| /* |
| * fs/f2fs/segment.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/bio.h> |
| #include <linux/blkdev.h> |
| #include <linux/vmalloc.h> |
| |
| #include "f2fs.h" |
| #include "segment.h" |
| #include "node.h" |
| |
| static int need_to_flush(struct f2fs_sb_info *sbi) |
| { |
| unsigned int pages_per_sec = (1 << sbi->log_blocks_per_seg) * |
| sbi->segs_per_sec; |
| int node_secs = ((get_pages(sbi, F2FS_DIRTY_NODES) + pages_per_sec - 1) |
| >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; |
| int dent_secs = ((get_pages(sbi, F2FS_DIRTY_DENTS) + pages_per_sec - 1) |
| >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; |
| |
| if (sbi->por_doing) |
| return 0; |
| |
| if (free_sections(sbi) <= (node_secs + 2 * dent_secs + |
| reserved_sections(sbi))) |
| return 1; |
| return 0; |
| } |
| |
| /* |
| * This function balances dirty node and dentry pages. |
| * In addition, it controls garbage collection. |
| */ |
| void f2fs_balance_fs(struct f2fs_sb_info *sbi) |
| { |
| struct writeback_control wbc = { |
| .sync_mode = WB_SYNC_ALL, |
| .nr_to_write = LONG_MAX, |
| .for_reclaim = 0, |
| }; |
| |
| if (sbi->por_doing) |
| return; |
| |
| /* |
| * We should do checkpoint when there are so many dirty node pages |
| * with enough free segments. After then, we should do GC. |
| */ |
| if (need_to_flush(sbi)) { |
| sync_dirty_dir_inodes(sbi); |
| sync_node_pages(sbi, 0, &wbc); |
| } |
| |
| if (has_not_enough_free_secs(sbi)) { |
| mutex_lock(&sbi->gc_mutex); |
| f2fs_gc(sbi, 1); |
| } |
| } |
| |
| static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| /* need not be added */ |
| if (IS_CURSEG(sbi, segno)) |
| return; |
| |
| if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) |
| dirty_i->nr_dirty[dirty_type]++; |
| |
| if (dirty_type == DIRTY) { |
| struct seg_entry *sentry = get_seg_entry(sbi, segno); |
| dirty_type = sentry->type; |
| if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) |
| dirty_i->nr_dirty[dirty_type]++; |
| } |
| } |
| |
| static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) |
| dirty_i->nr_dirty[dirty_type]--; |
| |
| if (dirty_type == DIRTY) { |
| struct seg_entry *sentry = get_seg_entry(sbi, segno); |
| dirty_type = sentry->type; |
| if (test_and_clear_bit(segno, |
| dirty_i->dirty_segmap[dirty_type])) |
| dirty_i->nr_dirty[dirty_type]--; |
| clear_bit(segno, dirty_i->victim_segmap[FG_GC]); |
| clear_bit(segno, dirty_i->victim_segmap[BG_GC]); |
| } |
| } |
| |
| /* |
| * Should not occur error such as -ENOMEM. |
| * Adding dirty entry into seglist is not critical operation. |
| * If a given segment is one of current working segments, it won't be added. |
| */ |
| void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned short valid_blocks; |
| |
| if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) |
| return; |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| |
| valid_blocks = get_valid_blocks(sbi, segno, 0); |
| |
| if (valid_blocks == 0) { |
| __locate_dirty_segment(sbi, segno, PRE); |
| __remove_dirty_segment(sbi, segno, DIRTY); |
| } else if (valid_blocks < sbi->blocks_per_seg) { |
| __locate_dirty_segment(sbi, segno, DIRTY); |
| } else { |
| /* Recovery routine with SSR needs this */ |
| __remove_dirty_segment(sbi, segno, DIRTY); |
| } |
| |
| mutex_unlock(&dirty_i->seglist_lock); |
| return; |
| } |
| |
| /* |
| * Should call clear_prefree_segments after checkpoint is done. |
| */ |
| static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int segno, offset = 0; |
| unsigned int total_segs = TOTAL_SEGS(sbi); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| while (1) { |
| segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, |
| offset); |
| if (segno >= total_segs) |
| break; |
| __set_test_and_free(sbi, segno); |
| offset = segno + 1; |
| } |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| void clear_prefree_segments(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int segno, offset = 0; |
| unsigned int total_segs = TOTAL_SEGS(sbi); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| while (1) { |
| segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, |
| offset); |
| if (segno >= total_segs) |
| break; |
| |
| offset = segno + 1; |
| if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE])) |
| dirty_i->nr_dirty[PRE]--; |
| |
| /* Let's use trim */ |
| if (test_opt(sbi, DISCARD)) |
| blkdev_issue_discard(sbi->sb->s_bdev, |
| START_BLOCK(sbi, segno) << |
| sbi->log_sectors_per_block, |
| 1 << (sbi->log_sectors_per_block + |
| sbi->log_blocks_per_seg), |
| GFP_NOFS, 0); |
| } |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) |
| sit_i->dirty_sentries++; |
| } |
| |
| static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, |
| unsigned int segno, int modified) |
| { |
| struct seg_entry *se = get_seg_entry(sbi, segno); |
| se->type = type; |
| if (modified) |
| __mark_sit_entry_dirty(sbi, segno); |
| } |
| |
| static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) |
| { |
| struct seg_entry *se; |
| unsigned int segno, offset; |
| long int new_vblocks; |
| |
| segno = GET_SEGNO(sbi, blkaddr); |
| |
| se = get_seg_entry(sbi, segno); |
| new_vblocks = se->valid_blocks + del; |
| offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1); |
| |
| BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) || |
| (new_vblocks > sbi->blocks_per_seg))); |
| |
| se->valid_blocks = new_vblocks; |
| se->mtime = get_mtime(sbi); |
| SIT_I(sbi)->max_mtime = se->mtime; |
| |
| /* Update valid block bitmap */ |
| if (del > 0) { |
| if (f2fs_set_bit(offset, se->cur_valid_map)) |
| BUG(); |
| } else { |
| if (!f2fs_clear_bit(offset, se->cur_valid_map)) |
| BUG(); |
| } |
| if (!f2fs_test_bit(offset, se->ckpt_valid_map)) |
| se->ckpt_valid_blocks += del; |
| |
| __mark_sit_entry_dirty(sbi, segno); |
| |
| /* update total number of valid blocks to be written in ckpt area */ |
| SIT_I(sbi)->written_valid_blocks += del; |
| |
| if (sbi->segs_per_sec > 1) |
| get_sec_entry(sbi, segno)->valid_blocks += del; |
| } |
| |
| static void refresh_sit_entry(struct f2fs_sb_info *sbi, |
| block_t old_blkaddr, block_t new_blkaddr) |
| { |
| update_sit_entry(sbi, new_blkaddr, 1); |
| if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) |
| update_sit_entry(sbi, old_blkaddr, -1); |
| } |
| |
| void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) |
| { |
| unsigned int segno = GET_SEGNO(sbi, addr); |
| struct sit_info *sit_i = SIT_I(sbi); |
| |
| BUG_ON(addr == NULL_ADDR); |
| if (addr == NEW_ADDR) |
| return; |
| |
| /* add it into sit main buffer */ |
| mutex_lock(&sit_i->sentry_lock); |
| |
| update_sit_entry(sbi, addr, -1); |
| |
| /* add it into dirty seglist */ |
| locate_dirty_segment(sbi, segno); |
| |
| mutex_unlock(&sit_i->sentry_lock); |
| } |
| |
| /* |
| * This function should be resided under the curseg_mutex lock |
| */ |
| static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, |
| struct f2fs_summary *sum, unsigned short offset) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| void *addr = curseg->sum_blk; |
| addr += offset * sizeof(struct f2fs_summary); |
| memcpy(addr, sum, sizeof(struct f2fs_summary)); |
| return; |
| } |
| |
| /* |
| * Calculate the number of current summary pages for writing |
| */ |
| int npages_for_summary_flush(struct f2fs_sb_info *sbi) |
| { |
| int total_size_bytes = 0; |
| int valid_sum_count = 0; |
| int i, sum_space; |
| |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| if (sbi->ckpt->alloc_type[i] == SSR) |
| valid_sum_count += sbi->blocks_per_seg; |
| else |
| valid_sum_count += curseg_blkoff(sbi, i); |
| } |
| |
| total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1) |
| + sizeof(struct nat_journal) + 2 |
| + sizeof(struct sit_journal) + 2; |
| sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE; |
| if (total_size_bytes < sum_space) |
| return 1; |
| else if (total_size_bytes < 2 * sum_space) |
| return 2; |
| return 3; |
| } |
| |
| /* |
| * Caller should put this summary page |
| */ |
| struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); |
| } |
| |
| static void write_sum_page(struct f2fs_sb_info *sbi, |
| struct f2fs_summary_block *sum_blk, block_t blk_addr) |
| { |
| struct page *page = grab_meta_page(sbi, blk_addr); |
| void *kaddr = page_address(page); |
| memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| } |
| |
| static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi, |
| int ofs_unit, int type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE]; |
| unsigned int segno, next_segno, i; |
| int ofs = 0; |
| |
| /* |
| * If there is not enough reserved sections, |
| * we should not reuse prefree segments. |
| */ |
| if (has_not_enough_free_secs(sbi)) |
| return NULL_SEGNO; |
| |
| /* |
| * NODE page should not reuse prefree segment, |
| * since those information is used for SPOR. |
| */ |
| if (IS_NODESEG(type)) |
| return NULL_SEGNO; |
| next: |
| segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs++); |
| ofs = ((segno / ofs_unit) * ofs_unit) + ofs_unit; |
| if (segno < TOTAL_SEGS(sbi)) { |
| /* skip intermediate segments in a section */ |
| if (segno % ofs_unit) |
| goto next; |
| |
| /* skip if whole section is not prefree */ |
| next_segno = find_next_zero_bit(prefree_segmap, |
| TOTAL_SEGS(sbi), segno + 1); |
| if (next_segno - segno < ofs_unit) |
| goto next; |
| |
| /* skip if whole section was not free at the last checkpoint */ |
| for (i = 0; i < ofs_unit; i++) |
| if (get_seg_entry(sbi, segno)->ckpt_valid_blocks) |
| goto next; |
| return segno; |
| } |
| return NULL_SEGNO; |
| } |
| |
| /* |
| * Find a new segment from the free segments bitmap to right order |
| * This function should be returned with success, otherwise BUG |
| */ |
| static void get_new_segment(struct f2fs_sb_info *sbi, |
| unsigned int *newseg, bool new_sec, int dir) |
| { |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int total_secs = sbi->total_sections; |
| unsigned int segno, secno, zoneno; |
| unsigned int total_zones = sbi->total_sections / sbi->secs_per_zone; |
| unsigned int hint = *newseg / sbi->segs_per_sec; |
| unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); |
| unsigned int left_start = hint; |
| bool init = true; |
| int go_left = 0; |
| int i; |
| |
| write_lock(&free_i->segmap_lock); |
| |
| if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { |
| segno = find_next_zero_bit(free_i->free_segmap, |
| TOTAL_SEGS(sbi), *newseg + 1); |
| if (segno < TOTAL_SEGS(sbi)) |
| goto got_it; |
| } |
| find_other_zone: |
| secno = find_next_zero_bit(free_i->free_secmap, total_secs, hint); |
| if (secno >= total_secs) { |
| if (dir == ALLOC_RIGHT) { |
| secno = find_next_zero_bit(free_i->free_secmap, |
| total_secs, 0); |
| BUG_ON(secno >= total_secs); |
| } else { |
| go_left = 1; |
| left_start = hint - 1; |
| } |
| } |
| if (go_left == 0) |
| goto skip_left; |
| |
| while (test_bit(left_start, free_i->free_secmap)) { |
| if (left_start > 0) { |
| left_start--; |
| continue; |
| } |
| left_start = find_next_zero_bit(free_i->free_secmap, |
| total_secs, 0); |
| BUG_ON(left_start >= total_secs); |
| break; |
| } |
| secno = left_start; |
| skip_left: |
| hint = secno; |
| segno = secno * sbi->segs_per_sec; |
| zoneno = secno / sbi->secs_per_zone; |
| |
| /* give up on finding another zone */ |
| if (!init) |
| goto got_it; |
| if (sbi->secs_per_zone == 1) |
| goto got_it; |
| if (zoneno == old_zoneno) |
| goto got_it; |
| if (dir == ALLOC_LEFT) { |
| if (!go_left && zoneno + 1 >= total_zones) |
| goto got_it; |
| if (go_left && zoneno == 0) |
| goto got_it; |
| } |
| for (i = 0; i < NR_CURSEG_TYPE; i++) |
| if (CURSEG_I(sbi, i)->zone == zoneno) |
| break; |
| |
| if (i < NR_CURSEG_TYPE) { |
| /* zone is in user, try another */ |
| if (go_left) |
| hint = zoneno * sbi->secs_per_zone - 1; |
| else if (zoneno + 1 >= total_zones) |
| hint = 0; |
| else |
| hint = (zoneno + 1) * sbi->secs_per_zone; |
| init = false; |
| goto find_other_zone; |
| } |
| got_it: |
| /* set it as dirty segment in free segmap */ |
| BUG_ON(test_bit(segno, free_i->free_segmap)); |
| __set_inuse(sbi, segno); |
| *newseg = segno; |
| write_unlock(&free_i->segmap_lock); |
| } |
| |
| static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| struct summary_footer *sum_footer; |
| |
| curseg->segno = curseg->next_segno; |
| curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); |
| curseg->next_blkoff = 0; |
| curseg->next_segno = NULL_SEGNO; |
| |
| sum_footer = &(curseg->sum_blk->footer); |
| memset(sum_footer, 0, sizeof(struct summary_footer)); |
| if (IS_DATASEG(type)) |
| SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); |
| if (IS_NODESEG(type)) |
| SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); |
| __set_sit_entry_type(sbi, type, curseg->segno, modified); |
| } |
| |
| /* |
| * Allocate a current working segment. |
| * This function always allocates a free segment in LFS manner. |
| */ |
| static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int segno = curseg->segno; |
| int dir = ALLOC_LEFT; |
| |
| write_sum_page(sbi, curseg->sum_blk, |
| GET_SUM_BLOCK(sbi, curseg->segno)); |
| if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) |
| dir = ALLOC_RIGHT; |
| |
| if (test_opt(sbi, NOHEAP)) |
| dir = ALLOC_RIGHT; |
| |
| get_new_segment(sbi, &segno, new_sec, dir); |
| curseg->next_segno = segno; |
| reset_curseg(sbi, type, 1); |
| curseg->alloc_type = LFS; |
| } |
| |
| static void __next_free_blkoff(struct f2fs_sb_info *sbi, |
| struct curseg_info *seg, block_t start) |
| { |
| struct seg_entry *se = get_seg_entry(sbi, seg->segno); |
| block_t ofs; |
| for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) { |
| if (!f2fs_test_bit(ofs, se->ckpt_valid_map) |
| && !f2fs_test_bit(ofs, se->cur_valid_map)) |
| break; |
| } |
| seg->next_blkoff = ofs; |
| } |
| |
| /* |
| * If a segment is written by LFS manner, next block offset is just obtained |
| * by increasing the current block offset. However, if a segment is written by |
| * SSR manner, next block offset obtained by calling __next_free_blkoff |
| */ |
| static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, |
| struct curseg_info *seg) |
| { |
| if (seg->alloc_type == SSR) |
| __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); |
| else |
| seg->next_blkoff++; |
| } |
| |
| /* |
| * This function always allocates a used segment (from dirty seglist) by SSR |
| * manner, so it should recover the existing segment information of valid blocks |
| */ |
| static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int new_segno = curseg->next_segno; |
| struct f2fs_summary_block *sum_node; |
| struct page *sum_page; |
| |
| write_sum_page(sbi, curseg->sum_blk, |
| GET_SUM_BLOCK(sbi, curseg->segno)); |
| __set_test_and_inuse(sbi, new_segno); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| __remove_dirty_segment(sbi, new_segno, PRE); |
| __remove_dirty_segment(sbi, new_segno, DIRTY); |
| mutex_unlock(&dirty_i->seglist_lock); |
| |
| reset_curseg(sbi, type, 1); |
| curseg->alloc_type = SSR; |
| __next_free_blkoff(sbi, curseg, 0); |
| |
| if (reuse) { |
| sum_page = get_sum_page(sbi, new_segno); |
| sum_node = (struct f2fs_summary_block *)page_address(sum_page); |
| memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); |
| f2fs_put_page(sum_page, 1); |
| } |
| } |
| |
| /* |
| * flush out current segment and replace it with new segment |
| * This function should be returned with success, otherwise BUG |
| */ |
| static void allocate_segment_by_default(struct f2fs_sb_info *sbi, |
| int type, bool force) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int ofs_unit; |
| |
| if (force) { |
| new_curseg(sbi, type, true); |
| goto out; |
| } |
| |
| ofs_unit = need_SSR(sbi) ? 1 : sbi->segs_per_sec; |
| curseg->next_segno = check_prefree_segments(sbi, ofs_unit, type); |
| |
| if (curseg->next_segno != NULL_SEGNO) |
| change_curseg(sbi, type, false); |
| else if (type == CURSEG_WARM_NODE) |
| new_curseg(sbi, type, false); |
| else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) |
| change_curseg(sbi, type, true); |
| else |
| new_curseg(sbi, type, false); |
| out: |
| sbi->segment_count[curseg->alloc_type]++; |
| } |
| |
| void allocate_new_segments(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *curseg; |
| unsigned int old_curseg; |
| int i; |
| |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| curseg = CURSEG_I(sbi, i); |
| old_curseg = curseg->segno; |
| SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); |
| locate_dirty_segment(sbi, old_curseg); |
| } |
| } |
| |
| static const struct segment_allocation default_salloc_ops = { |
| .allocate_segment = allocate_segment_by_default, |
| }; |
| |
| static void f2fs_end_io_write(struct bio *bio, int err) |
| { |
| const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
| struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| struct bio_private *p = bio->bi_private; |
| |
| do { |
| struct page *page = bvec->bv_page; |
| |
| if (--bvec >= bio->bi_io_vec) |
| prefetchw(&bvec->bv_page->flags); |
| if (!uptodate) { |
| SetPageError(page); |
| if (page->mapping) |
| set_bit(AS_EIO, &page->mapping->flags); |
| set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG); |
| set_page_dirty(page); |
| } |
| end_page_writeback(page); |
| dec_page_count(p->sbi, F2FS_WRITEBACK); |
| } while (bvec >= bio->bi_io_vec); |
| |
| if (p->is_sync) |
| complete(p->wait); |
| kfree(p); |
| bio_put(bio); |
| } |
| |
| struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages) |
| { |
| struct bio *bio; |
| struct bio_private *priv; |
| retry: |
| priv = kmalloc(sizeof(struct bio_private), GFP_NOFS); |
| if (!priv) { |
| cond_resched(); |
| goto retry; |
| } |
| |
| /* No failure on bio allocation */ |
| bio = bio_alloc(GFP_NOIO, npages); |
| bio->bi_bdev = bdev; |
| bio->bi_private = priv; |
| return bio; |
| } |
| |
| static void do_submit_bio(struct f2fs_sb_info *sbi, |
| enum page_type type, bool sync) |
| { |
| int rw = sync ? WRITE_SYNC : WRITE; |
| enum page_type btype = type > META ? META : type; |
| |
| if (type >= META_FLUSH) |
| rw = WRITE_FLUSH_FUA; |
| |
| if (sbi->bio[btype]) { |
| struct bio_private *p = sbi->bio[btype]->bi_private; |
| p->sbi = sbi; |
| sbi->bio[btype]->bi_end_io = f2fs_end_io_write; |
| if (type == META_FLUSH) { |
| DECLARE_COMPLETION_ONSTACK(wait); |
| p->is_sync = true; |
| p->wait = &wait; |
| submit_bio(rw, sbi->bio[btype]); |
| wait_for_completion(&wait); |
| } else { |
| p->is_sync = false; |
| submit_bio(rw, sbi->bio[btype]); |
| } |
| sbi->bio[btype] = NULL; |
| } |
| } |
| |
| void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync) |
| { |
| down_write(&sbi->bio_sem); |
| do_submit_bio(sbi, type, sync); |
| up_write(&sbi->bio_sem); |
| } |
| |
| static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page, |
| block_t blk_addr, enum page_type type) |
| { |
| struct block_device *bdev = sbi->sb->s_bdev; |
| |
| verify_block_addr(sbi, blk_addr); |
| |
| down_write(&sbi->bio_sem); |
| |
| inc_page_count(sbi, F2FS_WRITEBACK); |
| |
| if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1) |
| do_submit_bio(sbi, type, false); |
| alloc_new: |
| if (sbi->bio[type] == NULL) { |
| sbi->bio[type] = f2fs_bio_alloc(bdev, bio_get_nr_vecs(bdev)); |
| sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr); |
| /* |
| * The end_io will be assigned at the sumbission phase. |
| * Until then, let bio_add_page() merge consecutive IOs as much |
| * as possible. |
| */ |
| } |
| |
| if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) < |
| PAGE_CACHE_SIZE) { |
| do_submit_bio(sbi, type, false); |
| goto alloc_new; |
| } |
| |
| sbi->last_block_in_bio[type] = blk_addr; |
| |
| up_write(&sbi->bio_sem); |
| } |
| |
| static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| if (curseg->next_blkoff < sbi->blocks_per_seg) |
| return true; |
| return false; |
| } |
| |
| static int __get_segment_type_2(struct page *page, enum page_type p_type) |
| { |
| if (p_type == DATA) |
| return CURSEG_HOT_DATA; |
| else |
| return CURSEG_HOT_NODE; |
| } |
| |
| static int __get_segment_type_4(struct page *page, enum page_type p_type) |
| { |
| if (p_type == DATA) { |
| struct inode *inode = page->mapping->host; |
| |
| if (S_ISDIR(inode->i_mode)) |
| return CURSEG_HOT_DATA; |
| else |
| return CURSEG_COLD_DATA; |
| } else { |
| if (IS_DNODE(page) && !is_cold_node(page)) |
| return CURSEG_HOT_NODE; |
| else |
| return CURSEG_COLD_NODE; |
| } |
| } |
| |
| static int __get_segment_type_6(struct page *page, enum page_type p_type) |
| { |
| if (p_type == DATA) { |
| struct inode *inode = page->mapping->host; |
| |
| if (S_ISDIR(inode->i_mode)) |
| return CURSEG_HOT_DATA; |
| else if (is_cold_data(page) || is_cold_file(inode)) |
| return CURSEG_COLD_DATA; |
| else |
| return CURSEG_WARM_DATA; |
| } else { |
| if (IS_DNODE(page)) |
| return is_cold_node(page) ? CURSEG_WARM_NODE : |
| CURSEG_HOT_NODE; |
| else |
| return CURSEG_COLD_NODE; |
| } |
| } |
| |
| static int __get_segment_type(struct page *page, enum page_type p_type) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); |
| switch (sbi->active_logs) { |
| case 2: |
| return __get_segment_type_2(page, p_type); |
| case 4: |
| return __get_segment_type_4(page, p_type); |
| case 6: |
| return __get_segment_type_6(page, p_type); |
| default: |
| BUG(); |
| } |
| } |
| |
| static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, |
| block_t old_blkaddr, block_t *new_blkaddr, |
| struct f2fs_summary *sum, enum page_type p_type) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg; |
| unsigned int old_cursegno; |
| int type; |
| |
| type = __get_segment_type(page, p_type); |
| curseg = CURSEG_I(sbi, type); |
| |
| mutex_lock(&curseg->curseg_mutex); |
| |
| *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); |
| old_cursegno = curseg->segno; |
| |
| /* |
| * __add_sum_entry should be resided under the curseg_mutex |
| * because, this function updates a summary entry in the |
| * current summary block. |
| */ |
| __add_sum_entry(sbi, type, sum, curseg->next_blkoff); |
| |
| mutex_lock(&sit_i->sentry_lock); |
| __refresh_next_blkoff(sbi, curseg); |
| sbi->block_count[curseg->alloc_type]++; |
| |
| /* |
| * SIT information should be updated before segment allocation, |
| * since SSR needs latest valid block information. |
| */ |
| refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); |
| |
| if (!__has_curseg_space(sbi, type)) |
| sit_i->s_ops->allocate_segment(sbi, type, false); |
| |
| locate_dirty_segment(sbi, old_cursegno); |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); |
| mutex_unlock(&sit_i->sentry_lock); |
| |
| if (p_type == NODE) |
| fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); |
| |
| /* writeout dirty page into bdev */ |
| submit_write_page(sbi, page, *new_blkaddr, p_type); |
| |
| mutex_unlock(&curseg->curseg_mutex); |
| } |
| |
| int write_meta_page(struct f2fs_sb_info *sbi, struct page *page, |
| struct writeback_control *wbc) |
| { |
| if (wbc->for_reclaim) |
| return AOP_WRITEPAGE_ACTIVATE; |
| |
| set_page_writeback(page); |
| submit_write_page(sbi, page, page->index, META); |
| return 0; |
| } |
| |
| void write_node_page(struct f2fs_sb_info *sbi, struct page *page, |
| unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) |
| { |
| struct f2fs_summary sum; |
| set_summary(&sum, nid, 0, 0); |
| do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE); |
| } |
| |
| void write_data_page(struct inode *inode, struct page *page, |
| struct dnode_of_data *dn, block_t old_blkaddr, |
| block_t *new_blkaddr) |
| { |
| struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); |
| struct f2fs_summary sum; |
| struct node_info ni; |
| |
| BUG_ON(old_blkaddr == NULL_ADDR); |
| get_node_info(sbi, dn->nid, &ni); |
| set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); |
| |
| do_write_page(sbi, page, old_blkaddr, |
| new_blkaddr, &sum, DATA); |
| } |
| |
| void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page, |
| block_t old_blk_addr) |
| { |
| submit_write_page(sbi, page, old_blk_addr, DATA); |
| } |
| |
| void recover_data_page(struct f2fs_sb_info *sbi, |
| struct page *page, struct f2fs_summary *sum, |
| block_t old_blkaddr, block_t new_blkaddr) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg; |
| unsigned int segno, old_cursegno; |
| struct seg_entry *se; |
| int type; |
| |
| segno = GET_SEGNO(sbi, new_blkaddr); |
| se = get_seg_entry(sbi, segno); |
| type = se->type; |
| |
| if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { |
| if (old_blkaddr == NULL_ADDR) |
| type = CURSEG_COLD_DATA; |
| else |
| type = CURSEG_WARM_DATA; |
| } |
| curseg = CURSEG_I(sbi, type); |
| |
| mutex_lock(&curseg->curseg_mutex); |
| mutex_lock(&sit_i->sentry_lock); |
| |
| old_cursegno = curseg->segno; |
| |
| /* change the current segment */ |
| if (segno != curseg->segno) { |
| curseg->next_segno = segno; |
| change_curseg(sbi, type, true); |
| } |
| |
| curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & |
| (sbi->blocks_per_seg - 1); |
| __add_sum_entry(sbi, type, sum, curseg->next_blkoff); |
| |
| refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); |
| |
| locate_dirty_segment(sbi, old_cursegno); |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); |
| |
| mutex_unlock(&sit_i->sentry_lock); |
| mutex_unlock(&curseg->curseg_mutex); |
| } |
| |
| void rewrite_node_page(struct f2fs_sb_info *sbi, |
| struct page *page, struct f2fs_summary *sum, |
| block_t old_blkaddr, block_t new_blkaddr) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| int type = CURSEG_WARM_NODE; |
| struct curseg_info *curseg; |
| unsigned int segno, old_cursegno; |
| block_t next_blkaddr = next_blkaddr_of_node(page); |
| unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr); |
| |
| curseg = CURSEG_I(sbi, type); |
| |
| mutex_lock(&curseg->curseg_mutex); |
| mutex_lock(&sit_i->sentry_lock); |
| |
| segno = GET_SEGNO(sbi, new_blkaddr); |
| old_cursegno = curseg->segno; |
| |
| /* change the current segment */ |
| if (segno != curseg->segno) { |
| curseg->next_segno = segno; |
| change_curseg(sbi, type, true); |
| } |
| curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & |
| (sbi->blocks_per_seg - 1); |
| __add_sum_entry(sbi, type, sum, curseg->next_blkoff); |
| |
| /* change the current log to the next block addr in advance */ |
| if (next_segno != segno) { |
| curseg->next_segno = next_segno; |
| change_curseg(sbi, type, true); |
| } |
| curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) & |
| (sbi->blocks_per_seg - 1); |
| |
| /* rewrite node page */ |
| set_page_writeback(page); |
| submit_write_page(sbi, page, new_blkaddr, NODE); |
| f2fs_submit_bio(sbi, NODE, true); |
| refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); |
| |
| locate_dirty_segment(sbi, old_cursegno); |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); |
| |
| mutex_unlock(&sit_i->sentry_lock); |
| mutex_unlock(&curseg->curseg_mutex); |
| } |
| |
| static int read_compacted_summaries(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct curseg_info *seg_i; |
| unsigned char *kaddr; |
| struct page *page; |
| block_t start; |
| int i, j, offset; |
| |
| start = start_sum_block(sbi); |
| |
| page = get_meta_page(sbi, start++); |
| kaddr = (unsigned char *)page_address(page); |
| |
| /* Step 1: restore nat cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); |
| |
| /* Step 2: restore sit cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, |
| SUM_JOURNAL_SIZE); |
| offset = 2 * SUM_JOURNAL_SIZE; |
| |
| /* Step 3: restore summary entries */ |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| unsigned short blk_off; |
| unsigned int segno; |
| |
| seg_i = CURSEG_I(sbi, i); |
| segno = le32_to_cpu(ckpt->cur_data_segno[i]); |
| blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); |
| seg_i->next_segno = segno; |
| reset_curseg(sbi, i, 0); |
| seg_i->alloc_type = ckpt->alloc_type[i]; |
| seg_i->next_blkoff = blk_off; |
| |
| if (seg_i->alloc_type == SSR) |
| blk_off = sbi->blocks_per_seg; |
| |
| for (j = 0; j < blk_off; j++) { |
| struct f2fs_summary *s; |
| s = (struct f2fs_summary *)(kaddr + offset); |
| seg_i->sum_blk->entries[j] = *s; |
| offset += SUMMARY_SIZE; |
| if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - |
| SUM_FOOTER_SIZE) |
| continue; |
| |
| f2fs_put_page(page, 1); |
| page = NULL; |
| |
| page = get_meta_page(sbi, start++); |
| kaddr = (unsigned char *)page_address(page); |
| offset = 0; |
| } |
| } |
| f2fs_put_page(page, 1); |
| return 0; |
| } |
| |
| static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct f2fs_summary_block *sum; |
| struct curseg_info *curseg; |
| struct page *new; |
| unsigned short blk_off; |
| unsigned int segno = 0; |
| block_t blk_addr = 0; |
| |
| /* get segment number and block addr */ |
| if (IS_DATASEG(type)) { |
| segno = le32_to_cpu(ckpt->cur_data_segno[type]); |
| blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - |
| CURSEG_HOT_DATA]); |
| if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); |
| else |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); |
| } else { |
| segno = le32_to_cpu(ckpt->cur_node_segno[type - |
| CURSEG_HOT_NODE]); |
| blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - |
| CURSEG_HOT_NODE]); |
| if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, |
| type - CURSEG_HOT_NODE); |
| else |
| blk_addr = GET_SUM_BLOCK(sbi, segno); |
| } |
| |
| new = get_meta_page(sbi, blk_addr); |
| sum = (struct f2fs_summary_block *)page_address(new); |
| |
| if (IS_NODESEG(type)) { |
| if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) { |
| struct f2fs_summary *ns = &sum->entries[0]; |
| int i; |
| for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { |
| ns->version = 0; |
| ns->ofs_in_node = 0; |
| } |
| } else { |
| if (restore_node_summary(sbi, segno, sum)) { |
| f2fs_put_page(new, 1); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| /* set uncompleted segment to curseg */ |
| curseg = CURSEG_I(sbi, type); |
| mutex_lock(&curseg->curseg_mutex); |
| memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); |
| curseg->next_segno = segno; |
| reset_curseg(sbi, type, 0); |
| curseg->alloc_type = ckpt->alloc_type[type]; |
| curseg->next_blkoff = blk_off; |
| mutex_unlock(&curseg->curseg_mutex); |
| f2fs_put_page(new, 1); |
| return 0; |
| } |
| |
| static int restore_curseg_summaries(struct f2fs_sb_info *sbi) |
| { |
| int type = CURSEG_HOT_DATA; |
| |
| if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { |
| /* restore for compacted data summary */ |
| if (read_compacted_summaries(sbi)) |
| return -EINVAL; |
| type = CURSEG_HOT_NODE; |
| } |
| |
| for (; type <= CURSEG_COLD_NODE; type++) |
| if (read_normal_summaries(sbi, type)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) |
| { |
| struct page *page; |
| unsigned char *kaddr; |
| struct f2fs_summary *summary; |
| struct curseg_info *seg_i; |
| int written_size = 0; |
| int i, j; |
| |
| page = grab_meta_page(sbi, blkaddr++); |
| kaddr = (unsigned char *)page_address(page); |
| |
| /* Step 1: write nat cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); |
| written_size += SUM_JOURNAL_SIZE; |
| |
| /* Step 2: write sit cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, |
| SUM_JOURNAL_SIZE); |
| written_size += SUM_JOURNAL_SIZE; |
| |
| set_page_dirty(page); |
| |
| /* Step 3: write summary entries */ |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| unsigned short blkoff; |
| seg_i = CURSEG_I(sbi, i); |
| if (sbi->ckpt->alloc_type[i] == SSR) |
| blkoff = sbi->blocks_per_seg; |
| else |
| blkoff = curseg_blkoff(sbi, i); |
| |
| for (j = 0; j < blkoff; j++) { |
| if (!page) { |
| page = grab_meta_page(sbi, blkaddr++); |
| kaddr = (unsigned char *)page_address(page); |
| written_size = 0; |
| } |
| summary = (struct f2fs_summary *)(kaddr + written_size); |
| *summary = seg_i->sum_blk->entries[j]; |
| written_size += SUMMARY_SIZE; |
| set_page_dirty(page); |
| |
| if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - |
| SUM_FOOTER_SIZE) |
| continue; |
| |
| f2fs_put_page(page, 1); |
| page = NULL; |
| } |
| } |
| if (page) |
| f2fs_put_page(page, 1); |
| } |
| |
| static void write_normal_summaries(struct f2fs_sb_info *sbi, |
| block_t blkaddr, int type) |
| { |
| int i, end; |
| if (IS_DATASEG(type)) |
| end = type + NR_CURSEG_DATA_TYPE; |
| else |
| end = type + NR_CURSEG_NODE_TYPE; |
| |
| for (i = type; i < end; i++) { |
| struct curseg_info *sum = CURSEG_I(sbi, i); |
| mutex_lock(&sum->curseg_mutex); |
| write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); |
| mutex_unlock(&sum->curseg_mutex); |
| } |
| } |
| |
| void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) |
| { |
| if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) |
| write_compacted_summaries(sbi, start_blk); |
| else |
| write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); |
| } |
| |
| void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) |
| { |
| if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) |
| write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); |
| return; |
| } |
| |
| int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, |
| unsigned int val, int alloc) |
| { |
| int i; |
| |
| if (type == NAT_JOURNAL) { |
| for (i = 0; i < nats_in_cursum(sum); i++) { |
| if (le32_to_cpu(nid_in_journal(sum, i)) == val) |
| return i; |
| } |
| if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) |
| return update_nats_in_cursum(sum, 1); |
| } else if (type == SIT_JOURNAL) { |
| for (i = 0; i < sits_in_cursum(sum); i++) |
| if (le32_to_cpu(segno_in_journal(sum, i)) == val) |
| return i; |
| if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) |
| return update_sits_in_cursum(sum, 1); |
| } |
| return -1; |
| } |
| |
| static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, |
| unsigned int segno) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); |
| block_t blk_addr = sit_i->sit_base_addr + offset; |
| |
| check_seg_range(sbi, segno); |
| |
| /* calculate sit block address */ |
| if (f2fs_test_bit(offset, sit_i->sit_bitmap)) |
| blk_addr += sit_i->sit_blocks; |
| |
| return get_meta_page(sbi, blk_addr); |
| } |
| |
| static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, |
| unsigned int start) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct page *src_page, *dst_page; |
| pgoff_t src_off, dst_off; |
| void *src_addr, *dst_addr; |
| |
| src_off = current_sit_addr(sbi, start); |
| dst_off = next_sit_addr(sbi, src_off); |
| |
| /* get current sit block page without lock */ |
| src_page = get_meta_page(sbi, src_off); |
| dst_page = grab_meta_page(sbi, dst_off); |
| BUG_ON(PageDirty(src_page)); |
| |
| src_addr = page_address(src_page); |
| dst_addr = page_address(dst_page); |
| memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); |
| |
| set_page_dirty(dst_page); |
| f2fs_put_page(src_page, 1); |
| |
| set_to_next_sit(sit_i, start); |
| |
| return dst_page; |
| } |
| |
| static bool flush_sits_in_journal(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| int i; |
| |
| /* |
| * If the journal area in the current summary is full of sit entries, |
| * all the sit entries will be flushed. Otherwise the sit entries |
| * are not able to replace with newly hot sit entries. |
| */ |
| if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) { |
| for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { |
| unsigned int segno; |
| segno = le32_to_cpu(segno_in_journal(sum, i)); |
| __mark_sit_entry_dirty(sbi, segno); |
| } |
| update_sits_in_cursum(sum, -sits_in_cursum(sum)); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * CP calls this function, which flushes SIT entries including sit_journal, |
| * and moves prefree segs to free segs. |
| */ |
| void flush_sit_entries(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned long *bitmap = sit_i->dirty_sentries_bitmap; |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| unsigned long nsegs = TOTAL_SEGS(sbi); |
| struct page *page = NULL; |
| struct f2fs_sit_block *raw_sit = NULL; |
| unsigned int start = 0, end = 0; |
| unsigned int segno = -1; |
| bool flushed; |
| |
| mutex_lock(&curseg->curseg_mutex); |
| mutex_lock(&sit_i->sentry_lock); |
| |
| /* |
| * "flushed" indicates whether sit entries in journal are flushed |
| * to the SIT area or not. |
| */ |
| flushed = flush_sits_in_journal(sbi); |
| |
| while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) { |
| struct seg_entry *se = get_seg_entry(sbi, segno); |
| int sit_offset, offset; |
| |
| sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); |
| |
| if (flushed) |
| goto to_sit_page; |
| |
| offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1); |
| if (offset >= 0) { |
| segno_in_journal(sum, offset) = cpu_to_le32(segno); |
| seg_info_to_raw_sit(se, &sit_in_journal(sum, offset)); |
| goto flush_done; |
| } |
| to_sit_page: |
| if (!page || (start > segno) || (segno > end)) { |
| if (page) { |
| f2fs_put_page(page, 1); |
| page = NULL; |
| } |
| |
| start = START_SEGNO(sit_i, segno); |
| end = start + SIT_ENTRY_PER_BLOCK - 1; |
| |
| /* read sit block that will be updated */ |
| page = get_next_sit_page(sbi, start); |
| raw_sit = page_address(page); |
| } |
| |
| /* udpate entry in SIT block */ |
| seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]); |
| flush_done: |
| __clear_bit(segno, bitmap); |
| sit_i->dirty_sentries--; |
| } |
| mutex_unlock(&sit_i->sentry_lock); |
| mutex_unlock(&curseg->curseg_mutex); |
| |
| /* writeout last modified SIT block */ |
| f2fs_put_page(page, 1); |
| |
| set_prefree_as_free_segments(sbi); |
| } |
| |
| static int build_sit_info(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct sit_info *sit_i; |
| unsigned int sit_segs, start; |
| char *src_bitmap, *dst_bitmap; |
| unsigned int bitmap_size; |
| |
| /* allocate memory for SIT information */ |
| sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); |
| if (!sit_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->sit_info = sit_i; |
| |
| sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry)); |
| if (!sit_i->sentries) |
| return -ENOMEM; |
| |
| bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); |
| sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); |
| if (!sit_i->dirty_sentries_bitmap) |
| return -ENOMEM; |
| |
| for (start = 0; start < TOTAL_SEGS(sbi); start++) { |
| sit_i->sentries[start].cur_valid_map |
| = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); |
| sit_i->sentries[start].ckpt_valid_map |
| = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); |
| if (!sit_i->sentries[start].cur_valid_map |
| || !sit_i->sentries[start].ckpt_valid_map) |
| return -ENOMEM; |
| } |
| |
| if (sbi->segs_per_sec > 1) { |
| sit_i->sec_entries = vzalloc(sbi->total_sections * |
| sizeof(struct sec_entry)); |
| if (!sit_i->sec_entries) |
| return -ENOMEM; |
| } |
| |
| /* get information related with SIT */ |
| sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; |
| |
| /* setup SIT bitmap from ckeckpoint pack */ |
| bitmap_size = __bitmap_size(sbi, SIT_BITMAP); |
| src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); |
| |
| dst_bitmap = kzalloc(bitmap_size, GFP_KERNEL); |
| if (!dst_bitmap) |
| return -ENOMEM; |
| memcpy(dst_bitmap, src_bitmap, bitmap_size); |
| |
| /* init SIT information */ |
| sit_i->s_ops = &default_salloc_ops; |
| |
| sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); |
| sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; |
| sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); |
| sit_i->sit_bitmap = dst_bitmap; |
| sit_i->bitmap_size = bitmap_size; |
| sit_i->dirty_sentries = 0; |
| sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; |
| sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); |
| sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; |
| mutex_init(&sit_i->sentry_lock); |
| return 0; |
| } |
| |
| static int build_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_sm_info *sm_info = SM_I(sbi); |
| struct free_segmap_info *free_i; |
| unsigned int bitmap_size, sec_bitmap_size; |
| |
| /* allocate memory for free segmap information */ |
| free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); |
| if (!free_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->free_info = free_i; |
| |
| bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); |
| free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); |
| if (!free_i->free_segmap) |
| return -ENOMEM; |
| |
| sec_bitmap_size = f2fs_bitmap_size(sbi->total_sections); |
| free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); |
| if (!free_i->free_secmap) |
| return -ENOMEM; |
| |
| /* set all segments as dirty temporarily */ |
| memset(free_i->free_segmap, 0xff, bitmap_size); |
| memset(free_i->free_secmap, 0xff, sec_bitmap_size); |
| |
| /* init free segmap information */ |
| free_i->start_segno = |
| (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr); |
| free_i->free_segments = 0; |
| free_i->free_sections = 0; |
| rwlock_init(&free_i->segmap_lock); |
| return 0; |
| } |
| |
| static int build_curseg(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *array; |
| int i; |
| |
| array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL); |
| if (!array) |
| return -ENOMEM; |
| |
| SM_I(sbi)->curseg_array = array; |
| |
| for (i = 0; i < NR_CURSEG_TYPE; i++) { |
| mutex_init(&array[i].curseg_mutex); |
| array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); |
| if (!array[i].sum_blk) |
| return -ENOMEM; |
| array[i].segno = NULL_SEGNO; |
| array[i].next_blkoff = 0; |
| } |
| return restore_curseg_summaries(sbi); |
| } |
| |
| static void build_sit_entries(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_summary_block *sum = curseg->sum_blk; |
| unsigned int start; |
| |
| for (start = 0; start < TOTAL_SEGS(sbi); start++) { |
| struct seg_entry *se = &sit_i->sentries[start]; |
| struct f2fs_sit_block *sit_blk; |
| struct f2fs_sit_entry sit; |
| struct page *page; |
| int i; |
| |
| mutex_lock(&curseg->curseg_mutex); |
| for (i = 0; i < sits_in_cursum(sum); i++) { |
| if (le32_to_cpu(segno_in_journal(sum, i)) == start) { |
| sit = sit_in_journal(sum, i); |
| mutex_unlock(&curseg->curseg_mutex); |
| goto got_it; |
| } |
| } |
| mutex_unlock(&curseg->curseg_mutex); |
| page = get_current_sit_page(sbi, start); |
| sit_blk = (struct f2fs_sit_block *)page_address(page); |
| sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; |
| f2fs_put_page(page, 1); |
| got_it: |
| check_block_count(sbi, start, &sit); |
| seg_info_from_raw_sit(se, &sit); |
| if (sbi->segs_per_sec > 1) { |
| struct sec_entry *e = get_sec_entry(sbi, start); |
| e->valid_blocks += se->valid_blocks; |
| } |
| } |
| } |
| |
| static void init_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| unsigned int start; |
| int type; |
| |
| for (start = 0; start < TOTAL_SEGS(sbi); start++) { |
| struct seg_entry *sentry = get_seg_entry(sbi, start); |
| if (!sentry->valid_blocks) |
| __set_free(sbi, start); |
| } |
| |
| /* set use the current segments */ |
| for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { |
| struct curseg_info *curseg_t = CURSEG_I(sbi, type); |
| __set_test_and_inuse(sbi, curseg_t->segno); |
| } |
| } |
| |
| static void init_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int segno = 0, offset = 0; |
| unsigned short valid_blocks; |
| |
| while (segno < TOTAL_SEGS(sbi)) { |
| /* find dirty segment based on free segmap */ |
| segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset); |
| if (segno >= TOTAL_SEGS(sbi)) |
| break; |
| offset = segno + 1; |
| valid_blocks = get_valid_blocks(sbi, segno, 0); |
| if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks) |
| continue; |
| mutex_lock(&dirty_i->seglist_lock); |
| __locate_dirty_segment(sbi, segno, DIRTY); |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| } |
| |
| static int init_victim_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); |
| |
| dirty_i->victim_segmap[FG_GC] = kzalloc(bitmap_size, GFP_KERNEL); |
| dirty_i->victim_segmap[BG_GC] = kzalloc(bitmap_size, GFP_KERNEL); |
| if (!dirty_i->victim_segmap[FG_GC] || !dirty_i->victim_segmap[BG_GC]) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static int build_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i; |
| unsigned int bitmap_size, i; |
| |
| /* allocate memory for dirty segments list information */ |
| dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); |
| if (!dirty_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->dirty_info = dirty_i; |
| mutex_init(&dirty_i->seglist_lock); |
| |
| bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); |
| |
| for (i = 0; i < NR_DIRTY_TYPE; i++) { |
| dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); |
| dirty_i->nr_dirty[i] = 0; |
| if (!dirty_i->dirty_segmap[i]) |
| return -ENOMEM; |
| } |
| |
| init_dirty_segmap(sbi); |
| return init_victim_segmap(sbi); |
| } |
| |
| /* |
| * Update min, max modified time for cost-benefit GC algorithm |
| */ |
| static void init_min_max_mtime(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int segno; |
| |
| mutex_lock(&sit_i->sentry_lock); |
| |
| sit_i->min_mtime = LLONG_MAX; |
| |
| for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) { |
| unsigned int i; |
| unsigned long long mtime = 0; |
| |
| for (i = 0; i < sbi->segs_per_sec; i++) |
| mtime += get_seg_entry(sbi, segno + i)->mtime; |
| |
| mtime = div_u64(mtime, sbi->segs_per_sec); |
| |
| if (sit_i->min_mtime > mtime) |
| sit_i->min_mtime = mtime; |
| } |
| sit_i->max_mtime = get_mtime(sbi); |
| mutex_unlock(&sit_i->sentry_lock); |
| } |
| |
| int build_segment_manager(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct f2fs_sm_info *sm_info; |
| int err; |
| |
| sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); |
| if (!sm_info) |
| return -ENOMEM; |
| |
| /* init sm info */ |
| sbi->sm_info = sm_info; |
| INIT_LIST_HEAD(&sm_info->wblist_head); |
| spin_lock_init(&sm_info->wblist_lock); |
| sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); |
| sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); |
| sm_info->segment_count = le32_to_cpu(raw_super->segment_count); |
| sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); |
| sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); |
| sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); |
| sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); |
| |
| err = build_sit_info(sbi); |
| if (err) |
| return err; |
| err = build_free_segmap(sbi); |
| if (err) |
| return err; |
| err = build_curseg(sbi); |
| if (err) |
| return err; |
| |
| /* reinit free segmap based on SIT */ |
| build_sit_entries(sbi); |
| |
| init_free_segmap(sbi); |
| err = build_dirty_segmap(sbi); |
| if (err) |
| return err; |
| |
| init_min_max_mtime(sbi); |
| return 0; |
| } |
| |
| static void discard_dirty_segmap(struct f2fs_sb_info *sbi, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| kfree(dirty_i->dirty_segmap[dirty_type]); |
| dirty_i->nr_dirty[dirty_type] = 0; |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| void reset_victim_segmap(struct f2fs_sb_info *sbi) |
| { |
| unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); |
| memset(DIRTY_I(sbi)->victim_segmap[FG_GC], 0, bitmap_size); |
| } |
| |
| static void destroy_victim_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| kfree(dirty_i->victim_segmap[FG_GC]); |
| kfree(dirty_i->victim_segmap[BG_GC]); |
| } |
| |
| static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| int i; |
| |
| if (!dirty_i) |
| return; |
| |
| /* discard pre-free/dirty segments list */ |
| for (i = 0; i < NR_DIRTY_TYPE; i++) |
| discard_dirty_segmap(sbi, i); |
| |
| destroy_victim_segmap(sbi); |
| SM_I(sbi)->dirty_info = NULL; |
| kfree(dirty_i); |
| } |
| |
| static void destroy_curseg(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *array = SM_I(sbi)->curseg_array; |
| int i; |
| |
| if (!array) |
| return; |
| SM_I(sbi)->curseg_array = NULL; |
| for (i = 0; i < NR_CURSEG_TYPE; i++) |
| kfree(array[i].sum_blk); |
| kfree(array); |
| } |
| |
| static void destroy_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct free_segmap_info *free_i = SM_I(sbi)->free_info; |
| if (!free_i) |
| return; |
| SM_I(sbi)->free_info = NULL; |
| kfree(free_i->free_segmap); |
| kfree(free_i->free_secmap); |
| kfree(free_i); |
| } |
| |
| static void destroy_sit_info(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int start; |
| |
| if (!sit_i) |
| return; |
| |
| if (sit_i->sentries) { |
| for (start = 0; start < TOTAL_SEGS(sbi); start++) { |
| kfree(sit_i->sentries[start].cur_valid_map); |
| kfree(sit_i->sentries[start].ckpt_valid_map); |
| } |
| } |
| vfree(sit_i->sentries); |
| vfree(sit_i->sec_entries); |
| kfree(sit_i->dirty_sentries_bitmap); |
| |
| SM_I(sbi)->sit_info = NULL; |
| kfree(sit_i->sit_bitmap); |
| kfree(sit_i); |
| } |
| |
| void destroy_segment_manager(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_sm_info *sm_info = SM_I(sbi); |
| destroy_dirty_segmap(sbi); |
| destroy_curseg(sbi); |
| destroy_free_segmap(sbi); |
| destroy_sit_info(sbi); |
| sbi->sm_info = NULL; |
| kfree(sm_info); |
| } |