bi->bi_offset + x;
const u8 *clone = bi->bi_clone + bi->bi_offset + x;
u8 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
diff &= 0x55;
if (diff == 0)
continue;
blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
blk *= sects_per_blk; /* convert to sectors */
while(diff) {
if (diff & 1) {
if (nr_sects == 0)
goto start_new_extent;
if ((start + nr_sects) != blk) {
rv = blkdev_issue_discard(bdev, start,
nr_sects, GFP_NOFS,
0);
if (rv)
goto fail;
nr_sects = 0;
start_new_extent:
start = blk;
}
nr_sects += sects_per_blk;
}
diff >>= 2;
blk += sects_per_blk;
}
}
if (nr_sects) {
rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
if (rv)
goto fail;
}
return;
fail:
fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
sdp->sd_args.ar_discard = 0;
}
/**
* gfs2_qadata_get - get the struct gfs2_qadata structure for an inode
* @ip: the incore GFS2 inode structure
*
* Returns: the struct gfs2_qadata
*/
struct gfs2_qadata *gfs2_qadata_get(struct gfs2_inode *ip)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
int error;
BUG_ON(ip->i_qadata != NULL);
ip->i_qadata = kzalloc(sizeof(struct gfs2_qadata), GFP_NOFS);
error = gfs2_rindex_update(sdp);
if (error)
fs_warn(sdp, "rindex update returns %d\n", error);
return ip->i_qadata;
}
/**
* gfs2_blkrsv_get - get the struct gfs2_blkreserv structure for an inode
* @ip: the incore GFS2 inode structure
*
* Returns: the struct gfs2_qadata
*/
static struct gfs2_blkreserv *gfs2_blkrsv_get(struct gfs2_inode *ip)
{
BUG_ON(ip->i_res != NULL);
ip->i_res = kzalloc(sizeof(struct gfs2_blkreserv), GFP_NOFS);
return ip->i_res;
}
/**
* try_rgrp_fit - See if a given reservation will fit in a given RG
* @rgd: the RG data
* @ip: the inode
*
* If there's room for the requested blocks to be allocated from the RG:
*
* Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
*/
static int try_rgrp_fit(const struct gfs2_rgrpd *rgd, const struct gfs2_inode *ip)
{
const struct gfs2_blkreserv *rs = ip->i_res;
if (rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
return 0;
if (rgd->rd_free_clone >= rs->rs_requested)
return 1;
return 0;
}
static inline u32 gfs2_bi2rgd_blk(struct gfs2_bitmap *bi, u32 blk)
{
return (bi->bi_start * GFS2_NBBY) + blk;
}
/**
* try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
* @rgd: The rgrp
*
* Returns: 0 if no error
* The inode, if one has been found, in inode.
*/
static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
{
u32 goal = 0, block;
u64 no_addr;
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct gfs2_glock *gl;
struct gfs2_inode *ip;
int error;
int found = 0;
struct gfs2_bitmap *bi;
while (goal < rgd->rd_data) {
down_write(&sdp->sd_log_flush_lock);
block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED, &bi);
up_write(&sdp->sd_log_flush_lock);
if (block == BFITNOENT)
break;
block = gfs2_bi2rgd_blk(bi, block);
/* rgblk_search can return a block < goal, so we need to
keep it marching forward. */
no_addr = block + rgd->rd_data0;
goal = max(block + 1, goal + 1);
if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
continue;
if (no_addr == skip)
continue;
*last_unlinked = no_addr;
error = gfs2_glock_get(sdp, no_addr, &gfs2_inode_glops, CREATE, &gl);
if (error)
continue;
/* If the inode is already in cache, we can ignore it here
* because the existing inode disposal code will deal with
* it when all refs have gone away. Accessing gl_object like
* this is not safe in general. Here it is ok because we do
* not dereference the pointer, and we only need an approx
* answer to whether it is NULL or not.
*/
ip = gl->gl_object;
if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
gfs2_glock_put(gl);
else
found++;
/* Limit reclaim to sensible number of tasks */
if (found > NR_CPUS)
return;
}
rgd->rd_flags &= ~GFS2_RDF_CHECK;
return;
}
/**
* get_local_rgrp - Choose and lock a rgrp for allocation
* @ip: the inode to reserve space for
* @rgp: the chosen and locked rgrp
*
* Try to acquire rgrp in way which avoids contending with others.
*
* Returns: errno
*/
static int get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
struct gfs2_rgrpd *rgd, *begin = NULL;
struct gfs2_blkreserv *rs = ip->i_res;
int error, rg_locked, flags = LM_FLAG_TRY;
int loops = 0;
if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal))
rgd = begin = ip->i_rgd;
else
rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal);
if (rgd == NULL)
return -EBADSLT;
while (loops < 3) {
rg_locked = 0;
if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
rg_locked = 1;
error = 0;
} else {
error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
flags, &rs->rs_rgd_gh);
}
switch (error) {
case 0:
if (try_rgrp_fit(rgd, ip)) {
ip->i_rgd = rgd;
return 0;
}
if (rgd->rd_flags & GFS2_RDF_CHECK)
try_rgrp_unlink(rgd, last_unlinked, ip->i_no_addr);
if (!rg_locked)
gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
/* fall through */
case GLR_TRYFAILED:
rgd = gfs2_rgrpd_get_next(rgd);
if (rgd == begin) {
flags = 0;
loops++;
}
break;
default:
return error;
}
}
return -ENOSPC;
}
static void gfs2_blkrsv_put(struct gfs2_inode *ip)
{
BUG_ON(ip->i_res == NULL);
kfree(ip->i_res);
ip->i_res = NULL;
}
/**
* gfs2_inplace_reserve - Reserve space in the filesystem
* @ip: the inode to reserve space for
*
* Returns: errno
*/
int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
struct gfs2_blkreserv *rs;
int error = 0;
u64 last_unlinked = NO_BLOCK;
int tries = 0;
rs = gfs2_blkrsv_get(ip);
if (!rs)
return -ENOMEM;
rs->rs_requested = requested;
if (gfs2_assert_warn(sdp, requested)) {
error = -EINVAL;
goto out;
}
do {
error = get_local_rgrp(ip, &last_unlinked);
if (error != -ENOSPC)
break;
/* Check that fs hasn't grown if writing to rindex */
if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
error = gfs2_ri_update(ip);
if (error)
break;
continue;
}
/* Flushing the log may release space */
gfs2_log_flush(sdp, NULL);
} while (tries++ < 3);
out:
if (error)
gfs2_blkrsv_put(ip);
return error;
}
/**
* gfs2_inplace_release - release an inplace reservation
* @ip: the inode the reservation was taken out on
*
* Release a reservation made by gfs2_inplace_reserve().
*/
void gfs2_inplace_release(struct gfs2_inode *ip)
{
struct gfs2_blkreserv *rs = ip->i_res;
if (rs->rs_rgd_gh.gh_gl)
gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
gfs2_blkrsv_put(ip);
}
/**
* gfs2_get_block_type - Check a block in a RG is of given type
* @rgd: the resource group holding the block
* @block: the block number
*
* Returns: The block type (GFS2_BLKST_*)
*/
static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
{
struct gfs2_bitmap *bi = NULL;
u32 length, rgrp_block, buf_block;
unsigned int buf;
unsigned char type;
length = rgd->rd_length;
rgrp_block = block - rgd->rd_data0;
for (buf = 0; buf < length; buf++) {
bi = rgd->rd_bits + buf;
if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
break;
}
gfs2_assert(rgd->rd_sbd, buf < length);
buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
bi->bi_len, buf_block);
return type;
}
/**
* rgblk_search - find a block in @state
* @rgd: the resource group descriptor
* @goal: the goal block within the RG (start here to search for avail block)
* @state: GFS2_BLKST_XXX the before-allocation state to find
* @dinode: TRUE if the first block we allocate is for a dinode
* @rbi: address of the pointer to the bitmap containing the block found
*
* Walk rgrp's bitmap to find bits that represent a block in @state.
*
* This function never fails, because we wouldn't call it unless we
* know (from reservation results, etc.) that a block is available.
*
* Scope of @goal is just within rgrp, not the whole filesystem.
* Scope of @returned block is just within bitmap, not the whole filesystem.
*
* Returns: the block number found relative to the bitmap rbi
*/
static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
unsigned char state,
struct gfs2_bitmap **rbi)
{
struct gfs2_bitmap *bi = NULL;
const u32 length = rgd->rd_length;
u32 blk = BFITNOENT;
unsigned int buf, x;
const u8 *buffer = NULL;
*rbi = NULL;
/* Find bitmap block that contains bits for goal block */
for (buf = 0; buf < length; buf++) {
bi = rgd->rd_bits + buf;
/* Convert scope of "goal" from rgrp-wide to within found bit block */
if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY) {
goal -= bi->bi_start * GFS2_NBBY;
goto do_search;
}
}
buf = 0;
goal = 0;
do_search:
/* Search (up to entire) bitmap in this rgrp for allocatable block.
"x <= length", instead of "x < length", because we typically start
the search in the middle of a bit block, but if we can't find an
allocatable block anywhere else, we want to be able wrap around and
search in the first part of our first-searched bit block. */
for (x = 0; x <= length; x++) {
bi = rgd->rd_bits + buf;
if (test_bit(GBF_FULL, &bi->bi_flags) &&
(state == GFS2_BLKST_FREE))
goto skip;
/* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
bitmaps, so we must search the originals for that. */
buffer = bi->bi_bh->b_data + bi->bi_offset;
WARN_ON(!buffer_uptodate(bi->bi_bh));
if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
buffer = bi->bi_clone + bi->bi_offset;
blk = gfs2_bitfit(buffer, bi->bi_len, goal, state);
if (blk != BFITNOENT)
break;
if ((goal == 0) && (state == GFS2_BLKST_FREE))
set_bit(GBF_FULL, &bi->bi_flags);
/* Try next bitmap block (wrap back to rgrp header if at end) */
skip:
buf++;
buf %= length;
goal = 0;
}
if (blk != BFITNOENT)
*rbi = bi;
return blk;
}
/**
* gfs2_alloc_extent - allocate an extent from a given bitmap
* @rgd: the resource group descriptor
* @bi: the bitmap within the rgrp
* @blk: the block within the bitmap
* @dinode: TRUE if the first block we allocate is for a dinode
* @n: The extent length
*
* Add the found bitmap buffer to the transaction.
* Set the found bits to @new_state to change block's allocation state.
* Returns: starting block number of the extent (fs scope)
*/
static u64 gfs2_alloc_extent(struct gfs2_rgrpd *rgd, struct gfs2_bitmap *bi,
u32 blk, bool dinode, unsigned int *n)
{
const unsigned int elen = *n;
u32 goal;
const u8 *buffer = NULL;
*n = 0;
buffer = bi->bi_bh->b_data + bi->bi_offset;
gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
bi, blk, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
(*n)++;
goal = blk;
while (*n < elen) {
goal++;
if (goal >= (bi->bi_len * GFS2_NBBY))
break;
if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
GFS2_BLKST_FREE)
break;
gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
bi, goal, GFS2_BLKST_USED);
(*n)++;
}
blk = gfs2_bi2rgd_blk(bi, blk);
rgd->rd_last_alloc = blk + *n - 1;
return rgd->rd_data0 + blk;
}
/**
* rgblk_free - Change alloc state of given block(s)
* @sdp: the filesystem
* @bstart: the start of a run of blocks to free
* @blen: the length of the block run (all must lie within ONE RG!)
* @new_state: GFS2_BLKST_XXX the after-allocation block state
*
* Returns: Resource group containing the block(s)
*/
static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
u32 blen, unsigned char new_state)
{
struct gfs2_rgrpd *rgd;
struct gfs2_bitmap *bi = NULL;
u32 length, rgrp_blk, buf_blk;
unsigned int buf;
rgd = gfs2_blk2rgrpd(sdp, bstart);
if (!rgd) {
if (gfs2_consist(sdp))
fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
return NULL;
}
length = rgd->rd_length;
rgrp_blk = bstart - rgd->rd_data0;
while (blen--) {
for (buf = 0; buf < length; buf++) {
bi = rgd->rd_bits + buf;
if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
break;
}
gfs2_assert(rgd->rd_sbd, buf < length);
buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
rgrp_blk++;
if (!bi->bi_clone) {
bi->bi_clone = kmalloc(bi->bi_bh->b_size,
GFP_NOFS | __GFP_NOFAIL);
memcpy(bi->bi_clone + bi->bi_offset,
bi->bi_bh->b_data + bi->bi_offset,
bi->bi_len);
}
gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
gfs2_setbit(rgd, bi->bi_bh->b_data, NULL, bi->bi_offset,
bi, buf_blk, new_state);
}
return rgd;
}
/**
* gfs2_rgrp_dump - print out an rgrp
* @seq: The iterator
* @gl: The glock in question
*
*/
int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
{
const struct gfs2_rgrpd *rgd = gl->gl_object;
if (rgd == NULL)
return 0;
gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u\n",
(unsigned long long)rgd->rd_addr, rgd->rd_flags,
rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes);
return 0;
}
static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
(unsigned long long)rgd->rd_addr);
fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
gfs2_rgrp_dump(NULL, rgd->rd_gl);
rgd->rd_flags |= GFS2_RDF_ERROR;
}
/**
* gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
* @ip: the inode to allocate the block for
* @bn: Used to return the starting block number
* @ndata: requested number of blocks/extent length (value/result)
* @dinode: 1 if we're allocating a dinode block, else 0
* @generation: the generation number of the inode
*
* Returns: 0 or error
*/
int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
bool dinode, u64 *generation)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
struct buffer_head *dibh;
struct gfs2_rgrpd *rgd;
unsigned int ndata;
u32 goal, blk; /* block, within the rgrp scope */
u64 block; /* block, within the file system scope */
int error;
struct gfs2_bitmap *bi;
/* Only happens if there is a bug in gfs2, return something distinctive
* to ensure that it is noticed.
*/
if (ip->i_res == NULL)
return -ECANCELED;
rgd = ip->i_rgd;
if (!dinode && rgrp_contains_block(rgd, ip->i_goal))
goal = ip->i_goal - rgd->rd_data0;
else
goal = rgd->rd_last_alloc;
blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, &bi);
/* Since all blocks are reserved in advance, this shouldn't happen */
if (blk == BFITNOENT)
goto rgrp_error;
block = gfs2_alloc_extent(rgd, bi, blk, dinode, nblocks);
ndata = *nblocks;
if (dinode)
ndata--;
if (!dinode) {
ip->i_goal = block + ndata - 1;
error = gfs2_meta_inode_buffer(ip, &dibh);
if (error == 0) {
struct gfs2_dinode *di =
(struct gfs2_dinode *)dibh->b_data;
gfs2_trans_add_bh(ip->i_gl, dibh, 1);
di->di_goal_meta = di->di_goal_data =
cpu_to_be64(ip->i_goal);
brelse(dibh);
}
}
if (rgd->rd_free < *nblocks)
goto rgrp_error;
rgd->rd_free -= *nblocks;
if (dinode) {
rgd->rd_dinodes++;
*generation = rgd->rd_igeneration++;
if (*generation == 0)
*generation = rgd->rd_igeneration++;
}
gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
if (dinode)
gfs2_trans_add_unrevoke(sdp, block, 1);
/*
* This needs reviewing to see why we cannot do the quota change
* at this point in the dinode case.
*/
if (ndata)
gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
ip->i_inode.i_gid);
rgd->rd_free_clone -= *nblocks;
trace_gfs2_block_alloc(ip, block, *nblocks,
dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
*bn = block;
return 0;
rgrp_error:
gfs2_rgrp_error(rgd);
return -EIO;
}
/**
* __gfs2_free_blocks - free a contiguous run of block(s)
* @ip: the inode these blocks are being freed from
* @bstart: first block of a run of contiguous blocks
* @blen: the length of the block run
* @meta: 1 if the blocks represent metadata
*
*/
void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
struct gfs2_rgrpd *rgd;
rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
if (!rgd)
return;
trace_gfs2_block_alloc(ip, bstart, blen, GFS2_BLKST_FREE);
rgd->rd_free += blen;
gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
/* Directories keep their data in the metadata address space */
if (meta || ip->i_depth)
gfs2_meta_wipe(ip, bstart, blen);
}
/**
* gfs2_free_meta - free a contiguous run of data block(s)
* @ip: the inode these blocks are being freed from
* @bstart: first block of a run of contiguous blocks
* @blen: the length of the block run
*
*/
void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
__gfs2_free_blocks(ip, bstart, blen, 1);
gfs2_statfs_change(sdp, 0, +blen, 0);
gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
}
void gfs2_unlink_di(struct inode *inode)
{
struct gfs2_inode *ip = GFS2_I(inode);
struct gfs2_sbd *sdp = GFS2_SB(inode);
struct gfs2_rgrpd *rgd;
u64 blkno = ip->i_no_addr;
rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
if (!rgd)
return;
trace_gfs2_block_alloc(ip, blkno, 1, GFS2_BLKST_UNLINKED);
gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
}
static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
{
struct gfs2_sbd *sdp = rgd->rd_sbd;
struct gfs2_rgrpd *tmp_rgd;
tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
if (!tmp_rgd)
return;
gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
if (!rgd->rd_dinodes)
gfs2_consist_rgrpd(rgd);
rgd->rd_dinodes--;
rgd->rd_free++;
gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
gfs2_statfs_change(sdp, 0, +1, -1);
}
void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
{
gfs2_free_uninit_di(rgd, ip->i_no_addr);
trace_gfs2_block_alloc(ip, ip->i_no_addr, 1, GFS2_BLKST_FREE);
gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
gfs2_meta_wipe(ip, ip->i_no_addr, 1);
}
/**
* gfs2_check_blk_type - Check the type of a block
* @sdp: The superblock
* @no_addr: The block number to check
* @type: The block type we are looking for
*
* Returns: 0 if the block type matches the expected type
* -ESTALE if it doesn't match
* or -ve errno if something went wrong while checking
*/
int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
{
struct gfs2_rgrpd *rgd;
struct gfs2_holder rgd_gh;
int error;
error = gfs2_rindex_update(sdp);
if (error)
return error;
error = -EINVAL;
rgd = gfs2_blk2rgrpd(sdp, no_addr);
if (!rgd)
goto fail;
error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
if (error)
goto fail;
if (gfs2_get_block_type(rgd, no_addr) != type)
error = -ESTALE;
gfs2_glock_dq_uninit(&rgd_gh);
fail:
return error;
}
/**
* gfs2_rlist_add - add a RG to a list of RGs
* @ip: the inode
* @rlist: the list of resource groups
* @block: the block
*
* Figure out what RG a block belongs to and add that RG to the list
*
* FIXME: Don't use NOFAIL
*
*/
void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
u64 block)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
struct gfs2_rgrpd *rgd;
struct gfs2_rgrpd **tmp;
unsigned int new_space;
unsigned int x;
if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
return;
if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
rgd = ip->i_rgd;
else
rgd = gfs2_blk2rgrpd(sdp, block);
if (!rgd) {
fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
return;
}
ip->i_rgd = rgd;
for (x = 0; x < rlist->rl_rgrps; x++)
if (rlist->rl_rgd[x] == rgd)
return;
if (rlist->rl_rgrps == rlist->rl_space) {
new_space = rlist->rl_space + 10;
tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
GFP_NOFS | __GFP_NOFAIL);
if (rlist->rl_rgd) {
memcpy(tmp, rlist->rl_rgd,
rlist->rl_space * sizeof(struct gfs2_rgrpd *));
kfree(rlist->rl_rgd);
}
rlist->rl_space = new_space;
rlist->rl_rgd = tmp;
}
rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
}
/**
* gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
* and initialize an array of glock holders for them
* @rlist: the list of resource groups
* @state: the lock state to acquire the RG lock in
* @flags: the modifier flags for the holder structures
*
* FIXME: Don't use NOFAIL
*
*/
void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
{
unsigned int x;
rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
GFP_NOFS | __GFP_NOFAIL);
for (x = 0; x < rlist->rl_rgrps; x++)
gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
state, 0,
&rlist->rl_ghs[x]);
}
/**
* gfs2_rlist_free - free a resource group list
* @list: the list of resource groups
*
*/
void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
{
unsigned int x;
kfree(rlist->rl_rgd);
if (rlist->rl_ghs) {
for (x = 0; x < rlist->rl_rgrps; x++)
gfs2_holder_uninit(&rlist->rl_ghs[x]);
kfree(rlist->rl_ghs);
}
}