blob: 0174b3aeef8f36618f48ea22bbd346db1d250b0c [file] [log] [blame]
/*
* Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
*
* Authors: Shlomi Gridish <gridish@freescale.com>
* Li Yang <leoli@freescale.com>
*
* Description:
* QE UCC Slow API Set - UCC Slow specific routines implementations.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/stddef.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <asm/io.h>
#include <asm/immap_qe.h>
#include <asm/qe.h>
#include <asm/ucc.h>
#include <asm/ucc_slow.h>
u32 ucc_slow_get_qe_cr_subblock(int uccs_num)
{
switch (uccs_num) {
case 0: return QE_CR_SUBBLOCK_UCCSLOW1;
case 1: return QE_CR_SUBBLOCK_UCCSLOW2;
case 2: return QE_CR_SUBBLOCK_UCCSLOW3;
case 3: return QE_CR_SUBBLOCK_UCCSLOW4;
case 4: return QE_CR_SUBBLOCK_UCCSLOW5;
case 5: return QE_CR_SUBBLOCK_UCCSLOW6;
case 6: return QE_CR_SUBBLOCK_UCCSLOW7;
case 7: return QE_CR_SUBBLOCK_UCCSLOW8;
default: return QE_CR_SUBBLOCK_INVALID;
}
}
void ucc_slow_poll_transmitter_now(struct ucc_slow_private * uccs)
{
out_be16(&uccs->us_regs->utodr, UCC_SLOW_TOD);
}
void ucc_slow_graceful_stop_tx(struct ucc_slow_private * uccs)
{
struct ucc_slow_info *us_info = uccs->us_info;
u32 id;
id = ucc_slow_get_qe_cr_subblock(us_info->ucc_num);
qe_issue_cmd(QE_GRACEFUL_STOP_TX, id,
QE_CR_PROTOCOL_UNSPECIFIED, 0);
}
void ucc_slow_stop_tx(struct ucc_slow_private * uccs)
{
struct ucc_slow_info *us_info = uccs->us_info;
u32 id;
id = ucc_slow_get_qe_cr_subblock(us_info->ucc_num);
qe_issue_cmd(QE_STOP_TX, id, QE_CR_PROTOCOL_UNSPECIFIED, 0);
}
void ucc_slow_restart_tx(struct ucc_slow_private * uccs)
{
struct ucc_slow_info *us_info = uccs->us_info;
u32 id;
id = ucc_slow_get_qe_cr_subblock(us_info->ucc_num);
qe_issue_cmd(QE_RESTART_TX, id, QE_CR_PROTOCOL_UNSPECIFIED, 0);
}
void ucc_slow_enable(struct ucc_slow_private * uccs, enum comm_dir mode)
{
struct ucc_slow *us_regs;
u32 gumr_l;
us_regs = uccs->us_regs;
/* Enable reception and/or transmission on this UCC. */
gumr_l = in_be32(&us_regs->gumr_l);
if (mode & COMM_DIR_TX) {
gumr_l |= UCC_SLOW_GUMR_L_ENT;
uccs->enabled_tx = 1;
}
if (mode & COMM_DIR_RX) {
gumr_l |= UCC_SLOW_GUMR_L_ENR;
uccs->enabled_rx = 1;
}
out_be32(&us_regs->gumr_l, gumr_l);
}
void ucc_slow_disable(struct ucc_slow_private * uccs, enum comm_dir mode)
{
struct ucc_slow *us_regs;
u32 gumr_l;
us_regs = uccs->us_regs;
/* Disable reception and/or transmission on this UCC. */
gumr_l = in_be32(&us_regs->gumr_l);
if (mode & COMM_DIR_TX) {
gumr_l &= ~UCC_SLOW_GUMR_L_ENT;
uccs->enabled_tx = 0;
}
if (mode & COMM_DIR_RX) {
gumr_l &= ~UCC_SLOW_GUMR_L_ENR;
uccs->enabled_rx = 0;
}
out_be32(&us_regs->gumr_l, gumr_l);
}
/* Initialize the UCC for Slow operations
*
* The caller should initialize the following us_info
*/
int ucc_slow_init(struct ucc_slow_info * us_info, struct ucc_slow_private ** uccs_ret)
{
struct ucc_slow_private *uccs;
u32 i;
struct ucc_slow __iomem *us_regs;
u32 gumr;
struct qe_bd *bd;
u32 id;
u32 command;
int ret = 0;
if (!us_info)
return -EINVAL;
/* check if the UCC port number is in range. */
if ((us_info->ucc_num < 0) || (us_info->ucc_num > UCC_MAX_NUM - 1)) {
printk(KERN_ERR "%s: illegal UCC number\n", __FUNCTION__);
return -EINVAL;
}
/*
* Set mrblr
* Check that 'max_rx_buf_length' is properly aligned (4), unless
* rfw is 1, meaning that QE accepts one byte at a time, unlike normal
* case when QE accepts 32 bits at a time.
*/
if ((!us_info->rfw) &&
(us_info->max_rx_buf_length & (UCC_SLOW_MRBLR_ALIGNMENT - 1))) {
printk(KERN_ERR "max_rx_buf_length not aligned.\n");
return -EINVAL;
}
uccs = kzalloc(sizeof(struct ucc_slow_private), GFP_KERNEL);
if (!uccs) {
printk(KERN_ERR "%s: Cannot allocate private data\n",
__FUNCTION__);
return -ENOMEM;
}
/* Fill slow UCC structure */
uccs->us_info = us_info;
/* Set the PHY base address */
uccs->us_regs = ioremap(us_info->regs, sizeof(struct ucc_slow));
if (uccs->us_regs == NULL) {
printk(KERN_ERR "%s: Cannot map UCC registers\n", __FUNCTION__);
return -ENOMEM;
}
uccs->saved_uccm = 0;
uccs->p_rx_frame = 0;
us_regs = uccs->us_regs;
uccs->p_ucce = (u16 *) & (us_regs->ucce);
uccs->p_uccm = (u16 *) & (us_regs->uccm);
#ifdef STATISTICS
uccs->rx_frames = 0;
uccs->tx_frames = 0;
uccs->rx_discarded = 0;
#endif /* STATISTICS */
/* Get PRAM base */
uccs->us_pram_offset =
qe_muram_alloc(UCC_SLOW_PRAM_SIZE, ALIGNMENT_OF_UCC_SLOW_PRAM);
if (IS_ERR_VALUE(uccs->us_pram_offset)) {
printk(KERN_ERR "%s: cannot allocate MURAM for PRAM", __FUNCTION__);
ucc_slow_free(uccs);
return -ENOMEM;
}
id = ucc_slow_get_qe_cr_subblock(us_info->ucc_num);
qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, id, us_info->protocol,
uccs->us_pram_offset);
uccs->us_pram = qe_muram_addr(uccs->us_pram_offset);
/* Set UCC to slow type */
ret = ucc_set_type(us_info->ucc_num, UCC_SPEED_TYPE_SLOW);
if (ret) {
printk(KERN_ERR "%s: cannot set UCC type", __FUNCTION__);
ucc_slow_free(uccs);
return ret;
}
out_be16(&uccs->us_pram->mrblr, us_info->max_rx_buf_length);
INIT_LIST_HEAD(&uccs->confQ);
/* Allocate BDs. */
uccs->rx_base_offset =
qe_muram_alloc(us_info->rx_bd_ring_len * sizeof(struct qe_bd),
QE_ALIGNMENT_OF_BD);
if (IS_ERR_VALUE(uccs->rx_base_offset)) {
printk(KERN_ERR "%s: cannot allocate %u RX BDs\n", __FUNCTION__,
us_info->rx_bd_ring_len);
uccs->rx_base_offset = 0;
ucc_slow_free(uccs);
return -ENOMEM;
}
uccs->tx_base_offset =
qe_muram_alloc(us_info->tx_bd_ring_len * sizeof(struct qe_bd),
QE_ALIGNMENT_OF_BD);
if (IS_ERR_VALUE(uccs->tx_base_offset)) {
printk(KERN_ERR "%s: cannot allocate TX BDs", __FUNCTION__);
uccs->tx_base_offset = 0;
ucc_slow_free(uccs);
return -ENOMEM;
}
/* Init Tx bds */
bd = uccs->confBd = uccs->tx_bd = qe_muram_addr(uccs->tx_base_offset);
for (i = 0; i < us_info->tx_bd_ring_len - 1; i++) {
/* clear bd buffer */
out_be32(&bd->buf, 0);
/* set bd status and length */
out_be32((u32 *) bd, 0);
bd++;
}
/* for last BD set Wrap bit */
out_be32(&bd->buf, 0);
out_be32((u32 *) bd, cpu_to_be32(T_W));
/* Init Rx bds */
bd = uccs->rx_bd = qe_muram_addr(uccs->rx_base_offset);
for (i = 0; i < us_info->rx_bd_ring_len - 1; i++) {
/* set bd status and length */
out_be32((u32*)bd, 0);
/* clear bd buffer */
out_be32(&bd->buf, 0);
bd++;
}
/* for last BD set Wrap bit */
out_be32((u32*)bd, cpu_to_be32(R_W));
out_be32(&bd->buf, 0);
/* Set GUMR (For more details see the hardware spec.). */
/* gumr_h */
gumr = us_info->tcrc;
if (us_info->cdp)
gumr |= UCC_SLOW_GUMR_H_CDP;
if (us_info->ctsp)
gumr |= UCC_SLOW_GUMR_H_CTSP;
if (us_info->cds)
gumr |= UCC_SLOW_GUMR_H_CDS;
if (us_info->ctss)
gumr |= UCC_SLOW_GUMR_H_CTSS;
if (us_info->tfl)
gumr |= UCC_SLOW_GUMR_H_TFL;
if (us_info->rfw)
gumr |= UCC_SLOW_GUMR_H_RFW;
if (us_info->txsy)
gumr |= UCC_SLOW_GUMR_H_TXSY;
if (us_info->rtsm)
gumr |= UCC_SLOW_GUMR_H_RTSM;
out_be32(&us_regs->gumr_h, gumr);
/* gumr_l */
gumr = us_info->tdcr | us_info->rdcr | us_info->tenc | us_info->renc |
us_info->diag | us_info->mode;
if (us_info->tci)
gumr |= UCC_SLOW_GUMR_L_TCI;
if (us_info->rinv)
gumr |= UCC_SLOW_GUMR_L_RINV;
if (us_info->tinv)
gumr |= UCC_SLOW_GUMR_L_TINV;
if (us_info->tend)
gumr |= UCC_SLOW_GUMR_L_TEND;
out_be32(&us_regs->gumr_l, gumr);
/* Function code registers */
/* if the data is in cachable memory, the 'global' */
/* in the function code should be set. */
uccs->us_pram->tbmr = UCC_BMR_BO_BE;
uccs->us_pram->rbmr = UCC_BMR_BO_BE;
/* rbase, tbase are offsets from MURAM base */
out_be16(&uccs->us_pram->rbase, uccs->rx_base_offset);
out_be16(&uccs->us_pram->tbase, uccs->tx_base_offset);
/* Mux clocking */
/* Grant Support */
ucc_set_qe_mux_grant(us_info->ucc_num, us_info->grant_support);
/* Breakpoint Support */
ucc_set_qe_mux_bkpt(us_info->ucc_num, us_info->brkpt_support);
/* Set Tsa or NMSI mode. */
ucc_set_qe_mux_tsa(us_info->ucc_num, us_info->tsa);
/* If NMSI (not Tsa), set Tx and Rx clock. */
if (!us_info->tsa) {
/* Rx clock routing */
if (ucc_set_qe_mux_rxtx(us_info->ucc_num, us_info->rx_clock,
COMM_DIR_RX)) {
printk(KERN_ERR "%s: illegal value for RX clock\n",
__FUNCTION__);
ucc_slow_free(uccs);
return -EINVAL;
}
/* Tx clock routing */
if (ucc_set_qe_mux_rxtx(us_info->ucc_num, us_info->tx_clock,
COMM_DIR_TX)) {
printk(KERN_ERR "%s: illegal value for TX clock\n",
__FUNCTION__);
ucc_slow_free(uccs);
return -EINVAL;
}
}
/* Set interrupt mask register at UCC level. */
out_be16(&us_regs->uccm, us_info->uccm_mask);
/* First, clear anything pending at UCC level,
* otherwise, old garbage may come through
* as soon as the dam is opened. */
/* Writing '1' clears */
out_be16(&us_regs->ucce, 0xffff);
/* Issue QE Init command */
if (us_info->init_tx && us_info->init_rx)
command = QE_INIT_TX_RX;
else if (us_info->init_tx)
command = QE_INIT_TX;
else
command = QE_INIT_RX; /* We know at least one is TRUE */
qe_issue_cmd(command, id, us_info->protocol, 0);
*uccs_ret = uccs;
return 0;
}
void ucc_slow_free(struct ucc_slow_private * uccs)
{
if (!uccs)
return;
if (uccs->rx_base_offset)
qe_muram_free(uccs->rx_base_offset);
if (uccs->tx_base_offset)
qe_muram_free(uccs->tx_base_offset);
if (uccs->us_pram) {
qe_muram_free(uccs->us_pram_offset);
uccs->us_pram = NULL;
}
kfree(uccs);
}