| #ifdef __KERNEL__ |
| #ifndef _ASM_POWERPC_IRQ_H |
| #define _ASM_POWERPC_IRQ_H |
| |
| /* |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/threads.h> |
| #include <linux/list.h> |
| #include <linux/radix-tree.h> |
| |
| #include <asm/types.h> |
| #include <asm/atomic.h> |
| |
| |
| #define get_irq_desc(irq) (&irq_desc[(irq)]) |
| |
| /* Define a way to iterate across irqs. */ |
| #define for_each_irq(i) \ |
| for ((i) = 0; (i) < NR_IRQS; ++(i)) |
| |
| extern atomic_t ppc_n_lost_interrupts; |
| |
| #ifdef CONFIG_PPC_MERGE |
| |
| /* This number is used when no interrupt has been assigned */ |
| #define NO_IRQ (0) |
| |
| /* This is a special irq number to return from get_irq() to tell that |
| * no interrupt happened _and_ ignore it (don't count it as bad). Some |
| * platforms like iSeries rely on that. |
| */ |
| #define NO_IRQ_IGNORE ((unsigned int)-1) |
| |
| /* Total number of virq in the platform (make it a CONFIG_* option ? */ |
| #define NR_IRQS 512 |
| |
| /* Number of irqs reserved for the legacy controller */ |
| #define NUM_ISA_INTERRUPTS 16 |
| |
| /* This type is the placeholder for a hardware interrupt number. It has to |
| * be big enough to enclose whatever representation is used by a given |
| * platform. |
| */ |
| typedef unsigned long irq_hw_number_t; |
| |
| /* Interrupt controller "host" data structure. This could be defined as a |
| * irq domain controller. That is, it handles the mapping between hardware |
| * and virtual interrupt numbers for a given interrupt domain. The host |
| * structure is generally created by the PIC code for a given PIC instance |
| * (though a host can cover more than one PIC if they have a flat number |
| * model). It's the host callbacks that are responsible for setting the |
| * irq_chip on a given irq_desc after it's been mapped. |
| * |
| * The host code and data structures are fairly agnostic to the fact that |
| * we use an open firmware device-tree. We do have references to struct |
| * device_node in two places: in irq_find_host() to find the host matching |
| * a given interrupt controller node, and of course as an argument to its |
| * counterpart host->ops->match() callback. However, those are treated as |
| * generic pointers by the core and the fact that it's actually a device-node |
| * pointer is purely a convention between callers and implementation. This |
| * code could thus be used on other architectures by replacing those two |
| * by some sort of arch-specific void * "token" used to identify interrupt |
| * controllers. |
| */ |
| struct irq_host; |
| struct radix_tree_root; |
| |
| /* Functions below are provided by the host and called whenever a new mapping |
| * is created or an old mapping is disposed. The host can then proceed to |
| * whatever internal data structures management is required. It also needs |
| * to setup the irq_desc when returning from map(). |
| */ |
| struct irq_host_ops { |
| /* Match an interrupt controller device node to a host, returns |
| * 1 on a match |
| */ |
| int (*match)(struct irq_host *h, struct device_node *node); |
| |
| /* Create or update a mapping between a virtual irq number and a hw |
| * irq number. This is called only once for a given mapping. |
| */ |
| int (*map)(struct irq_host *h, unsigned int virq, irq_hw_number_t hw); |
| |
| /* Dispose of such a mapping */ |
| void (*unmap)(struct irq_host *h, unsigned int virq); |
| |
| /* Update of such a mapping */ |
| void (*remap)(struct irq_host *h, unsigned int virq, irq_hw_number_t hw); |
| |
| /* Translate device-tree interrupt specifier from raw format coming |
| * from the firmware to a irq_hw_number_t (interrupt line number) and |
| * type (sense) that can be passed to set_irq_type(). In the absence |
| * of this callback, irq_create_of_mapping() and irq_of_parse_and_map() |
| * will return the hw number in the first cell and IRQ_TYPE_NONE for |
| * the type (which amount to keeping whatever default value the |
| * interrupt controller has for that line) |
| */ |
| int (*xlate)(struct irq_host *h, struct device_node *ctrler, |
| u32 *intspec, unsigned int intsize, |
| irq_hw_number_t *out_hwirq, unsigned int *out_type); |
| }; |
| |
| struct irq_host { |
| struct list_head link; |
| |
| /* type of reverse mapping technique */ |
| unsigned int revmap_type; |
| #define IRQ_HOST_MAP_LEGACY 0 /* legacy 8259, gets irqs 1..15 */ |
| #define IRQ_HOST_MAP_NOMAP 1 /* no fast reverse mapping */ |
| #define IRQ_HOST_MAP_LINEAR 2 /* linear map of interrupts */ |
| #define IRQ_HOST_MAP_TREE 3 /* radix tree */ |
| union { |
| struct { |
| unsigned int size; |
| unsigned int *revmap; |
| } linear; |
| struct radix_tree_root tree; |
| } revmap_data; |
| struct irq_host_ops *ops; |
| void *host_data; |
| irq_hw_number_t inval_irq; |
| |
| /* Optional device node pointer */ |
| struct device_node *of_node; |
| }; |
| |
| /* The main irq map itself is an array of NR_IRQ entries containing the |
| * associate host and irq number. An entry with a host of NULL is free. |
| * An entry can be allocated if it's free, the allocator always then sets |
| * hwirq first to the host's invalid irq number and then fills ops. |
| */ |
| struct irq_map_entry { |
| irq_hw_number_t hwirq; |
| struct irq_host *host; |
| }; |
| |
| extern struct irq_map_entry irq_map[NR_IRQS]; |
| |
| extern irq_hw_number_t virq_to_hw(unsigned int virq); |
| |
| /** |
| * irq_alloc_host - Allocate a new irq_host data structure |
| * @of_node: optional device-tree node of the interrupt controller |
| * @revmap_type: type of reverse mapping to use |
| * @revmap_arg: for IRQ_HOST_MAP_LINEAR linear only: size of the map |
| * @ops: map/unmap host callbacks |
| * @inval_irq: provide a hw number in that host space that is always invalid |
| * |
| * Allocates and initialize and irq_host structure. Note that in the case of |
| * IRQ_HOST_MAP_LEGACY, the map() callback will be called before this returns |
| * for all legacy interrupts except 0 (which is always the invalid irq for |
| * a legacy controller). For a IRQ_HOST_MAP_LINEAR, the map is allocated by |
| * this call as well. For a IRQ_HOST_MAP_TREE, the radix tree will be allocated |
| * later during boot automatically (the reverse mapping will use the slow path |
| * until that happens). |
| */ |
| extern struct irq_host *irq_alloc_host(struct device_node *of_node, |
| unsigned int revmap_type, |
| unsigned int revmap_arg, |
| struct irq_host_ops *ops, |
| irq_hw_number_t inval_irq); |
| |
| |
| /** |
| * irq_find_host - Locates a host for a given device node |
| * @node: device-tree node of the interrupt controller |
| */ |
| extern struct irq_host *irq_find_host(struct device_node *node); |
| |
| |
| /** |
| * irq_set_default_host - Set a "default" host |
| * @host: default host pointer |
| * |
| * For convenience, it's possible to set a "default" host that will be used |
| * whenever NULL is passed to irq_create_mapping(). It makes life easier for |
| * platforms that want to manipulate a few hard coded interrupt numbers that |
| * aren't properly represented in the device-tree. |
| */ |
| extern void irq_set_default_host(struct irq_host *host); |
| |
| |
| /** |
| * irq_set_virq_count - Set the maximum number of virt irqs |
| * @count: number of linux virtual irqs, capped with NR_IRQS |
| * |
| * This is mainly for use by platforms like iSeries who want to program |
| * the virtual irq number in the controller to avoid the reverse mapping |
| */ |
| extern void irq_set_virq_count(unsigned int count); |
| |
| |
| /** |
| * irq_create_mapping - Map a hardware interrupt into linux virq space |
| * @host: host owning this hardware interrupt or NULL for default host |
| * @hwirq: hardware irq number in that host space |
| * |
| * Only one mapping per hardware interrupt is permitted. Returns a linux |
| * virq number. |
| * If the sense/trigger is to be specified, set_irq_type() should be called |
| * on the number returned from that call. |
| */ |
| extern unsigned int irq_create_mapping(struct irq_host *host, |
| irq_hw_number_t hwirq); |
| |
| |
| /** |
| * irq_dispose_mapping - Unmap an interrupt |
| * @virq: linux virq number of the interrupt to unmap |
| */ |
| extern void irq_dispose_mapping(unsigned int virq); |
| |
| /** |
| * irq_find_mapping - Find a linux virq from an hw irq number. |
| * @host: host owning this hardware interrupt |
| * @hwirq: hardware irq number in that host space |
| * |
| * This is a slow path, for use by generic code. It's expected that an |
| * irq controller implementation directly calls the appropriate low level |
| * mapping function. |
| */ |
| extern unsigned int irq_find_mapping(struct irq_host *host, |
| irq_hw_number_t hwirq); |
| |
| /** |
| * irq_create_direct_mapping - Allocate a virq for direct mapping |
| * @host: host to allocate the virq for or NULL for default host |
| * |
| * This routine is used for irq controllers which can choose the hardware |
| * interrupt numbers they generate. In such a case it's simplest to use |
| * the linux virq as the hardware interrupt number. |
| */ |
| extern unsigned int irq_create_direct_mapping(struct irq_host *host); |
| |
| /** |
| * irq_radix_revmap - Find a linux virq from a hw irq number. |
| * @host: host owning this hardware interrupt |
| * @hwirq: hardware irq number in that host space |
| * |
| * This is a fast path, for use by irq controller code that uses radix tree |
| * revmaps |
| */ |
| extern unsigned int irq_radix_revmap(struct irq_host *host, |
| irq_hw_number_t hwirq); |
| |
| /** |
| * irq_linear_revmap - Find a linux virq from a hw irq number. |
| * @host: host owning this hardware interrupt |
| * @hwirq: hardware irq number in that host space |
| * |
| * This is a fast path, for use by irq controller code that uses linear |
| * revmaps. It does fallback to the slow path if the revmap doesn't exist |
| * yet and will create the revmap entry with appropriate locking |
| */ |
| |
| extern unsigned int irq_linear_revmap(struct irq_host *host, |
| irq_hw_number_t hwirq); |
| |
| |
| |
| /** |
| * irq_alloc_virt - Allocate virtual irq numbers |
| * @host: host owning these new virtual irqs |
| * @count: number of consecutive numbers to allocate |
| * @hint: pass a hint number, the allocator will try to use a 1:1 mapping |
| * |
| * This is a low level function that is used internally by irq_create_mapping() |
| * and that can be used by some irq controllers implementations for things |
| * like allocating ranges of numbers for MSIs. The revmaps are left untouched. |
| */ |
| extern unsigned int irq_alloc_virt(struct irq_host *host, |
| unsigned int count, |
| unsigned int hint); |
| |
| /** |
| * irq_free_virt - Free virtual irq numbers |
| * @virq: virtual irq number of the first interrupt to free |
| * @count: number of interrupts to free |
| * |
| * This function is the opposite of irq_alloc_virt. It will not clear reverse |
| * maps, this should be done previously by unmap'ing the interrupt. In fact, |
| * all interrupts covered by the range being freed should have been unmapped |
| * prior to calling this. |
| */ |
| extern void irq_free_virt(unsigned int virq, unsigned int count); |
| |
| |
| /* -- OF helpers -- */ |
| |
| /* irq_create_of_mapping - Map a hardware interrupt into linux virq space |
| * @controller: Device node of the interrupt controller |
| * @inspec: Interrupt specifier from the device-tree |
| * @intsize: Size of the interrupt specifier from the device-tree |
| * |
| * This function is identical to irq_create_mapping except that it takes |
| * as input informations straight from the device-tree (typically the results |
| * of the of_irq_map_*() functions. |
| */ |
| extern unsigned int irq_create_of_mapping(struct device_node *controller, |
| u32 *intspec, unsigned int intsize); |
| |
| |
| /* irq_of_parse_and_map - Parse nad Map an interrupt into linux virq space |
| * @device: Device node of the device whose interrupt is to be mapped |
| * @index: Index of the interrupt to map |
| * |
| * This function is a wrapper that chains of_irq_map_one() and |
| * irq_create_of_mapping() to make things easier to callers |
| */ |
| extern unsigned int irq_of_parse_and_map(struct device_node *dev, int index); |
| |
| /* -- End OF helpers -- */ |
| |
| /** |
| * irq_early_init - Init irq remapping subsystem |
| */ |
| extern void irq_early_init(void); |
| |
| static __inline__ int irq_canonicalize(int irq) |
| { |
| return irq; |
| } |
| |
| |
| #else /* CONFIG_PPC_MERGE */ |
| |
| /* This number is used when no interrupt has been assigned */ |
| #define NO_IRQ (-1) |
| #define NO_IRQ_IGNORE (-2) |
| |
| |
| /* |
| * These constants are used for passing information about interrupt |
| * signal polarity and level/edge sensing to the low-level PIC chip |
| * drivers. |
| */ |
| #define IRQ_SENSE_MASK 0x1 |
| #define IRQ_SENSE_LEVEL 0x1 /* interrupt on active level */ |
| #define IRQ_SENSE_EDGE 0x0 /* interrupt triggered by edge */ |
| |
| #define IRQ_POLARITY_MASK 0x2 |
| #define IRQ_POLARITY_POSITIVE 0x2 /* high level or low->high edge */ |
| #define IRQ_POLARITY_NEGATIVE 0x0 /* low level or high->low edge */ |
| |
| |
| #if defined(CONFIG_40x) |
| #include <asm/ibm4xx.h> |
| |
| #ifndef NR_BOARD_IRQS |
| #define NR_BOARD_IRQS 0 |
| #endif |
| |
| #ifndef UIC_WIDTH /* Number of interrupts per device */ |
| #define UIC_WIDTH 32 |
| #endif |
| |
| #ifndef NR_UICS /* number of UIC devices */ |
| #define NR_UICS 1 |
| #endif |
| |
| #if defined (CONFIG_403) |
| /* |
| * The PowerPC 403 cores' Asynchronous Interrupt Controller (AIC) has |
| * 32 possible interrupts, a majority of which are not implemented on |
| * all cores. There are six configurable, external interrupt pins and |
| * there are eight internal interrupts for the on-chip serial port |
| * (SPU), DMA controller, and JTAG controller. |
| * |
| */ |
| |
| #define NR_AIC_IRQS 32 |
| #define NR_IRQS (NR_AIC_IRQS + NR_BOARD_IRQS) |
| |
| #elif !defined (CONFIG_403) |
| |
| /* |
| * The PowerPC 405 cores' Universal Interrupt Controller (UIC) has 32 |
| * possible interrupts as well. There are seven, configurable external |
| * interrupt pins and there are 17 internal interrupts for the on-chip |
| * serial port, DMA controller, on-chip Ethernet controller, PCI, etc. |
| * |
| */ |
| |
| |
| #define NR_UIC_IRQS UIC_WIDTH |
| #define NR_IRQS ((NR_UIC_IRQS * NR_UICS) + NR_BOARD_IRQS) |
| #endif |
| |
| #elif defined(CONFIG_44x) |
| #include <asm/ibm44x.h> |
| |
| #define NR_UIC_IRQS 32 |
| #define NR_IRQS ((NR_UIC_IRQS * NR_UICS) + NR_BOARD_IRQS) |
| |
| #elif defined(CONFIG_8xx) |
| |
| /* Now include the board configuration specific associations. |
| */ |
| #include <asm/mpc8xx.h> |
| |
| /* The MPC8xx cores have 16 possible interrupts. There are eight |
| * possible level sensitive interrupts assigned and generated internally |
| * from such devices as CPM, PCMCIA, RTC, PIT, TimeBase and Decrementer. |
| * There are eight external interrupts (IRQs) that can be configured |
| * as either level or edge sensitive. |
| * |
| * On some implementations, there is also the possibility of an 8259 |
| * through the PCI and PCI-ISA bridges. |
| * |
| * We are "flattening" the interrupt vectors of the cascaded CPM |
| * and 8259 interrupt controllers so that we can uniquely identify |
| * any interrupt source with a single integer. |
| */ |
| #define NR_SIU_INTS 16 |
| #define NR_CPM_INTS 32 |
| #ifndef NR_8259_INTS |
| #define NR_8259_INTS 0 |
| #endif |
| |
| #define SIU_IRQ_OFFSET 0 |
| #define CPM_IRQ_OFFSET (SIU_IRQ_OFFSET + NR_SIU_INTS) |
| #define I8259_IRQ_OFFSET (CPM_IRQ_OFFSET + NR_CPM_INTS) |
| |
| #define NR_IRQS (NR_SIU_INTS + NR_CPM_INTS + NR_8259_INTS) |
| |
| /* These values must be zero-based and map 1:1 with the SIU configuration. |
| * They are used throughout the 8xx I/O subsystem to generate |
| * interrupt masks, flags, and other control patterns. This is why the |
| * current kernel assumption of the 8259 as the base controller is such |
| * a pain in the butt. |
| */ |
| #define SIU_IRQ0 (0) /* Highest priority */ |
| #define SIU_LEVEL0 (1) |
| #define SIU_IRQ1 (2) |
| #define SIU_LEVEL1 (3) |
| #define SIU_IRQ2 (4) |
| #define SIU_LEVEL2 (5) |
| #define SIU_IRQ3 (6) |
| #define SIU_LEVEL3 (7) |
| #define SIU_IRQ4 (8) |
| #define SIU_LEVEL4 (9) |
| #define SIU_IRQ5 (10) |
| #define SIU_LEVEL5 (11) |
| #define SIU_IRQ6 (12) |
| #define SIU_LEVEL6 (13) |
| #define SIU_IRQ7 (14) |
| #define SIU_LEVEL7 (15) |
| |
| #define MPC8xx_INT_FEC1 SIU_LEVEL1 |
| #define MPC8xx_INT_FEC2 SIU_LEVEL3 |
| |
| #define MPC8xx_INT_SCC1 (CPM_IRQ_OFFSET + CPMVEC_SCC1) |
| #define MPC8xx_INT_SCC2 (CPM_IRQ_OFFSET + CPMVEC_SCC2) |
| #define MPC8xx_INT_SCC3 (CPM_IRQ_OFFSET + CPMVEC_SCC3) |
| #define MPC8xx_INT_SCC4 (CPM_IRQ_OFFSET + CPMVEC_SCC4) |
| #define MPC8xx_INT_SMC1 (CPM_IRQ_OFFSET + CPMVEC_SMC1) |
| #define MPC8xx_INT_SMC2 (CPM_IRQ_OFFSET + CPMVEC_SMC2) |
| |
| /* The internal interrupts we can configure as we see fit. |
| * My personal preference is CPM at level 2, which puts it above the |
| * MBX PCI/ISA/IDE interrupts. |
| */ |
| #ifndef PIT_INTERRUPT |
| #define PIT_INTERRUPT SIU_LEVEL0 |
| #endif |
| #ifndef CPM_INTERRUPT |
| #define CPM_INTERRUPT SIU_LEVEL2 |
| #endif |
| #ifndef PCMCIA_INTERRUPT |
| #define PCMCIA_INTERRUPT SIU_LEVEL6 |
| #endif |
| #ifndef DEC_INTERRUPT |
| #define DEC_INTERRUPT SIU_LEVEL7 |
| #endif |
| |
| /* Some internal interrupt registers use an 8-bit mask for the interrupt |
| * level instead of a number. |
| */ |
| #define mk_int_int_mask(IL) (1 << (7 - (IL/2))) |
| |
| #else /* CONFIG_40x + CONFIG_8xx */ |
| /* |
| * this is the # irq's for all ppc arch's (pmac/chrp/prep) |
| * so it is the max of them all |
| */ |
| #define NR_IRQS 256 |
| #define __DO_IRQ_CANON 1 |
| |
| #ifndef CONFIG_8260 |
| |
| #define NUM_8259_INTERRUPTS 16 |
| |
| #else /* CONFIG_8260 */ |
| |
| /* The 8260 has an internal interrupt controller with a maximum of |
| * 64 IRQs. We will use NR_IRQs from above since it is large enough. |
| * Don't be confused by the 8260 documentation where they list an |
| * "interrupt number" and "interrupt vector". We are only interested |
| * in the interrupt vector. There are "reserved" holes where the |
| * vector number increases, but the interrupt number in the table does not. |
| * (Document errata updates have fixed this...make sure you have up to |
| * date processor documentation -- Dan). |
| */ |
| |
| #ifndef CPM_IRQ_OFFSET |
| #define CPM_IRQ_OFFSET 0 |
| #endif |
| |
| #define NR_CPM_INTS 64 |
| |
| #define SIU_INT_ERROR ((uint)0x00 + CPM_IRQ_OFFSET) |
| #define SIU_INT_I2C ((uint)0x01 + CPM_IRQ_OFFSET) |
| #define SIU_INT_SPI ((uint)0x02 + CPM_IRQ_OFFSET) |
| #define SIU_INT_RISC ((uint)0x03 + CPM_IRQ_OFFSET) |
| #define SIU_INT_SMC1 ((uint)0x04 + CPM_IRQ_OFFSET) |
| #define SIU_INT_SMC2 ((uint)0x05 + CPM_IRQ_OFFSET) |
| #define SIU_INT_IDMA1 ((uint)0x06 + CPM_IRQ_OFFSET) |
| #define SIU_INT_IDMA2 ((uint)0x07 + CPM_IRQ_OFFSET) |
| #define SIU_INT_IDMA3 ((uint)0x08 + CPM_IRQ_OFFSET) |
| #define SIU_INT_IDMA4 ((uint)0x09 + CPM_IRQ_OFFSET) |
| #define SIU_INT_SDMA ((uint)0x0a + CPM_IRQ_OFFSET) |
| #define SIU_INT_USB ((uint)0x0b + CPM_IRQ_OFFSET) |
| #define SIU_INT_TIMER1 ((uint)0x0c + CPM_IRQ_OFFSET) |
| #define SIU_INT_TIMER2 ((uint)0x0d + CPM_IRQ_OFFSET) |
| #define SIU_INT_TIMER3 ((uint)0x0e + CPM_IRQ_OFFSET) |
| #define SIU_INT_TIMER4 ((uint)0x0f + CPM_IRQ_OFFSET) |
| #define SIU_INT_TMCNT ((uint)0x10 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PIT ((uint)0x11 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PCI ((uint)0x12 + CPM_IRQ_OFFSET) |
| #define SIU_INT_IRQ1 ((uint)0x13 + CPM_IRQ_OFFSET) |
| #define SIU_INT_IRQ2 ((uint)0x14 + CPM_IRQ_OFFSET) |
| #define SIU_INT_IRQ3 ((uint)0x15 + CPM_IRQ_OFFSET) |
| #define SIU_INT_IRQ4 ((uint)0x16 + CPM_IRQ_OFFSET) |
| #define SIU_INT_IRQ5 ((uint)0x17 + CPM_IRQ_OFFSET) |
| #define SIU_INT_IRQ6 ((uint)0x18 + CPM_IRQ_OFFSET) |
| #define SIU_INT_IRQ7 ((uint)0x19 + CPM_IRQ_OFFSET) |
| #define SIU_INT_FCC1 ((uint)0x20 + CPM_IRQ_OFFSET) |
| #define SIU_INT_FCC2 ((uint)0x21 + CPM_IRQ_OFFSET) |
| #define SIU_INT_FCC3 ((uint)0x22 + CPM_IRQ_OFFSET) |
| #define SIU_INT_MCC1 ((uint)0x24 + CPM_IRQ_OFFSET) |
| #define SIU_INT_MCC2 ((uint)0x25 + CPM_IRQ_OFFSET) |
| #define SIU_INT_SCC1 ((uint)0x28 + CPM_IRQ_OFFSET) |
| #define SIU_INT_SCC2 ((uint)0x29 + CPM_IRQ_OFFSET) |
| #define SIU_INT_SCC3 ((uint)0x2a + CPM_IRQ_OFFSET) |
| #define SIU_INT_SCC4 ((uint)0x2b + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC15 ((uint)0x30 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC14 ((uint)0x31 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC13 ((uint)0x32 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC12 ((uint)0x33 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC11 ((uint)0x34 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC10 ((uint)0x35 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC9 ((uint)0x36 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC8 ((uint)0x37 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC7 ((uint)0x38 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC6 ((uint)0x39 + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC5 ((uint)0x3a + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC4 ((uint)0x3b + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC3 ((uint)0x3c + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC2 ((uint)0x3d + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC1 ((uint)0x3e + CPM_IRQ_OFFSET) |
| #define SIU_INT_PC0 ((uint)0x3f + CPM_IRQ_OFFSET) |
| |
| #endif /* CONFIG_8260 */ |
| |
| #endif /* Whatever way too big #ifdef */ |
| |
| #define NR_MASK_WORDS ((NR_IRQS + 31) / 32) |
| /* pedantic: these are long because they are used with set_bit --RR */ |
| extern unsigned long ppc_cached_irq_mask[NR_MASK_WORDS]; |
| |
| /* |
| * Because many systems have two overlapping names spaces for |
| * interrupts (ISA and XICS for example), and the ISA interrupts |
| * have historically not been easy to renumber, we allow ISA |
| * interrupts to take values 0 - 15, and shift up the remaining |
| * interrupts by 0x10. |
| */ |
| #define NUM_ISA_INTERRUPTS 0x10 |
| extern int __irq_offset_value; |
| |
| static inline int irq_offset_up(int irq) |
| { |
| return(irq + __irq_offset_value); |
| } |
| |
| static inline int irq_offset_down(int irq) |
| { |
| return(irq - __irq_offset_value); |
| } |
| |
| static inline int irq_offset_value(void) |
| { |
| return __irq_offset_value; |
| } |
| |
| #ifdef __DO_IRQ_CANON |
| extern int ppc_do_canonicalize_irqs; |
| #else |
| #define ppc_do_canonicalize_irqs 0 |
| #endif |
| |
| static __inline__ int irq_canonicalize(int irq) |
| { |
| if (ppc_do_canonicalize_irqs && irq == 2) |
| irq = 9; |
| return irq; |
| } |
| #endif /* CONFIG_PPC_MERGE */ |
| |
| extern int distribute_irqs; |
| |
| struct irqaction; |
| struct pt_regs; |
| |
| #define __ARCH_HAS_DO_SOFTIRQ |
| |
| extern void __do_softirq(void); |
| |
| #ifdef CONFIG_IRQSTACKS |
| /* |
| * Per-cpu stacks for handling hard and soft interrupts. |
| */ |
| extern struct thread_info *hardirq_ctx[NR_CPUS]; |
| extern struct thread_info *softirq_ctx[NR_CPUS]; |
| |
| extern void irq_ctx_init(void); |
| extern void call_do_softirq(struct thread_info *tp); |
| extern int call_handle_irq(int irq, void *p1, |
| struct thread_info *tp, void *func); |
| #else |
| #define irq_ctx_init() |
| |
| #endif /* CONFIG_IRQSTACKS */ |
| |
| extern void do_IRQ(struct pt_regs *regs); |
| |
| #endif /* _ASM_IRQ_H */ |
| #endif /* __KERNEL__ */ |