| /* |
| * RSA padding templates. |
| * |
| * Copyright (c) 2015 Intel Corporation |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| */ |
| |
| #include <crypto/algapi.h> |
| #include <crypto/akcipher.h> |
| #include <crypto/internal/akcipher.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/random.h> |
| |
| struct pkcs1pad_ctx { |
| struct crypto_akcipher *child; |
| |
| unsigned int key_size; |
| }; |
| |
| struct pkcs1pad_request { |
| struct akcipher_request child_req; |
| |
| struct scatterlist in_sg[3], out_sg[2]; |
| uint8_t *in_buf, *out_buf; |
| }; |
| |
| static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key, |
| unsigned int keylen) |
| { |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| int err, size; |
| |
| err = crypto_akcipher_set_pub_key(ctx->child, key, keylen); |
| |
| if (!err) { |
| /* Find out new modulus size from rsa implementation */ |
| size = crypto_akcipher_maxsize(ctx->child); |
| |
| ctx->key_size = size > 0 ? size : 0; |
| if (size <= 0) |
| err = size; |
| } |
| |
| return err; |
| } |
| |
| static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key, |
| unsigned int keylen) |
| { |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| int err, size; |
| |
| err = crypto_akcipher_set_priv_key(ctx->child, key, keylen); |
| |
| if (!err) { |
| /* Find out new modulus size from rsa implementation */ |
| size = crypto_akcipher_maxsize(ctx->child); |
| |
| ctx->key_size = size > 0 ? size : 0; |
| if (size <= 0) |
| err = size; |
| } |
| |
| return err; |
| } |
| |
| static int pkcs1pad_get_max_size(struct crypto_akcipher *tfm) |
| { |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| |
| /* |
| * The maximum destination buffer size for the encrypt/sign operations |
| * will be the same as for RSA, even though it's smaller for |
| * decrypt/verify. |
| */ |
| |
| return ctx->key_size ?: -EINVAL; |
| } |
| |
| static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len, |
| struct scatterlist *next) |
| { |
| int nsegs = next ? 1 : 0; |
| |
| if (offset_in_page(buf) + len <= PAGE_SIZE) { |
| nsegs += 1; |
| sg_init_table(sg, nsegs); |
| sg_set_buf(sg, buf, len); |
| } else { |
| nsegs += 2; |
| sg_init_table(sg, nsegs); |
| sg_set_buf(sg + 0, buf, PAGE_SIZE - offset_in_page(buf)); |
| sg_set_buf(sg + 1, buf + PAGE_SIZE - offset_in_page(buf), |
| offset_in_page(buf) + len - PAGE_SIZE); |
| } |
| |
| if (next) |
| sg_chain(sg, nsegs, next); |
| } |
| |
| static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) |
| { |
| struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); |
| size_t pad_len = ctx->key_size - req_ctx->child_req.dst_len; |
| size_t chunk_len, pad_left; |
| struct sg_mapping_iter miter; |
| |
| if (!err) { |
| if (pad_len) { |
| sg_miter_start(&miter, req->dst, |
| sg_nents_for_len(req->dst, pad_len), |
| SG_MITER_ATOMIC | SG_MITER_TO_SG); |
| |
| pad_left = pad_len; |
| while (pad_left) { |
| sg_miter_next(&miter); |
| |
| chunk_len = min(miter.length, pad_left); |
| memset(miter.addr, 0, chunk_len); |
| pad_left -= chunk_len; |
| } |
| |
| sg_miter_stop(&miter); |
| } |
| |
| sg_pcopy_from_buffer(req->dst, |
| sg_nents_for_len(req->dst, ctx->key_size), |
| req_ctx->out_buf, req_ctx->child_req.dst_len, |
| pad_len); |
| } |
| req->dst_len = ctx->key_size; |
| |
| kfree(req_ctx->in_buf); |
| kzfree(req_ctx->out_buf); |
| |
| return err; |
| } |
| |
| static void pkcs1pad_encrypt_sign_complete_cb( |
| struct crypto_async_request *child_async_req, int err) |
| { |
| struct akcipher_request *req = child_async_req->data; |
| struct crypto_async_request async_req; |
| |
| if (err == -EINPROGRESS) |
| return; |
| |
| async_req.data = req->base.data; |
| async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); |
| async_req.flags = child_async_req->flags; |
| req->base.complete(&async_req, |
| pkcs1pad_encrypt_sign_complete(req, err)); |
| } |
| |
| static int pkcs1pad_encrypt(struct akcipher_request *req) |
| { |
| struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); |
| int err; |
| unsigned int i, ps_end; |
| |
| if (!ctx->key_size) |
| return -EINVAL; |
| |
| if (req->src_len > ctx->key_size - 11) |
| return -EOVERFLOW; |
| |
| if (req->dst_len < ctx->key_size) { |
| req->dst_len = ctx->key_size; |
| return -EOVERFLOW; |
| } |
| |
| if (ctx->key_size > PAGE_SIZE) |
| return -ENOTSUPP; |
| |
| /* |
| * Replace both input and output to add the padding in the input and |
| * the potential missing leading zeros in the output. |
| */ |
| req_ctx->child_req.src = req_ctx->in_sg; |
| req_ctx->child_req.src_len = ctx->key_size - 1; |
| req_ctx->child_req.dst = req_ctx->out_sg; |
| req_ctx->child_req.dst_len = ctx->key_size; |
| |
| req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, |
| (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? |
| GFP_KERNEL : GFP_ATOMIC); |
| if (!req_ctx->in_buf) |
| return -ENOMEM; |
| |
| ps_end = ctx->key_size - req->src_len - 2; |
| req_ctx->in_buf[0] = 0x02; |
| for (i = 1; i < ps_end; i++) |
| req_ctx->in_buf[i] = 1 + prandom_u32_max(255); |
| req_ctx->in_buf[ps_end] = 0x00; |
| |
| pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, |
| ctx->key_size - 1 - req->src_len, req->src); |
| |
| req_ctx->out_buf = kmalloc(ctx->key_size, |
| (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? |
| GFP_KERNEL : GFP_ATOMIC); |
| if (!req_ctx->out_buf) { |
| kfree(req_ctx->in_buf); |
| return -ENOMEM; |
| } |
| |
| pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, |
| ctx->key_size, NULL); |
| |
| akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); |
| akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, |
| pkcs1pad_encrypt_sign_complete_cb, req); |
| |
| err = crypto_akcipher_encrypt(&req_ctx->child_req); |
| if (err != -EINPROGRESS && |
| (err != -EBUSY || |
| !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) |
| return pkcs1pad_encrypt_sign_complete(req, err); |
| |
| return err; |
| } |
| |
| static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err) |
| { |
| struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); |
| unsigned int pos; |
| |
| if (err == -EOVERFLOW) |
| /* Decrypted value had no leading 0 byte */ |
| err = -EINVAL; |
| |
| if (err) |
| goto done; |
| |
| if (req_ctx->child_req.dst_len != ctx->key_size - 1) { |
| err = -EINVAL; |
| goto done; |
| } |
| |
| if (req_ctx->out_buf[0] != 0x02) { |
| err = -EINVAL; |
| goto done; |
| } |
| for (pos = 1; pos < req_ctx->child_req.dst_len; pos++) |
| if (req_ctx->out_buf[pos] == 0x00) |
| break; |
| if (pos < 9 || pos == req_ctx->child_req.dst_len) { |
| err = -EINVAL; |
| goto done; |
| } |
| pos++; |
| |
| if (req->dst_len < req_ctx->child_req.dst_len - pos) |
| err = -EOVERFLOW; |
| req->dst_len = req_ctx->child_req.dst_len - pos; |
| |
| if (!err) |
| sg_copy_from_buffer(req->dst, |
| sg_nents_for_len(req->dst, req->dst_len), |
| req_ctx->out_buf + pos, req->dst_len); |
| |
| done: |
| kzfree(req_ctx->out_buf); |
| |
| return err; |
| } |
| |
| static void pkcs1pad_decrypt_complete_cb( |
| struct crypto_async_request *child_async_req, int err) |
| { |
| struct akcipher_request *req = child_async_req->data; |
| struct crypto_async_request async_req; |
| |
| if (err == -EINPROGRESS) |
| return; |
| |
| async_req.data = req->base.data; |
| async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); |
| async_req.flags = child_async_req->flags; |
| req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err)); |
| } |
| |
| static int pkcs1pad_decrypt(struct akcipher_request *req) |
| { |
| struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); |
| int err; |
| |
| if (!ctx->key_size || req->src_len != ctx->key_size) |
| return -EINVAL; |
| |
| if (ctx->key_size > PAGE_SIZE) |
| return -ENOTSUPP; |
| |
| /* Reuse input buffer, output to a new buffer */ |
| req_ctx->child_req.src = req->src; |
| req_ctx->child_req.src_len = req->src_len; |
| req_ctx->child_req.dst = req_ctx->out_sg; |
| req_ctx->child_req.dst_len = ctx->key_size - 1; |
| |
| req_ctx->out_buf = kmalloc(ctx->key_size - 1, |
| (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? |
| GFP_KERNEL : GFP_ATOMIC); |
| if (!req_ctx->out_buf) |
| return -ENOMEM; |
| |
| pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, |
| ctx->key_size - 1, NULL); |
| |
| akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); |
| akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, |
| pkcs1pad_decrypt_complete_cb, req); |
| |
| err = crypto_akcipher_decrypt(&req_ctx->child_req); |
| if (err != -EINPROGRESS && |
| (err != -EBUSY || |
| !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) |
| return pkcs1pad_decrypt_complete(req, err); |
| |
| return err; |
| } |
| |
| static int pkcs1pad_sign(struct akcipher_request *req) |
| { |
| struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); |
| int err; |
| unsigned int ps_end; |
| |
| if (!ctx->key_size) |
| return -EINVAL; |
| |
| if (req->src_len > ctx->key_size - 11) |
| return -EOVERFLOW; |
| |
| if (req->dst_len < ctx->key_size) { |
| req->dst_len = ctx->key_size; |
| return -EOVERFLOW; |
| } |
| |
| if (ctx->key_size > PAGE_SIZE) |
| return -ENOTSUPP; |
| |
| /* |
| * Replace both input and output to add the padding in the input and |
| * the potential missing leading zeros in the output. |
| */ |
| req_ctx->child_req.src = req_ctx->in_sg; |
| req_ctx->child_req.src_len = ctx->key_size - 1; |
| req_ctx->child_req.dst = req_ctx->out_sg; |
| req_ctx->child_req.dst_len = ctx->key_size; |
| |
| req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len, |
| (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? |
| GFP_KERNEL : GFP_ATOMIC); |
| if (!req_ctx->in_buf) |
| return -ENOMEM; |
| |
| ps_end = ctx->key_size - req->src_len - 2; |
| req_ctx->in_buf[0] = 0x01; |
| memset(req_ctx->in_buf + 1, 0xff, ps_end - 1); |
| req_ctx->in_buf[ps_end] = 0x00; |
| |
| pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf, |
| ctx->key_size - 1 - req->src_len, req->src); |
| |
| req_ctx->out_buf = kmalloc(ctx->key_size, |
| (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? |
| GFP_KERNEL : GFP_ATOMIC); |
| if (!req_ctx->out_buf) { |
| kfree(req_ctx->in_buf); |
| return -ENOMEM; |
| } |
| |
| pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, |
| ctx->key_size, NULL); |
| |
| akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); |
| akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, |
| pkcs1pad_encrypt_sign_complete_cb, req); |
| |
| err = crypto_akcipher_sign(&req_ctx->child_req); |
| if (err != -EINPROGRESS && |
| (err != -EBUSY || |
| !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) |
| return pkcs1pad_encrypt_sign_complete(req, err); |
| |
| return err; |
| } |
| |
| static int pkcs1pad_verify_complete(struct akcipher_request *req, int err) |
| { |
| struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); |
| unsigned int pos; |
| |
| if (err == -EOVERFLOW) |
| /* Decrypted value had no leading 0 byte */ |
| err = -EINVAL; |
| |
| if (err) |
| goto done; |
| |
| if (req_ctx->child_req.dst_len != ctx->key_size - 1) { |
| err = -EINVAL; |
| goto done; |
| } |
| |
| if (req_ctx->out_buf[0] != 0x01) { |
| err = -EINVAL; |
| goto done; |
| } |
| for (pos = 1; pos < req_ctx->child_req.dst_len; pos++) |
| if (req_ctx->out_buf[pos] != 0xff) |
| break; |
| if (pos < 9 || pos == req_ctx->child_req.dst_len || |
| req_ctx->out_buf[pos] != 0x00) { |
| err = -EINVAL; |
| goto done; |
| } |
| pos++; |
| |
| if (req->dst_len < req_ctx->child_req.dst_len - pos) |
| err = -EOVERFLOW; |
| req->dst_len = req_ctx->child_req.dst_len - pos; |
| |
| if (!err) |
| sg_copy_from_buffer(req->dst, |
| sg_nents_for_len(req->dst, req->dst_len), |
| req_ctx->out_buf + pos, req->dst_len); |
| |
| done: |
| kzfree(req_ctx->out_buf); |
| |
| return err; |
| } |
| |
| static void pkcs1pad_verify_complete_cb( |
| struct crypto_async_request *child_async_req, int err) |
| { |
| struct akcipher_request *req = child_async_req->data; |
| struct crypto_async_request async_req; |
| |
| if (err == -EINPROGRESS) |
| return; |
| |
| async_req.data = req->base.data; |
| async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req)); |
| async_req.flags = child_async_req->flags; |
| req->base.complete(&async_req, pkcs1pad_verify_complete(req, err)); |
| } |
| |
| /* |
| * The verify operation is here for completeness similar to the verification |
| * defined in RFC2313 section 10.2 except that block type 0 is not accepted, |
| * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to |
| * retrieve the DigestInfo from a signature, instead the user is expected |
| * to call the sign operation to generate the expected signature and compare |
| * signatures instead of the message-digests. |
| */ |
| static int pkcs1pad_verify(struct akcipher_request *req) |
| { |
| struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req); |
| int err; |
| |
| if (!ctx->key_size || req->src_len != ctx->key_size) |
| return -EINVAL; |
| |
| if (ctx->key_size > PAGE_SIZE) |
| return -ENOTSUPP; |
| |
| /* Reuse input buffer, output to a new buffer */ |
| req_ctx->child_req.src = req->src; |
| req_ctx->child_req.src_len = req->src_len; |
| req_ctx->child_req.dst = req_ctx->out_sg; |
| req_ctx->child_req.dst_len = ctx->key_size - 1; |
| |
| req_ctx->out_buf = kmalloc(ctx->key_size - 1, |
| (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? |
| GFP_KERNEL : GFP_ATOMIC); |
| if (!req_ctx->out_buf) |
| return -ENOMEM; |
| |
| pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf, |
| ctx->key_size - 1, NULL); |
| |
| akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); |
| akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, |
| pkcs1pad_verify_complete_cb, req); |
| |
| err = crypto_akcipher_verify(&req_ctx->child_req); |
| if (err != -EINPROGRESS && |
| (err != -EBUSY || |
| !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) |
| return pkcs1pad_verify_complete(req, err); |
| |
| return err; |
| } |
| |
| static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm) |
| { |
| struct akcipher_instance *inst = akcipher_alg_instance(tfm); |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| struct crypto_akcipher *child_tfm; |
| |
| child_tfm = crypto_spawn_akcipher(akcipher_instance_ctx(inst)); |
| if (IS_ERR(child_tfm)) |
| return PTR_ERR(child_tfm); |
| |
| ctx->child = child_tfm; |
| |
| return 0; |
| } |
| |
| static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm) |
| { |
| struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); |
| |
| crypto_free_akcipher(ctx->child); |
| } |
| |
| static void pkcs1pad_free(struct akcipher_instance *inst) |
| { |
| struct crypto_akcipher_spawn *spawn = akcipher_instance_ctx(inst); |
| |
| crypto_drop_akcipher(spawn); |
| |
| kfree(inst); |
| } |
| |
| static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb) |
| { |
| struct crypto_attr_type *algt; |
| struct akcipher_instance *inst; |
| struct crypto_akcipher_spawn *spawn; |
| struct akcipher_alg *rsa_alg; |
| const char *rsa_alg_name; |
| int err; |
| |
| algt = crypto_get_attr_type(tb); |
| if (IS_ERR(algt)) |
| return PTR_ERR(algt); |
| |
| if ((algt->type ^ CRYPTO_ALG_TYPE_AKCIPHER) & algt->mask) |
| return -EINVAL; |
| |
| rsa_alg_name = crypto_attr_alg_name(tb[1]); |
| if (IS_ERR(rsa_alg_name)) |
| return PTR_ERR(rsa_alg_name); |
| |
| inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); |
| if (!inst) |
| return -ENOMEM; |
| |
| spawn = akcipher_instance_ctx(inst); |
| crypto_set_spawn(&spawn->base, akcipher_crypto_instance(inst)); |
| err = crypto_grab_akcipher(spawn, rsa_alg_name, 0, |
| crypto_requires_sync(algt->type, algt->mask)); |
| if (err) |
| goto out_free_inst; |
| |
| rsa_alg = crypto_spawn_akcipher_alg(spawn); |
| |
| err = -ENAMETOOLONG; |
| if (snprintf(inst->alg.base.cra_name, |
| CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", |
| rsa_alg->base.cra_name) >= |
| CRYPTO_MAX_ALG_NAME || |
| snprintf(inst->alg.base.cra_driver_name, |
| CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", |
| rsa_alg->base.cra_driver_name) >= |
| CRYPTO_MAX_ALG_NAME) |
| goto out_drop_alg; |
| |
| inst->alg.base.cra_flags = rsa_alg->base.cra_flags & CRYPTO_ALG_ASYNC; |
| inst->alg.base.cra_priority = rsa_alg->base.cra_priority; |
| inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx); |
| |
| inst->alg.init = pkcs1pad_init_tfm; |
| inst->alg.exit = pkcs1pad_exit_tfm; |
| |
| inst->alg.encrypt = pkcs1pad_encrypt; |
| inst->alg.decrypt = pkcs1pad_decrypt; |
| inst->alg.sign = pkcs1pad_sign; |
| inst->alg.verify = pkcs1pad_verify; |
| inst->alg.set_pub_key = pkcs1pad_set_pub_key; |
| inst->alg.set_priv_key = pkcs1pad_set_priv_key; |
| inst->alg.max_size = pkcs1pad_get_max_size; |
| inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize; |
| |
| inst->free = pkcs1pad_free; |
| |
| err = akcipher_register_instance(tmpl, inst); |
| if (err) |
| goto out_drop_alg; |
| |
| return 0; |
| |
| out_drop_alg: |
| crypto_drop_akcipher(spawn); |
| out_free_inst: |
| kfree(inst); |
| return err; |
| } |
| |
| struct crypto_template rsa_pkcs1pad_tmpl = { |
| .name = "pkcs1pad", |
| .create = pkcs1pad_create, |
| .module = THIS_MODULE, |
| }; |