blob: 6824c02c5262bcce5c36fd57850d8bcc95881016 [file] [log] [blame]
/*
* vl53l0x_api_core.c - Linux kernel modules for
* STM VL53L0 FlightSense TOF sensor
*
* Copyright (C) 2016 STMicroelectronics Imaging Division.
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "vl53l0x_api.h"
#include "vl53l0x_api_core.h"
#include "vl53l0x_api_calibration.h"
#ifndef __KERNEL__
#include <stdlib.h>
#endif
#define LOG_FUNCTION_START(fmt, ...) \
_LOG_FUNCTION_START(TRACE_MODULE_API, fmt, ##__VA_ARGS__)
#define LOG_FUNCTION_END(status, ...) \
_LOG_FUNCTION_END(TRACE_MODULE_API, status, ##__VA_ARGS__)
#define LOG_FUNCTION_END_FMT(status, fmt, ...) \
_LOG_FUNCTION_END_FMT(TRACE_MODULE_API, status, fmt, ##__VA_ARGS__)
int8_t VL_reverse_bytes(uint8_t *data, uint32_t size)
{
int8_t Status = VL_ERROR_NONE;
uint8_t tempData;
uint32_t mirrorIndex;
uint32_t middle = size/2;
uint32_t index;
for (index = 0; index < middle; index++) {
mirrorIndex = size - index - 1;
tempData = data[index];
data[index] = data[mirrorIndex];
data[mirrorIndex] = tempData;
}
return Status;
}
int8_t VL_measurement_poll_for_completion(struct vl_data *Dev)
{
int8_t Status = VL_ERROR_NONE;
uint8_t NewDataReady = 0;
uint32_t LoopNb;
LOG_FUNCTION_START("");
LoopNb = 0;
do {
Status = VL_GetMeasurementDataReady(Dev, &NewDataReady);
if (Status != 0)
break; /* the error is set */
if (NewDataReady == 1)
break; /* done note that status == 0 */
LoopNb++;
if (LoopNb >= VL_DEFAULT_MAX_LOOP) {
Status = VL_ERROR_TIME_OUT;
break;
}
VL_PollingDelay(Dev);
} while (1);
LOG_FUNCTION_END(Status);
return Status;
}
uint8_t VL_decode_vcsel_period(uint8_t vcsel_period_reg)
{
/*!
* Converts the encoded VCSEL period register value into the real
* period in PLL clocks
*/
uint8_t vcsel_period_pclks = 0;
vcsel_period_pclks = (vcsel_period_reg + 1) << 1;
return vcsel_period_pclks;
}
uint8_t VL_encode_vcsel_period(uint8_t vcsel_period_pclks)
{
/*!
* Converts the encoded VCSEL period register value into the real period
* in PLL clocks
*/
uint8_t vcsel_period_reg = 0;
vcsel_period_reg = (vcsel_period_pclks >> 1) - 1;
return vcsel_period_reg;
}
uint32_t VL_isqrt(uint32_t num)
{
/*
* Implements an integer square root
*
* From: http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
*/
uint32_t res = 0;
uint32_t bit = 1 << 30;
/* The second-to-top bit is set: */
/* 1 << 14 for 16-bits, 1 << 30 for 32 bits */
/* "bit" starts at the highest power of four <= the argument. */
while (bit > num)
bit >>= 2;
while (bit != 0) {
if (num >= res + bit) {
num -= res + bit;
res = (res >> 1) + bit;
} else
res >>= 1;
bit >>= 2;
}
return res;
}
uint32_t VL_quadrature_sum(uint32_t a, uint32_t b)
{
/*
* Implements a quadrature sum
*
* rea = sqrt(a^2 + b^2)
*
* Trap overflow case max input value is 65535 (16-bit value)
* as internal calc are 32-bit wide
*
* If overflow then seta output to maximum
*/
uint32_t res = 0;
if (a > 65535 || b > 65535)
res = 65535;
else
res = VL_isqrt(a * a + b * b);
return res;
}
int8_t VL_device_read_strobe(struct vl_data *Dev)
{
int8_t Status = VL_ERROR_NONE;
uint8_t strobe;
uint32_t LoopNb;
LOG_FUNCTION_START("");
Status |= VL_WrByte(Dev, 0x83, 0x00);
/* polling use timeout to avoid deadlock*/
if (Status == VL_ERROR_NONE) {
LoopNb = 0;
do {
Status = VL_RdByte(Dev, 0x83, &strobe);
if ((strobe != 0x00) || Status != VL_ERROR_NONE)
break;
LoopNb = LoopNb + 1;
} while (LoopNb < VL_DEFAULT_MAX_LOOP);
if (LoopNb >= VL_DEFAULT_MAX_LOOP)
Status = VL_ERROR_TIME_OUT;
}
Status |= VL_WrByte(Dev, 0x83, 0x01);
LOG_FUNCTION_END(Status);
return Status;
}
int8_t VL_get_info_from_device(struct vl_data *Dev, uint8_t option)
{
int8_t Status = VL_ERROR_NONE;
uint8_t byte;
uint32_t TmpDWord;
uint8_t ModuleId;
uint8_t Revision;
uint8_t ReferenceSpadCount = 0;
uint8_t ReferenceSpadType = 0;
uint32_t PartUIDUpper = 0;
uint32_t PartUIDLower = 0;
uint32_t OffsetFixed1104_mm = 0;
int16_t OffsetMicroMeters = 0;
uint32_t DistMeasTgtFixed1104_mm = 400 << 4;
uint32_t DistMeasFixed1104_400_mm = 0;
uint32_t SignalRateMeasFixed1104_400_mm = 0;
char ProductId[19];
char *ProductId_tmp;
uint8_t ReadDataFromDeviceDone;
unsigned int SignalRateMeasFixed400mmFix = 0;
uint8_t NvmRefGoodSpadMap[VL_REF_SPAD_BUFFER_SIZE];
int i;
LOG_FUNCTION_START("");
ReadDataFromDeviceDone = VL_GETDEVICESPECIFICPARAMETER(Dev,
ReadDataFromDeviceDone);
/* This access is done only once after that a GetDeviceInfo or */
/* datainit is done*/
if (ReadDataFromDeviceDone != 7) {
Status |= VL_WrByte(Dev, 0x80, 0x01);
Status |= VL_WrByte(Dev, 0xFF, 0x01);
Status |= VL_WrByte(Dev, 0x00, 0x00);
Status |= VL_WrByte(Dev, 0xFF, 0x06);
Status |= VL_RdByte(Dev, 0x83, &byte);
Status |= VL_WrByte(Dev, 0x83, byte|4);
Status |= VL_WrByte(Dev, 0xFF, 0x07);
Status |= VL_WrByte(Dev, 0x81, 0x01);
Status |= VL_PollingDelay(Dev);
Status |= VL_WrByte(Dev, 0x80, 0x01);
if (((option & 1) == 1) &&
((ReadDataFromDeviceDone & 1) == 0)) {
Status |= VL_WrByte(Dev, 0x94, 0x6b);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &TmpDWord);
ReferenceSpadCount = (uint8_t)((TmpDWord >> 8) & 0x07f);
ReferenceSpadType = (uint8_t)((TmpDWord >> 15) & 0x01);
Status |= VL_WrByte(Dev, 0x94, 0x24);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &TmpDWord);
NvmRefGoodSpadMap[0] = (uint8_t)((TmpDWord >> 24)
& 0xff);
NvmRefGoodSpadMap[1] = (uint8_t)((TmpDWord >> 16)
& 0xff);
NvmRefGoodSpadMap[2] = (uint8_t)((TmpDWord >> 8)
& 0xff);
NvmRefGoodSpadMap[3] = (uint8_t)(TmpDWord & 0xff);
Status |= VL_WrByte(Dev, 0x94, 0x25);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &TmpDWord);
NvmRefGoodSpadMap[4] = (uint8_t)((TmpDWord >> 24)
& 0xff);
NvmRefGoodSpadMap[5] = (uint8_t)((TmpDWord >> 16)
& 0xff);
}
if (((option & 2) == 2) &&
((ReadDataFromDeviceDone & 2) == 0)) {
Status |= VL_WrByte(Dev, 0x94, 0x02);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdByte(Dev, 0x90, &ModuleId);
Status |= VL_WrByte(Dev, 0x94, 0x7B);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdByte(Dev, 0x90, &Revision);
Status |= VL_WrByte(Dev, 0x94, 0x77);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &TmpDWord);
ProductId[0] = (char)((TmpDWord >> 25) & 0x07f);
ProductId[1] = (char)((TmpDWord >> 18) & 0x07f);
ProductId[2] = (char)((TmpDWord >> 11) & 0x07f);
ProductId[3] = (char)((TmpDWord >> 4) & 0x07f);
byte = (uint8_t)((TmpDWord & 0x00f) << 3);
Status |= VL_WrByte(Dev, 0x94, 0x78);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &TmpDWord);
ProductId[4] = (char)(byte +
((TmpDWord >> 29) & 0x07f));
ProductId[5] = (char)((TmpDWord >> 22) & 0x07f);
ProductId[6] = (char)((TmpDWord >> 15) & 0x07f);
ProductId[7] = (char)((TmpDWord >> 8) & 0x07f);
ProductId[8] = (char)((TmpDWord >> 1) & 0x07f);
byte = (uint8_t)((TmpDWord & 0x001) << 6);
Status |= VL_WrByte(Dev, 0x94, 0x79);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &TmpDWord);
ProductId[9] = (char)(byte +
((TmpDWord >> 26) & 0x07f));
ProductId[10] = (char)((TmpDWord >> 19) & 0x07f);
ProductId[11] = (char)((TmpDWord >> 12) & 0x07f);
ProductId[12] = (char)((TmpDWord >> 5) & 0x07f);
byte = (uint8_t)((TmpDWord & 0x01f) << 2);
Status |= VL_WrByte(Dev, 0x94, 0x7A);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &TmpDWord);
ProductId[13] = (char)(byte +
((TmpDWord >> 30) & 0x07f));
ProductId[14] = (char)((TmpDWord >> 23) & 0x07f);
ProductId[15] = (char)((TmpDWord >> 16) & 0x07f);
ProductId[16] = (char)((TmpDWord >> 9) & 0x07f);
ProductId[17] = (char)((TmpDWord >> 2) & 0x07f);
ProductId[18] = '\0';
}
if (((option & 4) == 4) &&
((ReadDataFromDeviceDone & 4) == 0)) {
Status |= VL_WrByte(Dev, 0x94, 0x7B);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &PartUIDUpper);
Status |= VL_WrByte(Dev, 0x94, 0x7C);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &PartUIDLower);
Status |= VL_WrByte(Dev, 0x94, 0x73);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &TmpDWord);
SignalRateMeasFixed1104_400_mm = (TmpDWord &
0x0000000ff) << 8;
Status |= VL_WrByte(Dev, 0x94, 0x74);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &TmpDWord);
SignalRateMeasFixed1104_400_mm |= ((TmpDWord &
0xff000000) >> 24);
Status |= VL_WrByte(Dev, 0x94, 0x75);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &TmpDWord);
DistMeasFixed1104_400_mm = (TmpDWord & 0x0000000ff)
<< 8;
Status |= VL_WrByte(Dev, 0x94, 0x76);
Status |= VL_device_read_strobe(Dev);
Status |= VL_RdDWord(Dev, 0x90, &TmpDWord);
DistMeasFixed1104_400_mm |= ((TmpDWord & 0xff000000)
>> 24);
}
Status |= VL_WrByte(Dev, 0x81, 0x00);
Status |= VL_WrByte(Dev, 0xFF, 0x06);
Status |= VL_RdByte(Dev, 0x83, &byte);
Status |= VL_WrByte(Dev, 0x83, byte&0xfb);
Status |= VL_WrByte(Dev, 0xFF, 0x01);
Status |= VL_WrByte(Dev, 0x00, 0x01);
Status |= VL_WrByte(Dev, 0xFF, 0x00);
Status |= VL_WrByte(Dev, 0x80, 0x00);
}
if ((Status == VL_ERROR_NONE) &&
(ReadDataFromDeviceDone != 7)) {
/* Assign to variable if status is ok */
if (((option & 1) == 1) &&
((ReadDataFromDeviceDone & 1) == 0)) {
VL_SETDEVICESPECIFICPARAMETER(Dev,
ReferenceSpadCount, ReferenceSpadCount);
VL_SETDEVICESPECIFICPARAMETER(Dev,
ReferenceSpadType, ReferenceSpadType);
for (i = 0; i < VL_REF_SPAD_BUFFER_SIZE; i++) {
Dev->Data.SpadData.RefGoodSpadMap[i] =
NvmRefGoodSpadMap[i];
}
}
if (((option & 2) == 2) &&
((ReadDataFromDeviceDone & 2) == 0)) {
VL_SETDEVICESPECIFICPARAMETER(Dev,
ModuleId, ModuleId);
VL_SETDEVICESPECIFICPARAMETER(Dev,
Revision, Revision);
ProductId_tmp = VL_GETDEVICESPECIFICPARAMETER(Dev,
ProductId);
VL_COPYSTRING(ProductId_tmp, ProductId);
}
if (((option & 4) == 4) &&
((ReadDataFromDeviceDone & 4) == 0)) {
VL_SETDEVICESPECIFICPARAMETER(Dev,
PartUIDUpper, PartUIDUpper);
VL_SETDEVICESPECIFICPARAMETER(Dev,
PartUIDLower, PartUIDLower);
SignalRateMeasFixed400mmFix =
VL_FIXPOINT97TOFIXPOINT1616(
SignalRateMeasFixed1104_400_mm);
VL_SETDEVICESPECIFICPARAMETER(Dev,
SignalRateMeasFixed400mm,
SignalRateMeasFixed400mmFix);
OffsetMicroMeters = 0;
if (DistMeasFixed1104_400_mm != 0) {
OffsetFixed1104_mm = DistMeasFixed1104_400_mm -
DistMeasTgtFixed1104_mm;
OffsetMicroMeters = (OffsetFixed1104_mm
* 1000) >> 4;
OffsetMicroMeters *= -1;
}
PALDevDataSet(Dev,
Part2PartOffsetAdjustmentNVMMicroMeter,
OffsetMicroMeters);
}
byte = (uint8_t)(ReadDataFromDeviceDone|option);
VL_SETDEVICESPECIFICPARAMETER(Dev, ReadDataFromDeviceDone,
byte);
}
LOG_FUNCTION_END(Status);
return Status;
}
uint32_t VL_calc_macro_period_ps(struct vl_data *Dev,
uint8_t vcsel_period_pclks)
{
uint64_t PLL_period_ps;
uint32_t macro_period_vclks;
uint32_t macro_period_ps;
LOG_FUNCTION_START("");
/* The above calculation will produce rounding errors, */
/* therefore set fixed value */
PLL_period_ps = 1655;
macro_period_vclks = 2304;
macro_period_ps = (uint32_t)(macro_period_vclks
* vcsel_period_pclks * PLL_period_ps);
LOG_FUNCTION_END("");
return macro_period_ps;
}
uint16_t VL_encode_timeout(uint32_t timeout_macro_clks)
{
/*!
* Encode timeout in macro periods in (LSByte * 2^MSByte) + 1 format
*/
uint16_t encoded_timeout = 0;
uint32_t ls_byte = 0;
uint16_t ms_byte = 0;
if (timeout_macro_clks > 0) {
ls_byte = timeout_macro_clks - 1;
while ((ls_byte & 0xFFFFFF00) > 0) {
ls_byte = ls_byte >> 1;
ms_byte++;
}
encoded_timeout = (ms_byte << 8)
+ (uint16_t) (ls_byte & 0x000000FF);
}
return encoded_timeout;
}
uint32_t VL_decode_timeout(uint16_t encoded_timeout)
{
/*!
* Decode 16-bit timeout register value - format (LSByte * 2^MSByte) + 1
*/
uint32_t timeout_macro_clks = 0;
timeout_macro_clks = ((uint32_t) (encoded_timeout & 0x00FF)
<< (uint32_t) ((encoded_timeout & 0xFF00) >> 8)) + 1;
return timeout_macro_clks;
}
/* To convert ms into register value */
uint32_t VL_calc_timeout_mclks(struct vl_data *Dev,
uint32_t timeout_period_us,
uint8_t vcsel_period_pclks)
{
uint32_t macro_period_ps;
uint32_t macro_period_ns;
uint32_t timeout_period_mclks = 0;
macro_period_ps = VL_calc_macro_period_ps(Dev, vcsel_period_pclks);
macro_period_ns = (macro_period_ps + 500) / 1000;
timeout_period_mclks =
(uint32_t) (((timeout_period_us * 1000)
+ (macro_period_ns / 2)) / macro_period_ns);
return timeout_period_mclks;
}
/* To convert register value into us */
uint32_t VL_calc_timeout_us(struct vl_data *Dev,
uint16_t timeout_period_mclks,
uint8_t vcsel_period_pclks)
{
uint32_t macro_period_ps;
uint32_t macro_period_ns;
uint32_t actual_timeout_period_us = 0;
macro_period_ps = VL_calc_macro_period_ps(Dev, vcsel_period_pclks);
macro_period_ns = (macro_period_ps + 500) / 1000;
actual_timeout_period_us =
((timeout_period_mclks * macro_period_ns) + 500) / 1000;
return actual_timeout_period_us;
}
int8_t get_sequence_step_timeout(struct vl_data *Dev,
uint8_t SequenceStepId,
uint32_t *pTimeOutMicroSecs)
{
int8_t Status = VL_ERROR_NONE;
uint8_t CurrentVCSELPulsePeriodPClk;
uint8_t EncodedTimeOutByte = 0;
uint32_t TimeoutMicroSeconds = 0;
uint16_t PreRangeEncodedTimeOut = 0;
uint16_t MsrcTimeOutMClks;
uint16_t PreRangeTimeOutMClks;
uint16_t FinalRangeTimeOutMClks = 0;
uint16_t FinalRangeEncodedTimeOut;
struct VL_SchedulerSequenceSteps_t SchedulerSequenceSteps;
if ((SequenceStepId == VL_SEQUENCESTEP_TCC) ||
(SequenceStepId == VL_SEQUENCESTEP_DSS) ||
(SequenceStepId == VL_SEQUENCESTEP_MSRC)) {
Status = VL_GetVcselPulsePeriod(Dev,
VL_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
if (Status == VL_ERROR_NONE) {
Status = VL_RdByte(Dev,
VL_REG_MSRC_CONFIG_TIMEOUT_MACROP,
&EncodedTimeOutByte);
}
MsrcTimeOutMClks = VL_decode_timeout(EncodedTimeOutByte);
TimeoutMicroSeconds = VL_calc_timeout_us(Dev,
MsrcTimeOutMClks,
CurrentVCSELPulsePeriodPClk);
} else if (SequenceStepId == VL_SEQUENCESTEP_PRE_RANGE) {
/* Retrieve PRE-RANGE VCSEL Period */
Status = VL_GetVcselPulsePeriod(Dev,
VL_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
/* Retrieve PRE-RANGE Timeout in Macro periods (MCLKS) */
if (Status == VL_ERROR_NONE) {
/* Retrieve PRE-RANGE VCSEL Period */
Status = VL_GetVcselPulsePeriod(Dev,
VL_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
if (Status == VL_ERROR_NONE) {
Status = VL_RdWord(Dev,
VL_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
&PreRangeEncodedTimeOut);
}
PreRangeTimeOutMClks = VL_decode_timeout(
PreRangeEncodedTimeOut);
TimeoutMicroSeconds = VL_calc_timeout_us(Dev,
PreRangeTimeOutMClks,
CurrentVCSELPulsePeriodPClk);
}
} else if (SequenceStepId == VL_SEQUENCESTEP_FINAL_RANGE) {
VL_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
PreRangeTimeOutMClks = 0;
if (SchedulerSequenceSteps.PreRangeOn) {
/* Retrieve PRE-RANGE VCSEL Period */
Status = VL_GetVcselPulsePeriod(Dev,
VL_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
/* Retrieve PRE-RANGE Timeout in Macro periods */
/* (MCLKS) */
if (Status == VL_ERROR_NONE) {
Status = VL_RdWord(Dev,
VL_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
&PreRangeEncodedTimeOut);
PreRangeTimeOutMClks = VL_decode_timeout(
PreRangeEncodedTimeOut);
}
}
if (Status == VL_ERROR_NONE) {
/* Retrieve FINAL-RANGE VCSEL Period */
Status = VL_GetVcselPulsePeriod(Dev,
VL_VCSEL_PERIOD_FINAL_RANGE,
&CurrentVCSELPulsePeriodPClk);
}
/* Retrieve FINAL-RANGE Timeout in Macro periods (MCLKS) */
if (Status == VL_ERROR_NONE) {
Status = VL_RdWord(Dev,
VL_REG_FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
&FinalRangeEncodedTimeOut);
FinalRangeTimeOutMClks = VL_decode_timeout(
FinalRangeEncodedTimeOut);
}
FinalRangeTimeOutMClks -= PreRangeTimeOutMClks;
TimeoutMicroSeconds = VL_calc_timeout_us(Dev,
FinalRangeTimeOutMClks,
CurrentVCSELPulsePeriodPClk);
}
*pTimeOutMicroSecs = TimeoutMicroSeconds;
return Status;
}
int8_t set_sequence_step_timeout(struct vl_data *Dev,
uint8_t SequenceStepId,
uint32_t TimeOutMicroSecs)
{
int8_t Status = VL_ERROR_NONE;
uint8_t CurrentVCSELPulsePeriodPClk;
uint8_t MsrcEncodedTimeOut;
uint16_t PreRangeEncodedTimeOut;
uint16_t PreRangeTimeOutMClks;
uint16_t MsrcRangeTimeOutMClks;
uint32_t FinalRangeTimeOutMClks;
uint16_t FinalRangeEncodedTimeOut;
struct VL_SchedulerSequenceSteps_t SchedulerSequenceSteps;
if ((SequenceStepId == VL_SEQUENCESTEP_TCC) ||
(SequenceStepId == VL_SEQUENCESTEP_DSS) ||
(SequenceStepId == VL_SEQUENCESTEP_MSRC)) {
Status = VL_GetVcselPulsePeriod(Dev,
VL_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
if (Status == VL_ERROR_NONE) {
MsrcRangeTimeOutMClks = VL_calc_timeout_mclks(Dev,
TimeOutMicroSecs,
(uint8_t)CurrentVCSELPulsePeriodPClk);
if (MsrcRangeTimeOutMClks > 256)
MsrcEncodedTimeOut = 255;
else
MsrcEncodedTimeOut =
(uint8_t)MsrcRangeTimeOutMClks - 1;
VL_SETDEVICESPECIFICPARAMETER(Dev,
LastEncodedTimeout,
MsrcEncodedTimeOut);
}
if (Status == VL_ERROR_NONE) {
Status = VL_WrByte(Dev,
VL_REG_MSRC_CONFIG_TIMEOUT_MACROP,
MsrcEncodedTimeOut);
}
} else {
if (SequenceStepId == VL_SEQUENCESTEP_PRE_RANGE) {
if (Status == VL_ERROR_NONE) {
Status = VL_GetVcselPulsePeriod(Dev,
VL_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
PreRangeTimeOutMClks =
VL_calc_timeout_mclks(Dev,
TimeOutMicroSecs,
(uint8_t)CurrentVCSELPulsePeriodPClk);
PreRangeEncodedTimeOut = VL_encode_timeout(
PreRangeTimeOutMClks);
VL_SETDEVICESPECIFICPARAMETER(Dev,
LastEncodedTimeout,
PreRangeEncodedTimeOut);
}
if (Status == VL_ERROR_NONE) {
Status = VL_WrWord(Dev,
VL_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
PreRangeEncodedTimeOut);
}
if (Status == VL_ERROR_NONE) {
VL_SETDEVICESPECIFICPARAMETER(
Dev,
PreRangeTimeoutMicroSecs,
TimeOutMicroSecs);
}
} else if (SequenceStepId == VL_SEQUENCESTEP_FINAL_RANGE) {
/* For the final range timeout, the pre-range timeout
* must be added. To do this both final and pre-range
* timeouts must be expressed in macro periods MClks
* because they have different vcsel periods.
*/
VL_GetSequenceStepEnables(Dev,
&SchedulerSequenceSteps);
PreRangeTimeOutMClks = 0;
if (SchedulerSequenceSteps.PreRangeOn) {
/* Retrieve PRE-RANGE VCSEL Period */
Status = VL_GetVcselPulsePeriod(Dev,
VL_VCSEL_PERIOD_PRE_RANGE,
&CurrentVCSELPulsePeriodPClk);
/* Retrieve PRE-RANGE Timeout in Macro */
/* periods (MCLKS) */
if (Status == VL_ERROR_NONE) {
Status = VL_RdWord(Dev, 0x51,
&PreRangeEncodedTimeOut);
PreRangeTimeOutMClks =
VL_decode_timeout(
PreRangeEncodedTimeOut);
}
}
/* Calculate FINAL RANGE Timeout in Macro Periods */
/* (MCLKS) and add PRE-RANGE value */
if (Status == VL_ERROR_NONE) {
Status = VL_GetVcselPulsePeriod(Dev,
VL_VCSEL_PERIOD_FINAL_RANGE,
&CurrentVCSELPulsePeriodPClk);
}
if (Status == VL_ERROR_NONE) {
FinalRangeTimeOutMClks =
VL_calc_timeout_mclks(Dev,
TimeOutMicroSecs,
(uint8_t) CurrentVCSELPulsePeriodPClk);
FinalRangeTimeOutMClks += PreRangeTimeOutMClks;
FinalRangeEncodedTimeOut =
VL_encode_timeout(FinalRangeTimeOutMClks);
if (Status == VL_ERROR_NONE) {
Status = VL_WrWord(Dev, 0x71,
FinalRangeEncodedTimeOut);
}
if (Status == VL_ERROR_NONE) {
VL_SETDEVICESPECIFICPARAMETER(
Dev,
FinalRangeTimeoutMicroSecs,
TimeOutMicroSecs);
}
}
} else
Status = VL_ERROR_INVALID_PARAMS;
}
return Status;
}
int8_t VL_set_vcsel_pulse_period(struct vl_data *Dev,
uint8_t VcselPeriodType, uint8_t VCSELPulsePeriodPCLK)
{
int8_t Status = VL_ERROR_NONE;
uint8_t vcsel_period_reg;
uint8_t MinPreVcselPeriodPCLK = 12;
uint8_t MaxPreVcselPeriodPCLK = 18;
uint8_t MinFinalVcselPeriodPCLK = 8;
uint8_t MaxFinalVcselPeriodPCLK = 14;
uint32_t MeasurementTimingBudgetMicroSeconds;
uint32_t FinalRangeTimeoutMicroSeconds;
uint32_t PreRangeTimeoutMicroSeconds;
uint32_t MsrcTimeoutMicroSeconds;
uint8_t PhaseCalInt = 0;
/* Check if valid clock period requested */
if ((VCSELPulsePeriodPCLK % 2) != 0) {
/* Value must be an even number */
Status = VL_ERROR_INVALID_PARAMS;
} else if (VcselPeriodType == VL_VCSEL_PERIOD_PRE_RANGE &&
(VCSELPulsePeriodPCLK < MinPreVcselPeriodPCLK ||
VCSELPulsePeriodPCLK > MaxPreVcselPeriodPCLK)) {
Status = VL_ERROR_INVALID_PARAMS;
} else if (VcselPeriodType == VL_VCSEL_PERIOD_FINAL_RANGE &&
(VCSELPulsePeriodPCLK < MinFinalVcselPeriodPCLK ||
VCSELPulsePeriodPCLK > MaxFinalVcselPeriodPCLK)) {
Status = VL_ERROR_INVALID_PARAMS;
}
/* Apply specific settings for the requested clock period */
if (Status != VL_ERROR_NONE)
return Status;
if (VcselPeriodType == VL_VCSEL_PERIOD_PRE_RANGE) {
/* Set phase check limits */
if (VCSELPulsePeriodPCLK == 12) {
Status = VL_WrByte(Dev,
VL_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x18);
Status = VL_WrByte(Dev,
VL_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
} else if (VCSELPulsePeriodPCLK == 14) {
Status = VL_WrByte(Dev,
VL_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x30);
Status = VL_WrByte(Dev,
VL_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
} else if (VCSELPulsePeriodPCLK == 16) {
Status = VL_WrByte(Dev,
VL_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x40);
Status = VL_WrByte(Dev,
VL_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
} else if (VCSELPulsePeriodPCLK == 18) {
Status = VL_WrByte(Dev,
VL_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x50);
Status = VL_WrByte(Dev,
VL_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
}
} else if (VcselPeriodType == VL_VCSEL_PERIOD_FINAL_RANGE) {
if (VCSELPulsePeriodPCLK == 8) {
Status = VL_WrByte(Dev,
VL_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
0x10);
Status = VL_WrByte(Dev,
VL_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
Status |= VL_WrByte(Dev,
VL_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
Status |= VL_WrByte(Dev,
VL_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
Status |= VL_WrByte(Dev, 0xff, 0x01);
Status |= VL_WrByte(Dev,
VL_REG_ALGO_PHASECAL_LIM,
0x30);
Status |= VL_WrByte(Dev, 0xff, 0x00);
} else if (VCSELPulsePeriodPCLK == 10) {
Status = VL_WrByte(Dev,
VL_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
0x28);
Status = VL_WrByte(Dev,
VL_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
Status |= VL_WrByte(Dev,
VL_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
Status |= VL_WrByte(Dev,
VL_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
Status |= VL_WrByte(Dev, 0xff, 0x01);
Status |= VL_WrByte(Dev,
VL_REG_ALGO_PHASECAL_LIM,
0x20);
Status |= VL_WrByte(Dev, 0xff, 0x00);
} else if (VCSELPulsePeriodPCLK == 12) {
Status = VL_WrByte(Dev,
VL_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
0x38);
Status = VL_WrByte(Dev,
VL_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
Status |= VL_WrByte(Dev,
VL_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
Status |= VL_WrByte(Dev,
VL_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
Status |= VL_WrByte(Dev, 0xff, 0x01);
Status |= VL_WrByte(Dev,
VL_REG_ALGO_PHASECAL_LIM,
0x20);
Status |= VL_WrByte(Dev, 0xff, 0x00);
} else if (VCSELPulsePeriodPCLK == 14) {
Status = VL_WrByte(Dev,
VL_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
0x048);
Status = VL_WrByte(Dev,
VL_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
Status |= VL_WrByte(Dev,
VL_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
Status |= VL_WrByte(Dev,
VL_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
Status |= VL_WrByte(Dev, 0xff, 0x01);
Status |= VL_WrByte(Dev,
VL_REG_ALGO_PHASECAL_LIM,
0x20);
Status |= VL_WrByte(Dev, 0xff, 0x00);
}
}
/* Re-calculate and apply timeouts, in macro periods */
if (Status == VL_ERROR_NONE) {
vcsel_period_reg = VL_encode_vcsel_period((uint8_t)
VCSELPulsePeriodPCLK);
/* When the VCSEL period for the pre or final range is changed, */
/* the corresponding timeout must be read from the device using */
/* the current VCSEL period, then the new VCSEL period can be */
/* applied. The timeout then must be written back to the device */
/* using the new VCSEL period. */
/* For the MSRC timeout, the same applies - this timeout being */
/* dependent on the pre-range vcsel period. */
switch (VcselPeriodType) {
case VL_VCSEL_PERIOD_PRE_RANGE:
Status = get_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_PRE_RANGE,
&PreRangeTimeoutMicroSeconds);
if (Status == VL_ERROR_NONE)
Status = get_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_MSRC,
&MsrcTimeoutMicroSeconds);
if (Status == VL_ERROR_NONE)
Status = VL_WrByte(Dev,
VL_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
vcsel_period_reg);
if (Status == VL_ERROR_NONE)
Status = set_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_PRE_RANGE,
PreRangeTimeoutMicroSeconds);
if (Status == VL_ERROR_NONE)
Status = set_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_MSRC,
MsrcTimeoutMicroSeconds);
VL_SETDEVICESPECIFICPARAMETER(
Dev,
PreRangeVcselPulsePeriod,
VCSELPulsePeriodPCLK);
break;
case VL_VCSEL_PERIOD_FINAL_RANGE:
Status = get_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_FINAL_RANGE,
&FinalRangeTimeoutMicroSeconds);
if (Status == VL_ERROR_NONE)
Status = VL_WrByte(Dev,
VL_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
vcsel_period_reg);
if (Status == VL_ERROR_NONE)
Status = set_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_FINAL_RANGE,
FinalRangeTimeoutMicroSeconds);
VL_SETDEVICESPECIFICPARAMETER(
Dev,
FinalRangeVcselPulsePeriod,
VCSELPulsePeriodPCLK);
break;
default:
Status = VL_ERROR_INVALID_PARAMS;
}
}
/* Finally, the timing budget must be re-applied */
if (Status == VL_ERROR_NONE) {
VL_GETPARAMETERFIELD(Dev,
MeasurementTimingBudgetMicroSeconds,
MeasurementTimingBudgetMicroSeconds);
Status = VL_SetMeasurementTimingBudgetMicroSeconds(Dev,
MeasurementTimingBudgetMicroSeconds);
}
/* Perform the phase calibration. This is needed after changing on */
/* vcsel period. */
/* get_data_enable = 0, restore_config = 1 */
if (Status == VL_ERROR_NONE)
Status = VL_perform_phase_calibration(
Dev, &PhaseCalInt, 0, 1);
return Status;
}
int8_t VL_get_vcsel_pulse_period(struct vl_data *Dev,
uint8_t VcselPeriodType, uint8_t *pVCSELPulsePeriodPCLK)
{
int8_t Status = VL_ERROR_NONE;
uint8_t vcsel_period_reg;
switch (VcselPeriodType) {
case VL_VCSEL_PERIOD_PRE_RANGE:
Status = VL_RdByte(Dev,
VL_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
&vcsel_period_reg);
break;
case VL_VCSEL_PERIOD_FINAL_RANGE:
Status = VL_RdByte(Dev,
VL_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
&vcsel_period_reg);
break;
default:
Status = VL_ERROR_INVALID_PARAMS;
}
if (Status == VL_ERROR_NONE)
*pVCSELPulsePeriodPCLK =
VL_decode_vcsel_period(vcsel_period_reg);
return Status;
}
int8_t VL_set_measurement_timing_budget_micro_seconds(
struct vl_data *Dev, uint32_t MeasurementTimingBudgetMicroSeconds)
{
int8_t Status = VL_ERROR_NONE;
uint32_t FinalRangeTimingBudgetMicroSeconds;
struct VL_SchedulerSequenceSteps_t SchedulerSequenceSteps;
uint32_t MsrcDccTccTimeoutMicroSeconds = 2000;
uint32_t StartOverheadMicroSeconds = 1910;
uint32_t EndOverheadMicroSeconds = 960;
uint32_t MsrcOverheadMicroSeconds = 660;
uint32_t TccOverheadMicroSeconds = 590;
uint32_t DssOverheadMicroSeconds = 690;
uint32_t PreRangeOverheadMicroSeconds = 660;
uint32_t FinalRangeOverheadMicroSeconds = 550;
uint32_t PreRangeTimeoutMicroSeconds = 0;
uint32_t cMinTimingBudgetMicroSeconds = 20000;
uint32_t SubTimeout = 0;
LOG_FUNCTION_START("");
if (MeasurementTimingBudgetMicroSeconds
< cMinTimingBudgetMicroSeconds) {
Status = VL_ERROR_INVALID_PARAMS;
return Status;
}
FinalRangeTimingBudgetMicroSeconds =
MeasurementTimingBudgetMicroSeconds -
(StartOverheadMicroSeconds + EndOverheadMicroSeconds);
Status = VL_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
if (Status == VL_ERROR_NONE &&
(SchedulerSequenceSteps.TccOn ||
SchedulerSequenceSteps.MsrcOn ||
SchedulerSequenceSteps.DssOn)) {
/* TCC, MSRC and DSS all share the same timeout */
Status = get_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_MSRC,
&MsrcDccTccTimeoutMicroSeconds);
/* Subtract the TCC, MSRC and DSS timeouts if they are */
/* enabled. */
if (Status != VL_ERROR_NONE)
return Status;
/* TCC */
if (SchedulerSequenceSteps.TccOn) {
SubTimeout = MsrcDccTccTimeoutMicroSeconds
+ TccOverheadMicroSeconds;
if (SubTimeout <
FinalRangeTimingBudgetMicroSeconds) {
FinalRangeTimingBudgetMicroSeconds -=
SubTimeout;
} else {
/* Requested timeout too big. */
Status = VL_ERROR_INVALID_PARAMS;
}
}
if (Status != VL_ERROR_NONE) {
LOG_FUNCTION_END(Status);
return Status;
}
/* DSS */
if (SchedulerSequenceSteps.DssOn) {
SubTimeout = 2 * (MsrcDccTccTimeoutMicroSeconds +
DssOverheadMicroSeconds);
if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
FinalRangeTimingBudgetMicroSeconds
-= SubTimeout;
} else {
/* Requested timeout too big. */
Status = VL_ERROR_INVALID_PARAMS;
}
} else if (SchedulerSequenceSteps.MsrcOn) {
/* MSRC */
SubTimeout = MsrcDccTccTimeoutMicroSeconds +
MsrcOverheadMicroSeconds;
if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
FinalRangeTimingBudgetMicroSeconds
-= SubTimeout;
} else {
/* Requested timeout too big. */
Status = VL_ERROR_INVALID_PARAMS;
}
}
}
if (Status != VL_ERROR_NONE) {
LOG_FUNCTION_END(Status);
return Status;
}
if (SchedulerSequenceSteps.PreRangeOn) {
/* Subtract the Pre-range timeout if enabled. */
Status = get_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_PRE_RANGE,
&PreRangeTimeoutMicroSeconds);
SubTimeout = PreRangeTimeoutMicroSeconds +
PreRangeOverheadMicroSeconds;
if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
FinalRangeTimingBudgetMicroSeconds -= SubTimeout;
} else {
/* Requested timeout too big. */
Status = VL_ERROR_INVALID_PARAMS;
}
}
if (Status == VL_ERROR_NONE &&
SchedulerSequenceSteps.FinalRangeOn) {
FinalRangeTimingBudgetMicroSeconds -=
FinalRangeOverheadMicroSeconds;
/* Final Range Timeout
* Note that the final range timeout is determined by the timing
* budget and the sum of all other timeouts within the sequence.
* If there is no room for the final range timeout,then an error
* will be set. Otherwise the remaining time will be applied to
* the final range.
*/
Status = set_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_FINAL_RANGE,
FinalRangeTimingBudgetMicroSeconds);
VL_SETPARAMETERFIELD(Dev,
MeasurementTimingBudgetMicroSeconds,
MeasurementTimingBudgetMicroSeconds);
}
LOG_FUNCTION_END(Status);
return Status;
}
int8_t VL_get_measurement_timing_budget_micro_seconds(
struct vl_data *Dev, uint32_t *pMeasurementTimingBudgetMicroSeconds)
{
int8_t Status = VL_ERROR_NONE;
struct VL_SchedulerSequenceSteps_t SchedulerSequenceSteps;
uint32_t FinalRangeTimeoutMicroSeconds;
uint32_t MsrcDccTccTimeoutMicroSeconds = 2000;
uint32_t StartOverheadMicroSeconds = 1910;
uint32_t EndOverheadMicroSeconds = 960;
uint32_t MsrcOverheadMicroSeconds = 660;
uint32_t TccOverheadMicroSeconds = 590;
uint32_t DssOverheadMicroSeconds = 690;
uint32_t PreRangeOverheadMicroSeconds = 660;
uint32_t FinalRangeOverheadMicroSeconds = 550;
uint32_t PreRangeTimeoutMicroSeconds = 0;
LOG_FUNCTION_START("");
/* Start and end overhead times always present */
*pMeasurementTimingBudgetMicroSeconds
= StartOverheadMicroSeconds + EndOverheadMicroSeconds;
Status = VL_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
if (Status != VL_ERROR_NONE) {
LOG_FUNCTION_END(Status);
return Status;
}
if (SchedulerSequenceSteps.TccOn ||
SchedulerSequenceSteps.MsrcOn ||
SchedulerSequenceSteps.DssOn) {
Status = get_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_MSRC,
&MsrcDccTccTimeoutMicroSeconds);
if (Status == VL_ERROR_NONE) {
if (SchedulerSequenceSteps.TccOn) {
*pMeasurementTimingBudgetMicroSeconds +=
MsrcDccTccTimeoutMicroSeconds +
TccOverheadMicroSeconds;
}
if (SchedulerSequenceSteps.DssOn) {
*pMeasurementTimingBudgetMicroSeconds +=
2 * (MsrcDccTccTimeoutMicroSeconds +
DssOverheadMicroSeconds);
} else if (SchedulerSequenceSteps.MsrcOn) {
*pMeasurementTimingBudgetMicroSeconds +=
MsrcDccTccTimeoutMicroSeconds +
MsrcOverheadMicroSeconds;
}
}
}
if (Status == VL_ERROR_NONE) {
if (SchedulerSequenceSteps.PreRangeOn) {
Status = get_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_PRE_RANGE,
&PreRangeTimeoutMicroSeconds);
*pMeasurementTimingBudgetMicroSeconds +=
PreRangeTimeoutMicroSeconds +
PreRangeOverheadMicroSeconds;
}
}
if (Status == VL_ERROR_NONE) {
if (SchedulerSequenceSteps.FinalRangeOn) {
Status = get_sequence_step_timeout(Dev,
VL_SEQUENCESTEP_FINAL_RANGE,
&FinalRangeTimeoutMicroSeconds);
*pMeasurementTimingBudgetMicroSeconds +=
(FinalRangeTimeoutMicroSeconds +
FinalRangeOverheadMicroSeconds);
}
}
if (Status == VL_ERROR_NONE) {
VL_SETPARAMETERFIELD(Dev,
MeasurementTimingBudgetMicroSeconds,
*pMeasurementTimingBudgetMicroSeconds);
}
LOG_FUNCTION_END(Status);
return Status;
}
int8_t VL_load_tuning_settings(struct vl_data *Dev,
uint8_t *pTuningSettingBuffer)
{
int8_t Status = VL_ERROR_NONE;
int i;
int Index;
uint8_t msb;
uint8_t lsb;
uint8_t SelectParam;
uint8_t NumberOfWrites;
uint8_t Address;
uint8_t localBuffer[4]; /* max */
uint16_t Temp16;
LOG_FUNCTION_START("");
Index = 0;
while ((*(pTuningSettingBuffer + Index) != 0) &&
(Status == VL_ERROR_NONE)) {
NumberOfWrites = *(pTuningSettingBuffer + Index);
Index++;
if (NumberOfWrites == 0xFF) {
/* internal parameters */
SelectParam = *(pTuningSettingBuffer + Index);
Index++;
switch (SelectParam) {
case 0: /* uint16_t SigmaEstRefArray -> 2 bytes */
msb = *(pTuningSettingBuffer + Index);
Index++;
lsb = *(pTuningSettingBuffer + Index);
Index++;
Temp16 = VL_MAKEUINT16(lsb, msb);
PALDevDataSet(Dev, SigmaEstRefArray, Temp16);
break;
case 1: /* uint16_t SigmaEstEffPulseWidth -> 2 bytes */
msb = *(pTuningSettingBuffer + Index);
Index++;
lsb = *(pTuningSettingBuffer + Index);
Index++;
Temp16 = VL_MAKEUINT16(lsb, msb);
PALDevDataSet(Dev, SigmaEstEffPulseWidth,
Temp16);
break;
case 2: /* uint16_t SigmaEstEffAmbWidth -> 2 bytes */
msb = *(pTuningSettingBuffer + Index);
Index++;
lsb = *(pTuningSettingBuffer + Index);
Index++;
Temp16 = VL_MAKEUINT16(lsb, msb);
PALDevDataSet(Dev, SigmaEstEffAmbWidth, Temp16);
break;
case 3: /* uint16_t targetRefRate -> 2 bytes */
msb = *(pTuningSettingBuffer + Index);
Index++;
lsb = *(pTuningSettingBuffer + Index);
Index++;
Temp16 = VL_MAKEUINT16(lsb, msb);
PALDevDataSet(Dev, targetRefRate, Temp16);
break;
default: /* invalid parameter */
Status = VL_ERROR_INVALID_PARAMS;
}
} else if (NumberOfWrites <= 4) {
Address = *(pTuningSettingBuffer + Index);
Index++;
for (i = 0; i < NumberOfWrites; i++) {
localBuffer[i] = *(pTuningSettingBuffer +
Index);
Index++;
}
Status = VL_WriteMulti(Dev, Address, localBuffer,
NumberOfWrites);
} else {
Status = VL_ERROR_INVALID_PARAMS;
}
}
LOG_FUNCTION_END(Status);
return Status;
}
int8_t VL_get_total_xtalk_rate(struct vl_data *Dev,
struct VL_RangingMeasurementData_t *pRangingMeasurementData,
unsigned int *ptotal_xtalk_rate_mcps)
{
int8_t Status = VL_ERROR_NONE;
uint8_t xtalkCompEnable;
unsigned int totalXtalkMegaCps;
unsigned int xtalkPerSpadMegaCps;
*ptotal_xtalk_rate_mcps = 0;
Status = VL_GetXTalkCompensationEnable(Dev, &xtalkCompEnable);
if (Status == VL_ERROR_NONE) {
if (xtalkCompEnable) {
VL_GETPARAMETERFIELD(
Dev,
XTalkCompensationRateMegaCps,
xtalkPerSpadMegaCps);
/* FixPoint1616 * FixPoint 8:8 = FixPoint0824 */
totalXtalkMegaCps =
pRangingMeasurementData->EffectiveSpadRtnCount *
xtalkPerSpadMegaCps;
/* FixPoint0824 >> 8 = FixPoint1616 */
*ptotal_xtalk_rate_mcps =
(totalXtalkMegaCps + 0x80) >> 8;
}
}
return Status;
}
int8_t VL_get_total_signal_rate(struct vl_data *Dev,
struct VL_RangingMeasurementData_t *pRangingMeasurementData,
unsigned int *ptotal_signal_rate_mcps)
{
int8_t Status = VL_ERROR_NONE;
unsigned int totalXtalkMegaCps;
LOG_FUNCTION_START("");
*ptotal_signal_rate_mcps =
pRangingMeasurementData->SignalRateRtnMegaCps;
Status = VL_get_total_xtalk_rate(
Dev, pRangingMeasurementData, &totalXtalkMegaCps);
if (Status == VL_ERROR_NONE)
*ptotal_signal_rate_mcps += totalXtalkMegaCps;
return Status;
}
int8_t VL_calc_dmax(
struct vl_data *Dev,
unsigned int totalSignalRate_mcps,
unsigned int totalCorrSignalRate_mcps,
unsigned int pwMult,
uint32_t sigmaEstimateP1,
unsigned int sigmaEstimateP2,
uint32_t peakVcselDuration_us,
uint32_t *pdmax_mm)
{
const uint32_t cSigmaLimit = 18;
const unsigned int cSignalLimit = 0x4000; /* 0.25 */
const unsigned int cSigmaEstRef = 0x00000042; /* 0.001 */
const uint32_t cAmbEffWidthSigmaEst_ns = 6;
const uint32_t cAmbEffWidthDMax_ns = 7;
uint32_t dmaxCalRange_mm;
unsigned int dmaxCalSignalRateRtn_mcps;
unsigned int minSignalNeeded;
unsigned int minSignalNeeded_p1;
unsigned int minSignalNeeded_p2;
unsigned int minSignalNeeded_p3;
unsigned int minSignalNeeded_p4;
unsigned int sigmaLimitTmp;
unsigned int sigmaEstSqTmp;
unsigned int signalLimitTmp;
unsigned int SignalAt0mm;
unsigned int dmaxDark;
unsigned int dmaxAmbient;
unsigned int dmaxDarkTmp;
unsigned int sigmaEstP2Tmp;
uint32_t signalRateTemp_mcps;
int8_t Status = VL_ERROR_NONE;
LOG_FUNCTION_START("");
dmaxCalRange_mm =
PALDevDataGet(Dev, DmaxCalRangeMilliMeter);
dmaxCalSignalRateRtn_mcps =
PALDevDataGet(Dev, DmaxCalSignalRateRtnMegaCps);
/* uint32 * FixPoint1616 = FixPoint1616 */
SignalAt0mm = dmaxCalRange_mm * dmaxCalSignalRateRtn_mcps;
/* FixPoint1616 >> 8 = FixPoint2408 */
SignalAt0mm = (SignalAt0mm + 0x80) >> 8;
SignalAt0mm *= dmaxCalRange_mm;
minSignalNeeded_p1 = 0;
if (totalCorrSignalRate_mcps > 0) {
/* Shift by 10 bits to increase resolution prior to the */
/* division */
signalRateTemp_mcps = totalSignalRate_mcps << 10;
/* Add rounding value prior to division */
minSignalNeeded_p1 = signalRateTemp_mcps +
(totalCorrSignalRate_mcps/2);
/* FixPoint0626/FixPoint1616 = FixPoint2210 */
minSignalNeeded_p1 /= totalCorrSignalRate_mcps;
/* Apply a factored version of the speed of light. */
/* Correction to be applied at the end */
minSignalNeeded_p1 *= 3;
/* FixPoint2210 * FixPoint2210 = FixPoint1220 */
minSignalNeeded_p1 *= minSignalNeeded_p1;
/* FixPoint1220 >> 16 = FixPoint2804 */
minSignalNeeded_p1 = (minSignalNeeded_p1 + 0x8000) >> 16;
}
minSignalNeeded_p2 = pwMult * sigmaEstimateP1;
/* FixPoint1616 >> 16 = uint32 */
minSignalNeeded_p2 = (minSignalNeeded_p2 + 0x8000) >> 16;
/* uint32 * uint32 = uint32 */
minSignalNeeded_p2 *= minSignalNeeded_p2;
/* Check sigmaEstimateP2
* If this value is too high there is not enough signal rate
* to calculate dmax value so set a suitable value to ensure
* a very small dmax.
*/
sigmaEstP2Tmp = (sigmaEstimateP2 + 0x8000) >> 16;
sigmaEstP2Tmp = (sigmaEstP2Tmp + cAmbEffWidthSigmaEst_ns/2)/
cAmbEffWidthSigmaEst_ns;
sigmaEstP2Tmp *= cAmbEffWidthDMax_ns;
if (sigmaEstP2Tmp > 0xffff) {
minSignalNeeded_p3 = 0xfff00000;
} else {
/* DMAX uses a different ambient width from sigma, so apply
* correction.
* Perform division before multiplication to prevent overflow.
*/
sigmaEstimateP2 = (sigmaEstimateP2 + cAmbEffWidthSigmaEst_ns/2)/
cAmbEffWidthSigmaEst_ns;
sigmaEstimateP2 *= cAmbEffWidthDMax_ns;
/* FixPoint1616 >> 16 = uint32 */
minSignalNeeded_p3 = (sigmaEstimateP2 + 0x8000) >> 16;
minSignalNeeded_p3 *= minSignalNeeded_p3;
}
/* FixPoint1814 / uint32 = FixPoint1814 */
sigmaLimitTmp = ((cSigmaLimit << 14) + 500) / 1000;
/* FixPoint1814 * FixPoint1814 = FixPoint3628 := FixPoint0428 */
sigmaLimitTmp *= sigmaLimitTmp;
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
sigmaEstSqTmp = cSigmaEstRef * cSigmaEstRef;
/* FixPoint3232 >> 4 = FixPoint0428 */
sigmaEstSqTmp = (sigmaEstSqTmp + 0x08) >> 4;
/* FixPoint0428 - FixPoint0428 = FixPoint0428 */
sigmaLimitTmp -= sigmaEstSqTmp;
/* uint32_t * FixPoint0428 = FixPoint0428 */
minSignalNeeded_p4 = 4 * 12 * sigmaLimitTmp;
/* FixPoint0428 >> 14 = FixPoint1814 */
minSignalNeeded_p4 = (minSignalNeeded_p4 + 0x2000) >> 14;
/* uint32 + uint32 = uint32 */
minSignalNeeded = (minSignalNeeded_p2 + minSignalNeeded_p3);
/* uint32 / uint32 = uint32 */
minSignalNeeded += (peakVcselDuration_us/2);
minSignalNeeded /= peakVcselDuration_us;
/* uint32 << 14 = FixPoint1814 */
minSignalNeeded <<= 14;
/* FixPoint1814 / FixPoint1814 = uint32 */
minSignalNeeded += (minSignalNeeded_p4/2);
minSignalNeeded /= minSignalNeeded_p4;
/* FixPoint3200 * FixPoint2804 := FixPoint2804*/
minSignalNeeded *= minSignalNeeded_p1;
/* Apply correction by dividing by 1000000.
* This assumes 10E16 on the numerator of the equation
* and 10E-22 on the denominator.
* We do this because 32bit fix point calculation can't
* handle the larger and smaller elements of this equation,
* i.e. speed of light and pulse widths.
*/
minSignalNeeded = (minSignalNeeded + 500) / 1000;
minSignalNeeded <<= 4;
minSignalNeeded = (minSignalNeeded + 500) / 1000;
/* FixPoint1616 >> 8 = FixPoint2408 */
signalLimitTmp = (cSignalLimit + 0x80) >> 8;
/* FixPoint2408/FixPoint2408 = uint32 */
if (signalLimitTmp != 0)
dmaxDarkTmp = (SignalAt0mm + (signalLimitTmp / 2))
/ signalLimitTmp;
else
dmaxDarkTmp = 0;
dmaxDark = VL_isqrt(dmaxDarkTmp);
/* FixPoint2408/FixPoint2408 = uint32 */
if (minSignalNeeded != 0)
dmaxAmbient = (SignalAt0mm + minSignalNeeded/2)
/ minSignalNeeded;
else
dmaxAmbient = 0;
dmaxAmbient = VL_isqrt(dmaxAmbient);
*pdmax_mm = dmaxDark;
if (dmaxDark > dmaxAmbient)
*pdmax_mm = dmaxAmbient;
LOG_FUNCTION_END(Status);
return Status;
}
int8_t VL_calc_sigma_estimate(struct vl_data *Dev,
struct VL_RangingMeasurementData_t *pRangingMeasurementData,
unsigned int *pSigmaEstimate,
uint32_t *pDmax_mm)
{
/* Expressed in 100ths of a ns, i.e. centi-ns */
const uint32_t cPulseEffectiveWidth_centi_ns = 800;
/* Expressed in 100ths of a ns, i.e. centi-ns */
const uint32_t cAmbientEffectiveWidth_centi_ns = 600;
/* 25ms */
const unsigned int cDfltFinalRangeIntegrationTimeMilliSecs =
0x00190000;
const uint32_t cVcselPulseWidth_ps = 4700; /* pico secs */
const unsigned int cSigmaEstMax = 0x028F87AE;
const unsigned int cSigmaEstRtnMax = 0xF000;
const unsigned int cAmbToSignalRatioMax = 0xF0000000/
cAmbientEffectiveWidth_centi_ns;
/* Time Of Flight per mm (6.6 pico secs) */
const unsigned int cTOF_per_mm_ps = 0x0006999A;
const uint32_t c16BitRoundingParam = 0x00008000;
const unsigned int cMaxXTalk_kcps = 0x00320000;
const uint32_t cPllPeriod_ps = 1655;
uint32_t vcselTotalEventsRtn;
uint32_t finalRangeTimeoutMicroSecs;
uint32_t preRangeTimeoutMicroSecs;
uint32_t finalRangeIntegrationTimeMilliSecs;
unsigned int sigmaEstimateP1;
unsigned int sigmaEstimateP2;
unsigned int sigmaEstimateP3;
unsigned int deltaT_ps;
unsigned int pwMult;
unsigned int sigmaEstRtn;
unsigned int sigmaEstimate;
unsigned int xTalkCorrection;
unsigned int ambientRate_kcps;
unsigned int peakSignalRate_kcps;
unsigned int xTalkCompRate_mcps;
uint32_t xTalkCompRate_kcps;
int8_t Status = VL_ERROR_NONE;
unsigned int diff1_mcps;
unsigned int diff2_mcps;
unsigned int sqr1;
unsigned int sqr2;
unsigned int sqrSum;
unsigned int sqrtResult_centi_ns;
unsigned int sqrtResult;
unsigned int totalSignalRate_mcps;
unsigned int correctedSignalRate_mcps;
unsigned int sigmaEstRef;
uint32_t vcselWidth;
uint32_t finalRangeMacroPCLKS;
uint32_t preRangeMacroPCLKS;
uint32_t peakVcselDuration_us;
uint8_t finalRangeVcselPCLKS;
uint8_t preRangeVcselPCLKS;
/*! \addtogroup calc_sigma_estimate
* @{
*
* Estimates the range sigma
*/
LOG_FUNCTION_START("");
VL_GETPARAMETERFIELD(Dev, XTalkCompensationRateMegaCps,
xTalkCompRate_mcps);
/*
* We work in kcps rather than mcps as this helps keep within the
* confines of the 32 Fix1616 type.
*/
ambientRate_kcps =
(pRangingMeasurementData->AmbientRateRtnMegaCps * 1000) >> 16;
correctedSignalRate_mcps =
pRangingMeasurementData->SignalRateRtnMegaCps;
Status = VL_get_total_signal_rate(
Dev, pRangingMeasurementData, &totalSignalRate_mcps);
Status = VL_get_total_xtalk_rate(
Dev, pRangingMeasurementData, &xTalkCompRate_mcps);
/* Signal rate measurement provided by device is the
* peak signal rate, not average.
*/
peakSignalRate_kcps = (totalSignalRate_mcps * 1000);
peakSignalRate_kcps = (peakSignalRate_kcps + 0x8000) >> 16;
xTalkCompRate_kcps = xTalkCompRate_mcps * 1000;
if (xTalkCompRate_kcps > cMaxXTalk_kcps)
xTalkCompRate_kcps = cMaxXTalk_kcps;
if (Status == VL_ERROR_NONE) {
/* Calculate final range macro periods */
finalRangeTimeoutMicroSecs = VL_GETDEVICESPECIFICPARAMETER(
Dev, FinalRangeTimeoutMicroSecs);
finalRangeVcselPCLKS = VL_GETDEVICESPECIFICPARAMETER(
Dev, FinalRangeVcselPulsePeriod);
finalRangeMacroPCLKS = VL_calc_timeout_mclks(
Dev, finalRangeTimeoutMicroSecs, finalRangeVcselPCLKS);
/* Calculate pre-range macro periods */
preRangeTimeoutMicroSecs = VL_GETDEVICESPECIFICPARAMETER(
Dev, PreRangeTimeoutMicroSecs);
preRangeVcselPCLKS = VL_GETDEVICESPECIFICPARAMETER(
Dev, PreRangeVcselPulsePeriod);
preRangeMacroPCLKS = VL_calc_timeout_mclks(
Dev, preRangeTimeoutMicroSecs, preRangeVcselPCLKS);
vcselWidth = 3;
if (finalRangeVcselPCLKS == 8)
vcselWidth = 2;
peakVcselDuration_us = vcselWidth * 2048 *
(preRangeMacroPCLKS + finalRangeMacroPCLKS);
peakVcselDuration_us = (peakVcselDuration_us + 500)/1000;
peakVcselDuration_us *= cPllPeriod_ps;
peakVcselDuration_us = (peakVcselDuration_us + 500)/1000;
/* Fix1616 >> 8 = Fix2408 */
totalSignalRate_mcps = (totalSignalRate_mcps + 0x80) >> 8;
/* Fix2408 * uint32 = Fix2408 */
vcselTotalEventsRtn = totalSignalRate_mcps *
peakVcselDuration_us;
/* Fix2408 >> 8 = uint32 */
vcselTotalEventsRtn = (vcselTotalEventsRtn + 0x80) >> 8;
/* Fix2408 << 8 = Fix1616 = */
totalSignalRate_mcps <<= 8;
}
if (Status != VL_ERROR_NONE) {
LOG_FUNCTION_END(Status);
return Status;
}
if (peakSignalRate_kcps == 0) {
*pSigmaEstimate = cSigmaEstMax;
PALDevDataSet(Dev, SigmaEstimate, cSigmaEstMax);
*pDmax_mm = 0;
} else {
if (vcselTotalEventsRtn < 1)
vcselTotalEventsRtn = 1;
sigmaEstimateP1 = cPulseEffectiveWidth_centi_ns;
/* ((FixPoint1616 << 16)* uint32)/uint32 = FixPoint1616 */
sigmaEstimateP2 = (ambientRate_kcps << 16)/peakSignalRate_kcps;
if (sigmaEstimateP2 > cAmbToSignalRatioMax) {
/* Clip to prevent overflow. Will ensure safe */
/* max result. */
sigmaEstimateP2 = cAmbToSignalRatioMax;
}
sigmaEstimateP2 *= cAmbientEffectiveWidth_centi_ns;
sigmaEstimateP3 = 2 * VL_isqrt(vcselTotalEventsRtn * 12);
/* uint32 * FixPoint1616 = FixPoint1616 */
deltaT_ps = pRangingMeasurementData->RangeMilliMeter *
cTOF_per_mm_ps;
/* vcselRate - xtalkCompRate */
/* (uint32 << 16) - FixPoint1616 = FixPoint1616. */
/* Divide result by 1000 to convert to mcps. */
/* 500 is added to ensure rounding when integer division */
/* truncates. */
diff1_mcps = (((peakSignalRate_kcps << 16) -
2 * xTalkCompRate_kcps) + 500)/1000;
/* vcselRate + xtalkCompRate */
diff2_mcps = ((peakSignalRate_kcps << 16) + 500)/1000;
/* Shift by 8 bits to increase resolution prior to the */
/* division */
diff1_mcps <<= 8;
/* FixPoint0824/FixPoint1616 = FixPoint2408 */
xTalkCorrection = abs(diff1_mcps/diff2_mcps);
/* FixPoint2408 << 8 = FixPoint1616 */
xTalkCorrection <<= 8;
if (pRangingMeasurementData->RangeStatus != 0) {
pwMult = 1 << 16;
} else {
/* FixPoint1616/uint32 = FixPoint1616 *i */
/* smaller than 1.0f */
pwMult = deltaT_ps/cVcselPulseWidth_ps;
/* FixPoint1616 * FixPoint1616 = FixPoint3232, however both */
/* values are small enough such that32 bits will not be */
/* exceeded. */
pwMult *= ((1 << 16) - xTalkCorrection);
/* (FixPoint3232 >> 16) = FixPoint1616 */
pwMult = (pwMult + c16BitRoundingParam) >> 16;
/* FixPoint1616 + FixPoint1616 = FixPoint1616 */
pwMult += (1 << 16);
/* At this point the value will be 1.xx, */
/* therefore if we square */
/* the value this will exceed 32 bits. */
/* To address this perform */
/* a single shift to the right before the multiplication. */
pwMult >>= 1;
/* FixPoint1715 * FixPoint1715 = FixPoint3430 */
pwMult = pwMult * pwMult;
/* (FixPoint3430 >> 14) = Fix1616 */
pwMult >>= 14;
}
/* FixPoint1616 * uint32 = FixPoint1616 */
sqr1 = pwMult * sigmaEstimateP1;
/* (FixPoint1616 >> 16) = FixPoint3200 */
sqr1 = (sqr1 + 0x8000) >> 16;
/* FixPoint3200 * FixPoint3200 = FixPoint6400 */
sqr1 *= sqr1;
sqr2 = sigmaEstimateP2;
/* (FixPoint1616 >> 16) = FixPoint3200 */
sqr2 = (sqr2 + 0x8000) >> 16;
/* FixPoint3200 * FixPoint3200 = FixPoint6400 */
sqr2 *= sqr2;
/* FixPoint64000 + FixPoint6400 = FixPoint6400 */
sqrSum = sqr1 + sqr2;
/* SQRT(FixPoin6400) = FixPoint3200 */
sqrtResult_centi_ns = VL_isqrt(sqrSum);
/* (FixPoint3200 << 16) = FixPoint1616 */
sqrtResult_centi_ns <<= 16;
/*
* Note that the Speed Of Light is expressed in um per 1E-10
* seconds (2997) Therefore to get mm/ns we have to divide by
* 10000
*/
sigmaEstRtn = (((sqrtResult_centi_ns+50)/100) /
sigmaEstimateP3);
sigmaEstRtn *= VL_SPEED_OF_LIGHT_IN_AIR;
/* Add 5000 before dividing by 10000 to ensure rounding. */
sigmaEstRtn += 5000;
sigmaEstRtn /= 10000;
if (sigmaEstRtn > cSigmaEstRtnMax) {
/* Clip to prevent overflow. Will ensure safe */
/* max result. */
sigmaEstRtn = cSigmaEstRtnMax;
}
finalRangeIntegrationTimeMilliSecs =
(finalRangeTimeoutMicroSecs +
preRangeTimeoutMicroSecs + 500)/1000;
/* sigmaEstRef = 1mm * 25ms/final range integration time */
/* (inc pre-range) sqrt(FixPoint1616/int) = FixPoint2408) */
sigmaEstRef =
VL_isqrt((cDfltFinalRangeIntegrationTimeMilliSecs +
finalRangeIntegrationTimeMilliSecs/2)/
finalRangeIntegrationTimeMilliSecs);
/* FixPoint2408 << 8 = FixPoint1616 */
sigmaEstRef <<= 8;
sigmaEstRef = (sigmaEstRef + 500)/1000;
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
sqr1 = sigmaEstRtn * sigmaEstRtn;
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
sqr2 = sigmaEstRef * sigmaEstRef;
/* sqrt(FixPoint3232) = FixPoint1616 */
sqrtResult = VL_isqrt((sqr1 + sqr2));
/* Note that the Shift by 4 bits increases */
/*resolution prior to */
/* the sqrt, therefore the result must be */
/* shifted by 2 bits to */
/* the right to revert back to the FixPoint1616 format. */
sigmaEstimate = 1000 * sqrtResult;
if ((peakSignalRate_kcps < 1) || (vcselTotalEventsRtn < 1) ||
(sigmaEstimate > cSigmaEstMax)) {
sigmaEstimate = cSigmaEstMax;
}
*pSigmaEstimate = (uint32_t)(sigmaEstimate);
PALDevDataSet(Dev, SigmaEstimate, *pSigmaEstimate);
Status = VL_calc_dmax(
Dev,
totalSignalRate_mcps,
correctedSignalRate_mcps,
pwMult,
sigmaEstimateP1,
sigmaEstimateP2,
peakVcselDuration_us,
pDmax_mm);
}
LOG_FUNCTION_END(Status);
return Status;
}
int8_t VL_get_pal_range_status(struct vl_data *Dev,
uint8_t DeviceRangeStatus,
unsigned int SignalRate,
uint16_t EffectiveSpadRtnCount,
struct VL_RangingMeasurementData_t *pRangingMeasurementData,
uint8_t *pPalRangeStatus)
{
int8_t Status = VL_ERROR_NONE;
uint8_t NoneFlag;
uint8_t SigmaLimitflag = 0;
uint8_t SignalRefClipflag = 0;
uint8_t RangeIgnoreThresholdflag = 0;
uint8_t SigmaLimitCheckEnable = 0;
uint8_t SignalRateFinalRangeLimitCheckEnable = 0;
uint8_t SignalRefClipLimitCheckEnable = 0;
uint8_t RangeIgnoreThresholdLimitCheckEnable = 0;
unsigned int SigmaEstimate;
unsigned int SigmaLimitValue;
unsigned int SignalRefClipValue;
unsigned int RangeIgnoreThresholdValue;
unsigned int SignalRatePerSpad;
uint8_t DeviceRangeStatusInternal = 0;
uint16_t tmpWord = 0;
uint8_t Temp8;
uint32_t Dmax_mm = 0;
unsigned int LastSignalRefMcps;
LOG_FUNCTION_START("");
/*
* VL53L0X has a good ranging when the value of the
* DeviceRangeStatus = 11. This function will replace the value 0 with
* the value 11 in the DeviceRangeStatus.
* In addition, the SigmaEstimator is not included in the VL53L0X
* DeviceRangeStatus, this will be added in the PalRangeStatus.
*/
DeviceRangeStatusInternal = ((DeviceRangeStatus & 0x78) >> 3);
if (DeviceRangeStatusInternal == 0 ||
DeviceRangeStatusInternal == 5 ||
DeviceRangeStatusInternal == 7 ||
DeviceRangeStatusInternal == 12 ||
DeviceRangeStatusInternal == 13 ||
DeviceRangeStatusInternal == 14 ||
DeviceRangeStatusInternal == 15
) {
NoneFlag = 1;
} else {
NoneFlag = 0;
}
/*
* Check if Sigma limit is enabled, if yes then do comparison with limit
* value and put the result back into pPalRangeStatus.
*/
if (Status == VL_ERROR_NONE)
Status = VL_GetLimitCheckEnable(Dev,
VL_CHECKENABLE_SIGMA_FINAL_RANGE,
&SigmaLimitCheckEnable);
if ((SigmaLimitCheckEnable != 0) && (Status == VL_ERROR_NONE)) {
/* compute the Sigma and check with limit */
Status = VL_calc_sigma_estimate(
Dev,
pRangingMeasurementData,
&SigmaEstimate,
&Dmax_mm);
if (Status == VL_ERROR_NONE)
pRangingMeasurementData->RangeDMaxMilliMeter = Dmax_mm;
if (Status == VL_ERROR_NONE) {
Status = VL_GetLimitCheckValue(Dev,
VL_CHECKENABLE_SIGMA_FINAL_RANGE,
&SigmaLimitValue);
if ((SigmaLimitValue > 0) &&
(SigmaEstimate > SigmaLimitValue))
/* Limit Fail */
SigmaLimitflag = 1;
}
}
/* Check if Signal ref clip limit is enabled, */
/* if yes then do comparison */
/* with limit value and put the result back into pPalRangeStatus. */
if (Status == VL_ERROR_NONE)
Status = VL_GetLimitCheckEnable(Dev,
VL_CHECKENABLE_SIGNAL_REF_CLIP,
&SignalRefClipLimitCheckEnable);
if ((SignalRefClipLimitCheckEnable != 0) &&
(Status == VL_ERROR_NONE)) {
Status = VL_GetLimitCheckValue(Dev,
VL_CHECKENABLE_SIGNAL_REF_CLIP,
&SignalRefClipValue);
/* Read LastSignalRefMcps from device */
if (Status == VL_ERROR_NONE)
Status = VL_WrByte(Dev, 0xFF, 0x01);
if (Status == VL_ERROR_NONE)
Status = VL_RdWord(Dev,
VL_REG_RESULT_PEAK_SIGNAL_RATE_REF,
&tmpWord);
if (Status == VL_ERROR_NONE)
Status = VL_WrByte(Dev, 0xFF, 0x00);
LastSignalRefMcps = VL_FIXPOINT97TOFIXPOINT1616(tmpWord);
PALDevDataSet(Dev, LastSignalRefMcps, LastSignalRefMcps);
if ((SignalRefClipValue > 0) &&
(LastSignalRefMcps > SignalRefClipValue)) {
/* Limit Fail */
SignalRefClipflag = 1;
}
}
/*
* Check if Signal ref clip limit is enabled, if yes then do comparison
* with limit value and put the result back into pPalRangeStatus.
* EffectiveSpadRtnCount has a format 8.8
* If (Return signal rate < (1.5 x Xtalk x number of Spads)) : FAIL
*/
if (Status == VL_ERROR_NONE)
Status = VL_GetLimitCheckEnable(Dev,
VL_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
&RangeIgnoreThresholdLimitCheckEnable);
if ((RangeIgnoreThresholdLimitCheckEnable != 0) &&
(Status == VL_ERROR_NONE)) {
/* Compute the signal rate per spad */
if (EffectiveSpadRtnCount == 0) {
SignalRatePerSpad = 0;
} else {
SignalRatePerSpad = (unsigned int)((256 * SignalRate)
/ EffectiveSpadRtnCount);
}
Status = VL_GetLimitCheckValue(Dev,
VL_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
&RangeIgnoreThresholdValue);
if ((RangeIgnoreThresholdValue > 0) &&
(SignalRatePerSpad < RangeIgnoreThresholdValue)) {
/* Limit Fail add 2^6 to range status */
RangeIgnoreThresholdflag = 1;
}
}
if (Status == VL_ERROR_NONE) {
if (NoneFlag == 1) {
*pPalRangeStatus = 255; /* NONE */
} else if (DeviceRangeStatusInternal == 1 ||
DeviceRangeStatusInternal == 2 ||
DeviceRangeStatusInternal == 3) {
*pPalRangeStatus = 5; /* HW fail */
} else if (DeviceRangeStatusInternal == 6 ||
DeviceRangeStatusInternal == 9) {
*pPalRangeStatus = 4; /* Phase fail */
} else if (DeviceRangeStatusInternal == 8 ||
DeviceRangeStatusInternal == 10 ||
SignalRefClipflag == 1) {
*pPalRangeStatus = 3; /* Min range */
} else if (DeviceRangeStatusInternal == 4 ||
RangeIgnoreThresholdflag == 1) {
*pPalRangeStatus = 2; /* Signal Fail */
} else if (SigmaLimitflag == 1) {
*pPalRangeStatus = 1; /* Sigma Fail */
} else {
*pPalRangeStatus = 0; /* Range Valid */
}
}
/* DMAX only relevant during range error */
if (*pPalRangeStatus == 0)
pRangingMeasurementData->RangeDMaxMilliMeter = 0;
/* fill the Limit Check Status */
Status = VL_GetLimitCheckEnable(Dev,
VL_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
&SignalRateFinalRangeLimitCheckEnable);
if (Status == VL_ERROR_NONE) {
if ((SigmaLimitCheckEnable == 0) || (SigmaLimitflag == 1))
Temp8 = 1;
else
Temp8 = 0;
VL_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
VL_CHECKENABLE_SIGMA_FINAL_RANGE, Temp8);
if ((DeviceRangeStatusInternal == 4) ||
(SignalRateFinalRangeLimitCheckEnable == 0))
Temp8 = 1;
else
Temp8 = 0;
VL_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
VL_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
Temp8);
if ((SignalRefClipLimitCheckEnable == 0) ||
(SignalRefClipflag == 1))
Temp8 = 1;
else
Temp8 = 0;
VL_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
VL_CHECKENABLE_SIGNAL_REF_CLIP, Temp8);
if ((RangeIgnoreThresholdLimitCheckEnable == 0) ||
(RangeIgnoreThresholdflag == 1))
Temp8 = 1;
else
Temp8 = 0;
VL_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
VL_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
Temp8);
}
LOG_FUNCTION_END(Status);
return Status;
}