| /* Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, KBUILD_MODNAME |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| #include <linux/err.h> |
| #include <linux/sysfs.h> |
| #include <linux/device.h> |
| #include <linux/platform_device.h> |
| #include <linux/moduleparam.h> |
| #include "lpm-levels.h" |
| |
| enum lpm_type { |
| IDLE = 0, |
| SUSPEND, |
| LATENCY, |
| LPM_TYPE_NR |
| }; |
| |
| struct lpm_type_str { |
| enum lpm_type type; |
| char *str; |
| }; |
| |
| static const struct lpm_type_str lpm_types[] = { |
| {IDLE, "idle_enabled"}, |
| {SUSPEND, "suspend_enabled"}, |
| {LATENCY, "latency_us"}, |
| }; |
| |
| static DEFINE_PER_CPU(uint32_t *, max_residency); |
| static DEFINE_PER_CPU(uint32_t *, min_residency); |
| static struct lpm_level_avail *cpu_level_available[NR_CPUS]; |
| static struct platform_device *lpm_pdev; |
| |
| static void *get_enabled_ptr(struct kobj_attribute *attr, |
| struct lpm_level_avail *avail) |
| { |
| void *arg = NULL; |
| |
| if (!strcmp(attr->attr.name, lpm_types[IDLE].str)) |
| arg = (void *) &avail->idle_enabled; |
| else if (!strcmp(attr->attr.name, lpm_types[SUSPEND].str)) |
| arg = (void *) &avail->suspend_enabled; |
| |
| return arg; |
| } |
| |
| static struct lpm_level_avail *get_avail_ptr(struct kobject *kobj, |
| struct kobj_attribute *attr) |
| { |
| struct lpm_level_avail *avail = NULL; |
| |
| if (!strcmp(attr->attr.name, lpm_types[IDLE].str)) |
| avail = container_of(attr, struct lpm_level_avail, |
| idle_enabled_attr); |
| else if (!strcmp(attr->attr.name, lpm_types[SUSPEND].str)) |
| avail = container_of(attr, struct lpm_level_avail, |
| suspend_enabled_attr); |
| else if (!strcmp(attr->attr.name, lpm_types[LATENCY].str)) |
| avail = container_of(attr, struct lpm_level_avail, |
| latency_attr); |
| |
| return avail; |
| } |
| |
| static void set_optimum_cpu_residency(struct lpm_cpu *cpu, int cpu_id, |
| bool probe_time) |
| { |
| int i, j; |
| bool mode_avail; |
| uint32_t *maximum_residency = per_cpu(max_residency, cpu_id); |
| uint32_t *minimum_residency = per_cpu(min_residency, cpu_id); |
| |
| for (i = 0; i < cpu->nlevels; i++) { |
| struct power_params *pwr = &cpu->levels[i].pwr; |
| |
| mode_avail = probe_time || |
| lpm_cpu_mode_allow(cpu_id, i, true); |
| |
| if (!mode_avail) { |
| maximum_residency[i] = 0; |
| minimum_residency[i] = 0; |
| continue; |
| } |
| |
| maximum_residency[i] = ~0; |
| for (j = i + 1; j < cpu->nlevels; j++) { |
| mode_avail = probe_time || |
| lpm_cpu_mode_allow(cpu_id, j, true); |
| |
| if (mode_avail && |
| (maximum_residency[i] > pwr->residencies[j]) && |
| (pwr->residencies[j] != 0)) |
| maximum_residency[i] = pwr->residencies[j]; |
| } |
| |
| minimum_residency[i] = pwr->time_overhead_us; |
| for (j = i-1; j >= 0; j--) { |
| if (probe_time || lpm_cpu_mode_allow(cpu_id, j, true)) { |
| minimum_residency[i] = maximum_residency[j] + 1; |
| break; |
| } |
| } |
| } |
| } |
| |
| static void set_optimum_cluster_residency(struct lpm_cluster *cluster, |
| bool probe_time) |
| { |
| int i, j; |
| bool mode_avail; |
| |
| for (i = 0; i < cluster->nlevels; i++) { |
| struct power_params *pwr = &cluster->levels[i].pwr; |
| |
| mode_avail = probe_time || |
| lpm_cluster_mode_allow(cluster, i, |
| true); |
| |
| if (!mode_avail) { |
| pwr->max_residency = 0; |
| pwr->min_residency = 0; |
| continue; |
| } |
| |
| pwr->max_residency = ~0; |
| for (j = i+1; j < cluster->nlevels; j++) { |
| mode_avail = probe_time || |
| lpm_cluster_mode_allow(cluster, j, |
| true); |
| if (mode_avail && |
| (pwr->max_residency > pwr->residencies[j]) && |
| (pwr->residencies[j] != 0)) |
| pwr->max_residency = pwr->residencies[j]; |
| } |
| |
| pwr->min_residency = pwr->time_overhead_us; |
| for (j = i-1; j >= 0; j--) { |
| if (probe_time || |
| lpm_cluster_mode_allow(cluster, j, true)) { |
| pwr->min_residency = |
| cluster->levels[j].pwr.max_residency + 1; |
| break; |
| } |
| } |
| } |
| } |
| |
| uint32_t *get_per_cpu_max_residency(int cpu) |
| { |
| return per_cpu(max_residency, cpu); |
| } |
| |
| uint32_t *get_per_cpu_min_residency(int cpu) |
| { |
| return per_cpu(min_residency, cpu); |
| } |
| |
| static ssize_t lpm_latency_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| int ret = 0; |
| struct kernel_param kp; |
| struct lpm_level_avail *avail = get_avail_ptr(kobj, attr); |
| |
| if (WARN_ON(!avail)) |
| return -EINVAL; |
| |
| kp.arg = &avail->latency_us; |
| |
| ret = param_get_uint(buf, &kp); |
| if (ret > 0) { |
| strlcat(buf, "\n", PAGE_SIZE); |
| ret++; |
| } |
| |
| return ret; |
| } |
| |
| ssize_t lpm_enable_show(struct kobject *kobj, struct kobj_attribute *attr, |
| char *buf) |
| { |
| int ret = 0; |
| struct kernel_param kp; |
| struct lpm_level_avail *avail = get_avail_ptr(kobj, attr); |
| |
| if (WARN_ON(!avail)) |
| return -EINVAL; |
| |
| kp.arg = get_enabled_ptr(attr, avail); |
| if (WARN_ON(!kp.arg)) |
| return -EINVAL; |
| |
| ret = param_get_bool(buf, &kp); |
| if (ret > 0) { |
| strlcat(buf, "\n", PAGE_SIZE); |
| ret++; |
| } |
| |
| return ret; |
| } |
| |
| ssize_t lpm_enable_store(struct kobject *kobj, struct kobj_attribute *attr, |
| const char *buf, size_t len) |
| { |
| int ret = 0; |
| struct kernel_param kp; |
| struct lpm_level_avail *avail; |
| |
| avail = get_avail_ptr(kobj, attr); |
| if (WARN_ON(!avail)) |
| return -EINVAL; |
| |
| kp.arg = get_enabled_ptr(attr, avail); |
| ret = param_set_bool(buf, &kp); |
| |
| if (avail->cpu_node) |
| set_optimum_cpu_residency(avail->data, avail->idx, false); |
| else |
| set_optimum_cluster_residency(avail->data, false); |
| |
| return ret ? ret : len; |
| } |
| |
| static int create_lvl_avail_nodes(const char *name, |
| struct kobject *parent, struct lpm_level_avail *avail, |
| void *data, int index, bool cpu_node) |
| { |
| struct attribute_group *attr_group = NULL; |
| struct attribute **attr = NULL; |
| struct kobject *kobj = NULL; |
| int ret = 0; |
| |
| kobj = kobject_create_and_add(name, parent); |
| if (!kobj) |
| return -ENOMEM; |
| |
| attr_group = devm_kzalloc(&lpm_pdev->dev, sizeof(*attr_group), |
| GFP_KERNEL); |
| if (!attr_group) { |
| ret = -ENOMEM; |
| goto failed; |
| } |
| |
| attr = devm_kzalloc(&lpm_pdev->dev, |
| sizeof(*attr) * (LPM_TYPE_NR + 1), GFP_KERNEL); |
| if (!attr) { |
| ret = -ENOMEM; |
| goto failed; |
| } |
| |
| sysfs_attr_init(&avail->idle_enabled_attr.attr); |
| avail->idle_enabled_attr.attr.name = lpm_types[IDLE].str; |
| avail->idle_enabled_attr.attr.mode = 0644; |
| avail->idle_enabled_attr.show = lpm_enable_show; |
| avail->idle_enabled_attr.store = lpm_enable_store; |
| |
| sysfs_attr_init(&avail->suspend_enabled_attr.attr); |
| avail->suspend_enabled_attr.attr.name = lpm_types[SUSPEND].str; |
| avail->suspend_enabled_attr.attr.mode = 0644; |
| avail->suspend_enabled_attr.show = lpm_enable_show; |
| avail->suspend_enabled_attr.store = lpm_enable_store; |
| |
| sysfs_attr_init(&avail->latency_attr.attr); |
| avail->latency_attr.attr.name = lpm_types[LATENCY].str; |
| avail->latency_attr.attr.mode = 0444; |
| avail->latency_attr.show = lpm_latency_show; |
| avail->latency_attr.store = NULL; |
| |
| attr[0] = &avail->idle_enabled_attr.attr; |
| attr[1] = &avail->suspend_enabled_attr.attr; |
| attr[2] = &avail->latency_attr.attr; |
| attr[3] = NULL; |
| attr_group->attrs = attr; |
| |
| ret = sysfs_create_group(kobj, attr_group); |
| if (ret) { |
| ret = -ENOMEM; |
| goto failed; |
| } |
| |
| avail->idle_enabled = true; |
| avail->suspend_enabled = true; |
| avail->kobj = kobj; |
| avail->data = data; |
| avail->idx = index; |
| avail->cpu_node = cpu_node; |
| |
| return ret; |
| |
| failed: |
| kobject_put(kobj); |
| return ret; |
| } |
| |
| static int create_cpu_lvl_nodes(struct lpm_cluster *p, struct kobject *parent) |
| { |
| int cpu; |
| int i, cpu_idx; |
| struct kobject **cpu_kobj = NULL; |
| struct lpm_level_avail *level_list = NULL; |
| char cpu_name[20] = {0}; |
| int ret = 0; |
| struct list_head *pos; |
| |
| cpu_kobj = devm_kzalloc(&lpm_pdev->dev, sizeof(*cpu_kobj) * |
| cpumask_weight(&p->child_cpus), GFP_KERNEL); |
| if (!cpu_kobj) |
| return -ENOMEM; |
| |
| cpu_idx = 0; |
| list_for_each(pos, &p->cpu) { |
| struct lpm_cpu *lpm_cpu = list_entry(pos, struct lpm_cpu, list); |
| |
| for_each_cpu(cpu, &lpm_cpu->related_cpus) { |
| snprintf(cpu_name, sizeof(cpu_name), "cpu%d", cpu); |
| cpu_kobj[cpu_idx] = kobject_create_and_add(cpu_name, |
| parent); |
| if (!cpu_kobj[cpu_idx]) { |
| ret = -ENOMEM; |
| goto release_kobj; |
| } |
| |
| level_list = devm_kzalloc(&lpm_pdev->dev, |
| lpm_cpu->nlevels * sizeof(*level_list), |
| GFP_KERNEL); |
| if (!level_list) { |
| ret = -ENOMEM; |
| goto release_kobj; |
| } |
| |
| /* |
| * Skip enable/disable for WFI. cpuidle expects WFI to |
| * be available at all times. |
| */ |
| for (i = 1; i < lpm_cpu->nlevels; i++) { |
| level_list[i].latency_us = |
| p->levels[i].pwr.latency_us; |
| ret = create_lvl_avail_nodes( |
| lpm_cpu->levels[i].name, |
| cpu_kobj[cpu_idx], |
| &level_list[i], |
| (void *)lpm_cpu, cpu, true); |
| if (ret) |
| goto release_kobj; |
| } |
| |
| cpu_level_available[cpu] = level_list; |
| cpu_idx++; |
| } |
| } |
| |
| return ret; |
| |
| release_kobj: |
| for (i = 0; i < cpumask_weight(&p->child_cpus); i++) |
| kobject_put(cpu_kobj[i]); |
| |
| return ret; |
| } |
| |
| int create_cluster_lvl_nodes(struct lpm_cluster *p, struct kobject *kobj) |
| { |
| int ret = 0; |
| struct lpm_cluster *child = NULL; |
| int i; |
| struct kobject *cluster_kobj = NULL; |
| |
| if (!p) |
| return -ENODEV; |
| |
| cluster_kobj = kobject_create_and_add(p->cluster_name, kobj); |
| if (!cluster_kobj) |
| return -ENOMEM; |
| |
| for (i = 0; i < p->nlevels; i++) { |
| p->levels[i].available.latency_us = p->levels[i].pwr.latency_us; |
| ret = create_lvl_avail_nodes(p->levels[i].level_name, |
| cluster_kobj, &p->levels[i].available, |
| (void *)p, 0, false); |
| if (ret) |
| return ret; |
| } |
| |
| list_for_each_entry(child, &p->child, list) { |
| ret = create_cluster_lvl_nodes(child, cluster_kobj); |
| if (ret) |
| return ret; |
| } |
| |
| if (!list_empty(&p->cpu)) { |
| ret = create_cpu_lvl_nodes(p, cluster_kobj); |
| if (ret) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| bool lpm_cpu_mode_allow(unsigned int cpu, |
| unsigned int index, bool from_idle) |
| { |
| struct lpm_level_avail *avail = cpu_level_available[cpu]; |
| |
| if (lpm_pdev && !index) |
| return 1; |
| |
| if (!lpm_pdev || !avail) |
| return !from_idle; |
| |
| return !!(from_idle ? avail[index].idle_enabled : |
| avail[index].suspend_enabled); |
| } |
| |
| bool lpm_cluster_mode_allow(struct lpm_cluster *cluster, |
| unsigned int mode, bool from_idle) |
| { |
| struct lpm_level_avail *avail = &cluster->levels[mode].available; |
| |
| if (!lpm_pdev || !avail) |
| return false; |
| |
| return !!(from_idle ? avail->idle_enabled : |
| avail->suspend_enabled); |
| } |
| |
| static int parse_cluster_params(struct device_node *node, |
| struct lpm_cluster *c) |
| { |
| char *key; |
| int ret; |
| |
| key = "label"; |
| ret = of_property_read_string(node, key, &c->cluster_name); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,psci-mode-shift"; |
| ret = of_property_read_u32(node, key, &c->psci_mode_shift); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,psci-mode-mask"; |
| ret = of_property_read_u32(node, key, &c->psci_mode_mask); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,disable-prediction"; |
| c->lpm_prediction = !(of_property_read_bool(node, key)); |
| |
| if (c->lpm_prediction) { |
| key = "qcom,clstr-tmr-add"; |
| ret = of_property_read_u32(node, key, &c->tmr_add); |
| if (ret || c->tmr_add < TIMER_ADD_LOW || |
| c->tmr_add > TIMER_ADD_HIGH) |
| c->tmr_add = DEFAULT_TIMER_ADD; |
| } |
| |
| /* Set default_level to 0 as default */ |
| c->default_level = 0; |
| |
| return 0; |
| fail: |
| pr_err("Failed to read key: %s ret: %d\n", key, ret); |
| |
| return ret; |
| } |
| |
| static int parse_power_params(struct device_node *node, |
| struct power_params *pwr) |
| { |
| char *key; |
| int ret; |
| |
| key = "qcom,latency-us"; |
| ret = of_property_read_u32(node, key, &pwr->latency_us); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,ss-power"; |
| ret = of_property_read_u32(node, key, &pwr->ss_power); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,energy-overhead"; |
| ret = of_property_read_u32(node, key, &pwr->energy_overhead); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,time-overhead"; |
| ret = of_property_read_u32(node, key, &pwr->time_overhead_us); |
| if (ret) |
| goto fail; |
| |
| return ret; |
| fail: |
| pr_err("Failed to read key: %s node: %s\n", key, node->name); |
| |
| return ret; |
| } |
| |
| static int parse_cluster_level(struct device_node *node, |
| struct lpm_cluster *cluster) |
| { |
| struct lpm_cluster_level *level = &cluster->levels[cluster->nlevels]; |
| int ret = -ENOMEM; |
| char *key; |
| |
| key = "label"; |
| ret = of_property_read_string(node, key, &level->level_name); |
| if (ret) |
| goto failed; |
| |
| key = "qcom,psci-mode"; |
| ret = of_property_read_u32(node, key, &level->psci_id); |
| if (ret) |
| goto failed; |
| |
| level->is_reset = of_property_read_bool(node, "qcom,is-reset"); |
| |
| if (cluster->nlevels != cluster->default_level) { |
| key = "qcom,min-child-idx"; |
| ret = of_property_read_u32(node, key, &level->min_child_level); |
| if (ret) |
| goto failed; |
| |
| if (cluster->min_child_level > level->min_child_level) |
| cluster->min_child_level = level->min_child_level; |
| } |
| |
| level->notify_rpm = of_property_read_bool(node, "qcom,notify-rpm"); |
| |
| key = "parse_power_params"; |
| ret = parse_power_params(node, &level->pwr); |
| if (ret) |
| goto failed; |
| |
| key = "qcom,reset-level"; |
| ret = of_property_read_u32(node, key, &level->reset_level); |
| if (ret == -EINVAL) |
| level->reset_level = LPM_RESET_LVL_NONE; |
| else if (ret) |
| goto failed; |
| |
| cluster->nlevels++; |
| |
| return 0; |
| failed: |
| pr_err("Failed to read key: %s ret: %d\n", key, ret); |
| |
| return ret; |
| } |
| |
| static int parse_cpu_mode(struct device_node *n, struct lpm_cpu_level *l) |
| { |
| char *key; |
| int ret; |
| |
| key = "label"; |
| ret = of_property_read_string(n, key, &l->name); |
| if (ret) |
| goto fail; |
| |
| key = "qcom,psci-cpu-mode"; |
| ret = of_property_read_u32(n, key, &l->psci_id); |
| if (ret) |
| goto fail; |
| |
| return ret; |
| fail: |
| pr_err("Failed to read key: %s level: %s\n", key, l->name); |
| |
| return ret; |
| } |
| |
| static int get_cpumask_for_node(struct device_node *node, struct cpumask *mask) |
| { |
| struct device_node *cpu_node; |
| int cpu; |
| int idx = 0; |
| |
| cpu_node = of_parse_phandle(node, "qcom,cpu", idx++); |
| if (!cpu_node) { |
| pr_info("%s: No CPU phandle, assuming single cluster\n", |
| node->full_name); |
| /* |
| * Not all targets have the cpu node populated in the device |
| * tree. If cpu node is not populated assume all possible |
| * nodes belong to this cluster |
| */ |
| cpumask_copy(mask, cpu_possible_mask); |
| return 0; |
| } |
| |
| while (cpu_node) { |
| for_each_possible_cpu(cpu) { |
| if (of_get_cpu_node(cpu, NULL) == cpu_node) { |
| cpumask_set_cpu(cpu, mask); |
| break; |
| } |
| } |
| of_node_put(cpu_node); |
| cpu_node = of_parse_phandle(node, "qcom,cpu", idx++); |
| } |
| |
| return 0; |
| } |
| |
| static int calculate_residency(struct power_params *base_pwr, |
| struct power_params *next_pwr) |
| { |
| int32_t residency = (int32_t)(next_pwr->energy_overhead - |
| base_pwr->energy_overhead) - |
| ((int32_t)(next_pwr->ss_power * next_pwr->time_overhead_us) |
| - (int32_t)(base_pwr->ss_power * base_pwr->time_overhead_us)); |
| |
| residency /= (int32_t)(base_pwr->ss_power - next_pwr->ss_power); |
| |
| if (residency < 0) { |
| pr_err("Residency < 0 for LPM\n"); |
| return next_pwr->time_overhead_us; |
| } |
| |
| return residency < next_pwr->time_overhead_us ? |
| next_pwr->time_overhead_us : residency; |
| } |
| |
| static int parse_cpu(struct device_node *node, struct lpm_cpu *cpu) |
| { |
| |
| struct device_node *n; |
| int ret, i, j; |
| const char *key; |
| for_each_child_of_node(node, n) { |
| struct lpm_cpu_level *l = &cpu->levels[cpu->nlevels]; |
| |
| cpu->nlevels++; |
| |
| ret = parse_cpu_mode(n, l); |
| if (ret) { |
| of_node_put(n); |
| return ret; |
| } |
| |
| ret = parse_power_params(n, &l->pwr); |
| if (ret) { |
| of_node_put(n); |
| return ret; |
| } |
| key = "qcom,use-broadcast-timer"; |
| l->use_bc_timer = of_property_read_bool(n, key); |
| |
| key = "qcom,is-reset"; |
| l->is_reset = of_property_read_bool(n, key); |
| |
| key = "qcom,reset-level"; |
| ret = of_property_read_u32(n, key, &l->reset_level); |
| if (ret == -EINVAL) |
| l->reset_level = LPM_RESET_LVL_NONE; |
| else if (ret) |
| return ret; |
| of_node_put(n); |
| } |
| |
| for (i = 0; i < cpu->nlevels; i++) { |
| for (j = 0; j < cpu->nlevels; j++) { |
| if (i >= j) { |
| cpu->levels[i].pwr.residencies[j] = 0; |
| continue; |
| } |
| |
| cpu->levels[i].pwr.residencies[j] = |
| calculate_residency(&cpu->levels[i].pwr, |
| &cpu->levels[j].pwr); |
| |
| pr_info("idx %d %u\n", j, |
| cpu->levels[i].pwr.residencies[j]); |
| } |
| } |
| |
| for_each_cpu(i, &cpu->related_cpus) { |
| |
| per_cpu(max_residency, i) = devm_kzalloc(&lpm_pdev->dev, |
| sizeof(uint32_t) * cpu->nlevels, GFP_KERNEL); |
| if (!per_cpu(max_residency, i)) |
| return -ENOMEM; |
| |
| per_cpu(min_residency, i) = devm_kzalloc(&lpm_pdev->dev, |
| sizeof(uint32_t) * cpu->nlevels, GFP_KERNEL); |
| if (!per_cpu(min_residency, i)) |
| return -ENOMEM; |
| |
| set_optimum_cpu_residency(cpu, i, true); |
| } |
| |
| return 0; |
| } |
| |
| static int parse_cpu_levels(struct device_node *node, struct lpm_cluster *c) |
| { |
| int ret; |
| char *key; |
| struct lpm_cpu *cpu; |
| |
| cpu = devm_kzalloc(&lpm_pdev->dev, sizeof(*cpu), GFP_KERNEL); |
| if (!cpu) |
| return -ENOMEM; |
| |
| if (get_cpumask_for_node(node, &cpu->related_cpus)) |
| return -EINVAL; |
| |
| cpu->parent = c; |
| |
| key = "qcom,psci-mode-shift"; |
| ret = of_property_read_u32(node, key, &cpu->psci_mode_shift); |
| if (ret) |
| goto failed; |
| |
| key = "qcom,psci-mode-mask"; |
| ret = of_property_read_u32(node, key, &cpu->psci_mode_mask); |
| if (ret) |
| goto failed; |
| |
| key = "qcom,disable-prediction"; |
| cpu->lpm_prediction = !(of_property_read_bool(node, key)); |
| |
| if (cpu->lpm_prediction) { |
| key = "qcom,ref-stddev"; |
| ret = of_property_read_u32(node, key, &cpu->ref_stddev); |
| if (ret || cpu->ref_stddev < STDDEV_LOW || |
| cpu->ref_stddev > STDDEV_HIGH) |
| cpu->ref_stddev = DEFAULT_STDDEV; |
| |
| key = "qcom,tmr-add"; |
| ret = of_property_read_u32(node, key, &cpu->tmr_add); |
| if (ret || cpu->tmr_add < TIMER_ADD_LOW || |
| cpu->tmr_add > TIMER_ADD_HIGH) |
| cpu->tmr_add = DEFAULT_TIMER_ADD; |
| |
| key = "qcom,ref-premature-cnt"; |
| ret = of_property_read_u32(node, key, &cpu->ref_premature_cnt); |
| if (ret || cpu->ref_premature_cnt < PREMATURE_CNT_LOW || |
| cpu->ref_premature_cnt > PREMATURE_CNT_HIGH) |
| cpu->ref_premature_cnt = DEFAULT_PREMATURE_CNT; |
| } |
| |
| key = "parse_cpu"; |
| ret = parse_cpu(node, cpu); |
| if (ret) |
| goto failed; |
| |
| cpumask_or(&c->child_cpus, &c->child_cpus, &cpu->related_cpus); |
| list_add(&cpu->list, &c->cpu); |
| |
| return ret; |
| |
| failed: |
| pr_err("Failed to read key: %s node: %s\n", key, node->name); |
| return ret; |
| } |
| |
| void free_cluster_node(struct lpm_cluster *cluster) |
| { |
| struct lpm_cpu *cpu, *n; |
| struct lpm_cluster *cl, *m; |
| |
| list_for_each_entry_safe(cl, m, &cluster->child, list) { |
| list_del(&cl->list); |
| free_cluster_node(cl); |
| }; |
| |
| list_for_each_entry_safe(cpu, n, &cluster->cpu, list) |
| list_del(&cpu->list); |
| } |
| |
| /* |
| * TODO: |
| * Expects a CPU or a cluster only. This ensures that affinity |
| * level of a cluster is consistent with reference to its |
| * child nodes. |
| */ |
| struct lpm_cluster *parse_cluster(struct device_node *node, |
| struct lpm_cluster *parent) |
| { |
| struct lpm_cluster *c; |
| struct device_node *n; |
| char *key; |
| int ret = 0; |
| int i, j; |
| |
| c = devm_kzalloc(&lpm_pdev->dev, sizeof(*c), GFP_KERNEL); |
| if (!c) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = parse_cluster_params(node, c); |
| if (ret) |
| goto failed_parse_params; |
| |
| INIT_LIST_HEAD(&c->list); |
| INIT_LIST_HEAD(&c->child); |
| INIT_LIST_HEAD(&c->cpu); |
| c->parent = parent; |
| spin_lock_init(&c->sync_lock); |
| c->min_child_level = NR_LPM_LEVELS; |
| |
| for_each_child_of_node(node, n) { |
| |
| if (!n->name) |
| continue; |
| |
| key = "qcom,pm-cluster-level"; |
| if (!of_node_cmp(n->name, key)) { |
| if (parse_cluster_level(n, c)) { |
| of_node_put(n); |
| goto failed_parse_cluster; |
| } |
| of_node_put(n); |
| continue; |
| } |
| |
| key = "qcom,pm-cluster"; |
| if (!of_node_cmp(n->name, key)) { |
| struct lpm_cluster *child; |
| |
| child = parse_cluster(n, c); |
| if (!child) { |
| of_node_put(n); |
| goto failed_parse_cluster; |
| } |
| |
| list_add(&child->list, &c->child); |
| cpumask_or(&c->child_cpus, &c->child_cpus, |
| &child->child_cpus); |
| c->aff_level = child->aff_level + 1; |
| of_node_put(n); |
| continue; |
| } |
| |
| key = "qcom,pm-cpu"; |
| if (!of_node_cmp(n->name, key)) { |
| if (parse_cpu_levels(n, c)) { |
| of_node_put(n); |
| goto failed_parse_cluster; |
| } |
| |
| c->aff_level = 1; |
| of_node_put(n); |
| } |
| } |
| |
| if (cpumask_intersects(&c->child_cpus, cpu_online_mask)) |
| c->last_level = c->default_level; |
| else |
| c->last_level = c->nlevels-1; |
| |
| for (i = 0; i < c->nlevels; i++) { |
| for (j = 0; j < c->nlevels; j++) { |
| if (i >= j) { |
| c->levels[i].pwr.residencies[j] = 0; |
| continue; |
| } |
| c->levels[i].pwr.residencies[j] = calculate_residency( |
| &c->levels[i].pwr, &c->levels[j].pwr); |
| } |
| } |
| set_optimum_cluster_residency(c, true); |
| return c; |
| |
| failed_parse_cluster: |
| pr_err("Failed parse cluster:%s\n", key); |
| if (parent) |
| list_del(&c->list); |
| free_cluster_node(c); |
| failed_parse_params: |
| pr_err("Failed parse params\n"); |
| return NULL; |
| } |
| struct lpm_cluster *lpm_of_parse_cluster(struct platform_device *pdev) |
| { |
| struct device_node *top = NULL; |
| struct lpm_cluster *c; |
| |
| top = of_find_node_by_name(pdev->dev.of_node, "qcom,pm-cluster"); |
| if (!top) { |
| pr_err("Failed to find root node\n"); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| lpm_pdev = pdev; |
| c = parse_cluster(top, NULL); |
| of_node_put(top); |
| return c; |
| } |
| |
| void cluster_dt_walkthrough(struct lpm_cluster *cluster) |
| { |
| struct list_head *list; |
| struct lpm_cpu *cpu; |
| int i, j; |
| static int id; |
| char str[10] = {0}; |
| |
| if (!cluster) |
| return; |
| |
| for (i = 0; i < id; i++) |
| snprintf(str+i, 10 - i, "\t"); |
| pr_info("%d\n", __LINE__); |
| |
| for (i = 0; i < cluster->nlevels; i++) { |
| struct lpm_cluster_level *l = &cluster->levels[i]; |
| pr_info("cluster: %s \t level: %s\n", cluster->cluster_name, |
| l->level_name); |
| } |
| |
| list_for_each_entry(cpu, &cluster->cpu, list) { |
| pr_info("%d\n", __LINE__); |
| for (j = 0; j < cpu->nlevels; j++) |
| pr_info("%s\tCPU level name: %s\n", str, |
| cpu->levels[j].name); |
| } |
| |
| id++; |
| |
| list_for_each(list, &cluster->child) { |
| struct lpm_cluster *n; |
| |
| pr_info("%d\n", __LINE__); |
| n = list_entry(list, typeof(*n), list); |
| cluster_dt_walkthrough(n); |
| } |
| id--; |
| } |