blob: f8d0bd86ff956a33c85bc96645e4f28bb98ccf63 [file] [log] [blame]
/*
* Digital Audio (PCM) abstract layer
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
* Abramo Bagnara <abramo@alsa-project.org>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/math64.h>
#include <linux/export.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/tlv.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/timer.h>
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
#define CREATE_TRACE_POINTS
#include "pcm_trace.h"
#else
#define trace_hwptr(substream, pos, in_interrupt)
#define trace_xrun(substream)
#define trace_hw_ptr_error(substream, reason)
#endif
#define STRING_LENGTH_OF_INT 12
#define MAX_USR_CTRL_CNT 128
/*
* fill ring buffer with silence
* runtime->silence_start: starting pointer to silence area
* runtime->silence_filled: size filled with silence
* runtime->silence_threshold: threshold from application
* runtime->silence_size: maximal size from application
*
* when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
*/
void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
{
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t frames, ofs, transfer;
if (runtime->silence_size < runtime->boundary) {
snd_pcm_sframes_t noise_dist, n;
if (runtime->silence_start != runtime->control->appl_ptr) {
n = runtime->control->appl_ptr - runtime->silence_start;
if (n < 0)
n += runtime->boundary;
if ((snd_pcm_uframes_t)n < runtime->silence_filled)
runtime->silence_filled -= n;
else
runtime->silence_filled = 0;
runtime->silence_start = runtime->control->appl_ptr;
}
if (runtime->silence_filled >= runtime->buffer_size)
return;
noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
return;
frames = runtime->silence_threshold - noise_dist;
if (frames > runtime->silence_size)
frames = runtime->silence_size;
} else {
if (new_hw_ptr == ULONG_MAX) { /* initialization */
snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
if (avail > runtime->buffer_size)
avail = runtime->buffer_size;
runtime->silence_filled = avail > 0 ? avail : 0;
runtime->silence_start = (runtime->status->hw_ptr +
runtime->silence_filled) %
runtime->boundary;
} else {
ofs = runtime->status->hw_ptr;
frames = new_hw_ptr - ofs;
if ((snd_pcm_sframes_t)frames < 0)
frames += runtime->boundary;
runtime->silence_filled -= frames;
if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
runtime->silence_filled = 0;
runtime->silence_start = new_hw_ptr;
} else {
runtime->silence_start = ofs;
}
}
frames = runtime->buffer_size - runtime->silence_filled;
}
if (snd_BUG_ON(frames > runtime->buffer_size))
return;
if (frames == 0)
return;
ofs = runtime->silence_start % runtime->buffer_size;
while (frames > 0) {
transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
if (substream->ops->silence) {
int err;
err = substream->ops->silence(substream, -1, ofs, transfer);
snd_BUG_ON(err < 0);
} else {
char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
}
} else {
unsigned int c;
unsigned int channels = runtime->channels;
if (substream->ops->silence) {
for (c = 0; c < channels; ++c) {
int err;
err = substream->ops->silence(substream, c, ofs, transfer);
snd_BUG_ON(err < 0);
}
} else {
size_t dma_csize = runtime->dma_bytes / channels;
for (c = 0; c < channels; ++c) {
char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
}
}
}
runtime->silence_filled += transfer;
frames -= transfer;
ofs = 0;
}
}
#ifdef CONFIG_SND_DEBUG
void snd_pcm_debug_name(struct snd_pcm_substream *substream,
char *name, size_t len)
{
snprintf(name, len, "pcmC%dD%d%c:%d",
substream->pcm->card->number,
substream->pcm->device,
substream->stream ? 'c' : 'p',
substream->number);
}
EXPORT_SYMBOL(snd_pcm_debug_name);
#endif
#define XRUN_DEBUG_BASIC (1<<0)
#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
#define xrun_debug(substream, mask) \
((substream)->pstr->xrun_debug & (mask))
#else
#define xrun_debug(substream, mask) 0
#endif
#define dump_stack_on_xrun(substream) do { \
if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
dump_stack(); \
} while (0)
static void xrun(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
trace_xrun(substream);
if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
char name[16];
snd_pcm_debug_name(substream, name, sizeof(name));
pcm_warn(substream->pcm, "XRUN: %s\n", name);
dump_stack_on_xrun(substream);
}
}
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
do { \
trace_hw_ptr_error(substream, reason); \
if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
(in_interrupt) ? 'Q' : 'P', ##args); \
dump_stack_on_xrun(substream); \
} \
} while (0)
#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
#define hw_ptr_error(substream, fmt, args...) do { } while (0)
#endif
int snd_pcm_update_state(struct snd_pcm_substream *substream,
struct snd_pcm_runtime *runtime)
{
snd_pcm_uframes_t avail;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
avail = snd_pcm_playback_avail(runtime);
else
avail = snd_pcm_capture_avail(runtime);
if (avail > runtime->avail_max)
runtime->avail_max = avail;
if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
if (avail >= runtime->buffer_size) {
snd_pcm_drain_done(substream);
return -EPIPE;
}
} else {
if (avail >= runtime->stop_threshold) {
xrun(substream);
return -EPIPE;
}
}
if (runtime->twake) {
if (avail >= runtime->twake)
wake_up(&runtime->tsleep);
} else if (avail >= runtime->control->avail_min)
wake_up(&runtime->sleep);
return 0;
}
static void update_audio_tstamp(struct snd_pcm_substream *substream,
struct timespec *curr_tstamp,
struct timespec *audio_tstamp)
{
struct snd_pcm_runtime *runtime = substream->runtime;
u64 audio_frames, audio_nsecs;
struct timespec driver_tstamp;
if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
return;
if (!(substream->ops->get_time_info) ||
(runtime->audio_tstamp_report.actual_type ==
SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
/*
* provide audio timestamp derived from pointer position
* add delay only if requested
*/
audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
if (runtime->audio_tstamp_config.report_delay) {
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
audio_frames -= runtime->delay;
else
audio_frames += runtime->delay;
}
audio_nsecs = div_u64(audio_frames * 1000000000LL,
runtime->rate);
*audio_tstamp = ns_to_timespec(audio_nsecs);
}
runtime->status->audio_tstamp = *audio_tstamp;
runtime->status->tstamp = *curr_tstamp;
/*
* re-take a driver timestamp to let apps detect if the reference tstamp
* read by low-level hardware was provided with a delay
*/
snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
runtime->driver_tstamp = driver_tstamp;
}
static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
unsigned int in_interrupt)
{
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t pos;
snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
snd_pcm_sframes_t hdelta, delta;
unsigned long jdelta;
unsigned long curr_jiffies;
struct timespec curr_tstamp;
struct timespec audio_tstamp;
int crossed_boundary = 0;
old_hw_ptr = runtime->status->hw_ptr;
/*
* group pointer, time and jiffies reads to allow for more
* accurate correlations/corrections.
* The values are stored at the end of this routine after
* corrections for hw_ptr position
*/
pos = substream->ops->pointer(substream);
curr_jiffies = jiffies;
if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
if ((substream->ops->get_time_info) &&
(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
substream->ops->get_time_info(substream, &curr_tstamp,
&audio_tstamp,
&runtime->audio_tstamp_config,
&runtime->audio_tstamp_report);
/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
} else
snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
}
if (pos == SNDRV_PCM_POS_XRUN) {
xrun(substream);
return -EPIPE;
}
if (pos >= runtime->buffer_size) {
if (printk_ratelimit()) {
char name[16];
snd_pcm_debug_name(substream, name, sizeof(name));
pcm_err(substream->pcm,
"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
name, pos, runtime->buffer_size,
runtime->period_size);
}
pos = 0;
}
pos -= pos % runtime->min_align;
trace_hwptr(substream, pos, in_interrupt);
hw_base = runtime->hw_ptr_base;
new_hw_ptr = hw_base + pos;
if (in_interrupt) {
/* we know that one period was processed */
/* delta = "expected next hw_ptr" for in_interrupt != 0 */
delta = runtime->hw_ptr_interrupt + runtime->period_size;
if (delta > new_hw_ptr) {
/* check for double acknowledged interrupts */
hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
hw_base += runtime->buffer_size;
if (hw_base >= runtime->boundary) {
hw_base = 0;
crossed_boundary++;
}
new_hw_ptr = hw_base + pos;
goto __delta;
}
}
}
/* new_hw_ptr might be lower than old_hw_ptr in case when */
/* pointer crosses the end of the ring buffer */
if (new_hw_ptr < old_hw_ptr) {
hw_base += runtime->buffer_size;
if (hw_base >= runtime->boundary) {
hw_base = 0;
crossed_boundary++;
}
new_hw_ptr = hw_base + pos;
}
__delta:
delta = new_hw_ptr - old_hw_ptr;
if (delta < 0)
delta += runtime->boundary;
if (runtime->no_period_wakeup) {
snd_pcm_sframes_t xrun_threshold;
/*
* Without regular period interrupts, we have to check
* the elapsed time to detect xruns.
*/
jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
if ((jdelta < runtime->hw_ptr_buffer_jiffies / 2) ||
(runtime->hw_ptr_buffer_jiffies <= 0))
goto no_delta_check;
hdelta = jdelta - delta * HZ / runtime->rate;
xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
while (hdelta > xrun_threshold) {
delta += runtime->buffer_size;
hw_base += runtime->buffer_size;
if (hw_base >= runtime->boundary) {
hw_base = 0;
crossed_boundary++;
}
new_hw_ptr = hw_base + pos;
hdelta -= runtime->hw_ptr_buffer_jiffies;
}
goto no_delta_check;
}
/* something must be really wrong */
if (delta >= runtime->buffer_size + runtime->period_size) {
hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
"(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
substream->stream, (long)pos,
(long)new_hw_ptr, (long)old_hw_ptr);
return 0;
}
/* Do jiffies check only in xrun_debug mode */
if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
goto no_jiffies_check;
/* Skip the jiffies check for hardwares with BATCH flag.
* Such hardware usually just increases the position at each IRQ,
* thus it can't give any strange position.
*/
if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
goto no_jiffies_check;
hdelta = delta;
if (hdelta < runtime->delay)
goto no_jiffies_check;
hdelta -= runtime->delay;
jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
delta = jdelta /
(((runtime->period_size * HZ) / runtime->rate)
+ HZ/100);
/* move new_hw_ptr according jiffies not pos variable */
new_hw_ptr = old_hw_ptr;
hw_base = delta;
/* use loop to avoid checks for delta overflows */
/* the delta value is small or zero in most cases */
while (delta > 0) {
new_hw_ptr += runtime->period_size;
if (new_hw_ptr >= runtime->boundary) {
new_hw_ptr -= runtime->boundary;
crossed_boundary--;
}
delta--;
}
/* align hw_base to buffer_size */
hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
"(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
(long)pos, (long)hdelta,
(long)runtime->period_size, jdelta,
((hdelta * HZ) / runtime->rate), hw_base,
(unsigned long)old_hw_ptr,
(unsigned long)new_hw_ptr);
/* reset values to proper state */
delta = 0;
hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
}
no_jiffies_check:
if (delta > runtime->period_size + runtime->period_size / 2) {
hw_ptr_error(substream, in_interrupt,
"Lost interrupts?",
"(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
substream->stream, (long)delta,
(long)new_hw_ptr,
(long)old_hw_ptr);
}
no_delta_check:
if (runtime->status->hw_ptr == new_hw_ptr) {
update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
return 0;
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
runtime->silence_size > 0)
snd_pcm_playback_silence(substream, new_hw_ptr);
if (in_interrupt) {
delta = new_hw_ptr - runtime->hw_ptr_interrupt;
if (delta < 0)
delta += runtime->boundary;
delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
runtime->hw_ptr_interrupt += delta;
if (runtime->hw_ptr_interrupt >= runtime->boundary)
runtime->hw_ptr_interrupt -= runtime->boundary;
}
runtime->hw_ptr_base = hw_base;
runtime->status->hw_ptr = new_hw_ptr;
runtime->hw_ptr_jiffies = curr_jiffies;
if (crossed_boundary) {
snd_BUG_ON(crossed_boundary != 1);
runtime->hw_ptr_wrap += runtime->boundary;
}
update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
return snd_pcm_update_state(substream, runtime);
}
/* CAUTION: call it with irq disabled */
int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
{
return snd_pcm_update_hw_ptr0(substream, 0);
}
/**
* snd_pcm_set_ops - set the PCM operators
* @pcm: the pcm instance
* @direction: stream direction, SNDRV_PCM_STREAM_XXX
* @ops: the operator table
*
* Sets the given PCM operators to the pcm instance.
*/
void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
const struct snd_pcm_ops *ops)
{
struct snd_pcm_str *stream = &pcm->streams[direction];
struct snd_pcm_substream *substream;
for (substream = stream->substream; substream != NULL; substream = substream->next)
substream->ops = ops;
}
EXPORT_SYMBOL(snd_pcm_set_ops);
/**
* snd_pcm_sync - set the PCM sync id
* @substream: the pcm substream
*
* Sets the PCM sync identifier for the card.
*/
void snd_pcm_set_sync(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
runtime->sync.id32[0] = substream->pcm->card->number;
runtime->sync.id32[1] = -1;
runtime->sync.id32[2] = -1;
runtime->sync.id32[3] = -1;
}
EXPORT_SYMBOL(snd_pcm_set_sync);
/*
* Standard ioctl routine
*/
static inline unsigned int div32(unsigned int a, unsigned int b,
unsigned int *r)
{
if (b == 0) {
*r = 0;
return UINT_MAX;
}
*r = a % b;
return a / b;
}
static inline unsigned int div_down(unsigned int a, unsigned int b)
{
if (b == 0)
return UINT_MAX;
return a / b;
}
static inline unsigned int div_up(unsigned int a, unsigned int b)
{
unsigned int r;
unsigned int q;
if (b == 0)
return UINT_MAX;
q = div32(a, b, &r);
if (r)
++q;
return q;
}
static inline unsigned int mul(unsigned int a, unsigned int b)
{
if (a == 0)
return 0;
if (div_down(UINT_MAX, a) < b)
return UINT_MAX;
return a * b;
}
static inline unsigned int muldiv32(unsigned int a, unsigned int b,
unsigned int c, unsigned int *r)
{
u_int64_t n = (u_int64_t) a * b;
if (c == 0) {
snd_BUG_ON(!n);
*r = 0;
return UINT_MAX;
}
n = div_u64_rem(n, c, r);
if (n >= UINT_MAX) {
*r = 0;
return UINT_MAX;
}
return n;
}
/**
* snd_interval_refine - refine the interval value of configurator
* @i: the interval value to refine
* @v: the interval value to refer to
*
* Refines the interval value with the reference value.
* The interval is changed to the range satisfying both intervals.
* The interval status (min, max, integer, etc.) are evaluated.
*
* Return: Positive if the value is changed, zero if it's not changed, or a
* negative error code.
*/
int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
{
int changed = 0;
if (snd_BUG_ON(snd_interval_empty(i)))
return -EINVAL;
if (i->min < v->min) {
i->min = v->min;
i->openmin = v->openmin;
changed = 1;
} else if (i->min == v->min && !i->openmin && v->openmin) {
i->openmin = 1;
changed = 1;
}
if (i->max > v->max) {
i->max = v->max;
i->openmax = v->openmax;
changed = 1;
} else if (i->max == v->max && !i->openmax && v->openmax) {
i->openmax = 1;
changed = 1;
}
if (!i->integer && v->integer) {
i->integer = 1;
changed = 1;
}
if (i->integer) {
if (i->openmin) {
i->min++;
i->openmin = 0;
}
if (i->openmax) {
i->max--;
i->openmax = 0;
}
} else if (!i->openmin && !i->openmax && i->min == i->max)
i->integer = 1;
if (snd_interval_checkempty(i)) {
snd_interval_none(i);
return -EINVAL;
}
return changed;
}
EXPORT_SYMBOL(snd_interval_refine);
static int snd_interval_refine_first(struct snd_interval *i)
{
if (snd_BUG_ON(snd_interval_empty(i)))
return -EINVAL;
if (snd_interval_single(i))
return 0;
i->max = i->min;
i->openmax = i->openmin;
if (i->openmax)
i->max++;
return 1;
}
static int snd_interval_refine_last(struct snd_interval *i)
{
if (snd_BUG_ON(snd_interval_empty(i)))
return -EINVAL;
if (snd_interval_single(i))
return 0;
i->min = i->max;
i->openmin = i->openmax;
if (i->openmin)
i->min--;
return 1;
}
void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
{
if (a->empty || b->empty) {
snd_interval_none(c);
return;
}
c->empty = 0;
c->min = mul(a->min, b->min);
c->openmin = (a->openmin || b->openmin);
c->max = mul(a->max, b->max);
c->openmax = (a->openmax || b->openmax);
c->integer = (a->integer && b->integer);
}
/**
* snd_interval_div - refine the interval value with division
* @a: dividend
* @b: divisor
* @c: quotient
*
* c = a / b
*
* Returns non-zero if the value is changed, zero if not changed.
*/
void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
{
unsigned int r;
if (a->empty || b->empty) {
snd_interval_none(c);
return;
}
c->empty = 0;
c->min = div32(a->min, b->max, &r);
c->openmin = (r || a->openmin || b->openmax);
if (b->min > 0) {
c->max = div32(a->max, b->min, &r);
if (r) {
c->max++;
c->openmax = 1;
} else
c->openmax = (a->openmax || b->openmin);
} else {
c->max = UINT_MAX;
c->openmax = 0;
}
c->integer = 0;
}
/**
* snd_interval_muldivk - refine the interval value
* @a: dividend 1
* @b: dividend 2
* @k: divisor (as integer)
* @c: result
*
* c = a * b / k
*
* Returns non-zero if the value is changed, zero if not changed.
*/
void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
unsigned int k, struct snd_interval *c)
{
unsigned int r;
if (a->empty || b->empty) {
snd_interval_none(c);
return;
}
c->empty = 0;
c->min = muldiv32(a->min, b->min, k, &r);
c->openmin = (r || a->openmin || b->openmin);
c->max = muldiv32(a->max, b->max, k, &r);
if (r) {
c->max++;
c->openmax = 1;
} else
c->openmax = (a->openmax || b->openmax);
c->integer = 0;
}
/**
* snd_interval_mulkdiv - refine the interval value
* @a: dividend 1
* @k: dividend 2 (as integer)
* @b: divisor
* @c: result
*
* c = a * k / b
*
* Returns non-zero if the value is changed, zero if not changed.
*/
void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
const struct snd_interval *b, struct snd_interval *c)
{
unsigned int r;
if (a->empty || b->empty) {
snd_interval_none(c);
return;
}
c->empty = 0;
c->min = muldiv32(a->min, k, b->max, &r);
c->openmin = (r || a->openmin || b->openmax);
if (b->min > 0) {
c->max = muldiv32(a->max, k, b->min, &r);
if (r) {
c->max++;
c->openmax = 1;
} else
c->openmax = (a->openmax || b->openmin);
} else {
c->max = UINT_MAX;
c->openmax = 0;
}
c->integer = 0;
}
/* ---- */
/**
* snd_interval_ratnum - refine the interval value
* @i: interval to refine
* @rats_count: number of ratnum_t
* @rats: ratnum_t array
* @nump: pointer to store the resultant numerator
* @denp: pointer to store the resultant denominator
*
* Return: Positive if the value is changed, zero if it's not changed, or a
* negative error code.
*/
int snd_interval_ratnum(struct snd_interval *i,
unsigned int rats_count, const struct snd_ratnum *rats,
unsigned int *nump, unsigned int *denp)
{
unsigned int best_num, best_den;
int best_diff;
unsigned int k;
struct snd_interval t;
int err;
unsigned int result_num, result_den;
int result_diff;
best_num = best_den = best_diff = 0;
for (k = 0; k < rats_count; ++k) {
unsigned int num = rats[k].num;
unsigned int den;
unsigned int q = i->min;
int diff;
if (q == 0)
q = 1;
den = div_up(num, q);
if (den < rats[k].den_min)
continue;
if (den > rats[k].den_max)
den = rats[k].den_max;
else {
unsigned int r;
r = (den - rats[k].den_min) % rats[k].den_step;
if (r != 0)
den -= r;
}
diff = num - q * den;
if (diff < 0)
diff = -diff;
if (best_num == 0 ||
diff * best_den < best_diff * den) {
best_diff = diff;
best_den = den;
best_num = num;
}
}
if (best_den == 0) {
i->empty = 1;
return -EINVAL;
}
t.min = div_down(best_num, best_den);
t.openmin = !!(best_num % best_den);
result_num = best_num;
result_diff = best_diff;
result_den = best_den;
best_num = best_den = best_diff = 0;
for (k = 0; k < rats_count; ++k) {
unsigned int num = rats[k].num;
unsigned int den;
unsigned int q = i->max;
int diff;
if (q == 0) {
i->empty = 1;
return -EINVAL;
}
den = div_down(num, q);
if (den > rats[k].den_max)
continue;
if (den < rats[k].den_min)
den = rats[k].den_min;
else {
unsigned int r;
r = (den - rats[k].den_min) % rats[k].den_step;
if (r != 0)
den += rats[k].den_step - r;
}
diff = q * den - num;
if (diff < 0)
diff = -diff;
if (best_num == 0 ||
diff * best_den < best_diff * den) {
best_diff = diff;
best_den = den;
best_num = num;
}
}
if (best_den == 0) {
i->empty = 1;
return -EINVAL;
}
t.max = div_up(best_num, best_den);
t.openmax = !!(best_num % best_den);
t.integer = 0;
err = snd_interval_refine(i, &t);
if (err < 0)
return err;
if (snd_interval_single(i)) {
if (best_diff * result_den < result_diff * best_den) {
result_num = best_num;
result_den = best_den;
}
if (nump)
*nump = result_num;
if (denp)
*denp = result_den;
}
return err;
}
EXPORT_SYMBOL(snd_interval_ratnum);
/**
* snd_interval_ratden - refine the interval value
* @i: interval to refine
* @rats_count: number of struct ratden
* @rats: struct ratden array
* @nump: pointer to store the resultant numerator
* @denp: pointer to store the resultant denominator
*
* Return: Positive if the value is changed, zero if it's not changed, or a
* negative error code.
*/
static int snd_interval_ratden(struct snd_interval *i,
unsigned int rats_count,
const struct snd_ratden *rats,
unsigned int *nump, unsigned int *denp)
{
unsigned int best_num, best_diff, best_den;
unsigned int k;
struct snd_interval t;
int err;
best_num = best_den = best_diff = 0;
for (k = 0; k < rats_count; ++k) {
unsigned int num;
unsigned int den = rats[k].den;
unsigned int q = i->min;
int diff;
num = mul(q, den);
if (num > rats[k].num_max)
continue;
if (num < rats[k].num_min)
num = rats[k].num_max;
else {
unsigned int r;
r = (num - rats[k].num_min) % rats[k].num_step;
if (r != 0)
num += rats[k].num_step - r;
}
diff = num - q * den;
if (best_num == 0 ||
diff * best_den < best_diff * den) {
best_diff = diff;
best_den = den;
best_num = num;
}
}
if (best_den == 0) {
i->empty = 1;
return -EINVAL;
}
t.min = div_down(best_num, best_den);
t.openmin = !!(best_num % best_den);
best_num = best_den = best_diff = 0;
for (k = 0; k < rats_count; ++k) {
unsigned int num;
unsigned int den = rats[k].den;
unsigned int q = i->max;
int diff;
num = mul(q, den);
if (num < rats[k].num_min)
continue;
if (num > rats[k].num_max)
num = rats[k].num_max;
else {
unsigned int r;
r = (num - rats[k].num_min) % rats[k].num_step;
if (r != 0)
num -= r;
}
diff = q * den - num;
if (best_num == 0 ||
diff * best_den < best_diff * den) {
best_diff = diff;
best_den = den;
best_num = num;
}
}
if (best_den == 0) {
i->empty = 1;
return -EINVAL;
}
t.max = div_up(best_num, best_den);
t.openmax = !!(best_num % best_den);
t.integer = 0;
err = snd_interval_refine(i, &t);
if (err < 0)
return err;
if (snd_interval_single(i)) {
if (nump)
*nump = best_num;
if (denp)
*denp = best_den;
}
return err;
}
/**
* snd_interval_list - refine the interval value from the list
* @i: the interval value to refine
* @count: the number of elements in the list
* @list: the value list
* @mask: the bit-mask to evaluate
*
* Refines the interval value from the list.
* When mask is non-zero, only the elements corresponding to bit 1 are
* evaluated.
*
* Return: Positive if the value is changed, zero if it's not changed, or a
* negative error code.
*/
int snd_interval_list(struct snd_interval *i, unsigned int count,
const unsigned int *list, unsigned int mask)
{
unsigned int k;
struct snd_interval list_range;
if (!count) {
i->empty = 1;
return -EINVAL;
}
snd_interval_any(&list_range);
list_range.min = UINT_MAX;
list_range.max = 0;
for (k = 0; k < count; k++) {
if (mask && !(mask & (1 << k)))
continue;
if (!snd_interval_test(i, list[k]))
continue;
list_range.min = min(list_range.min, list[k]);
list_range.max = max(list_range.max, list[k]);
}
return snd_interval_refine(i, &list_range);
}
EXPORT_SYMBOL(snd_interval_list);
/**
* snd_interval_ranges - refine the interval value from the list of ranges
* @i: the interval value to refine
* @count: the number of elements in the list of ranges
* @ranges: the ranges list
* @mask: the bit-mask to evaluate
*
* Refines the interval value from the list of ranges.
* When mask is non-zero, only the elements corresponding to bit 1 are
* evaluated.
*
* Return: Positive if the value is changed, zero if it's not changed, or a
* negative error code.
*/
int snd_interval_ranges(struct snd_interval *i, unsigned int count,
const struct snd_interval *ranges, unsigned int mask)
{
unsigned int k;
struct snd_interval range_union;
struct snd_interval range;
if (!count) {
snd_interval_none(i);
return -EINVAL;
}
snd_interval_any(&range_union);
range_union.min = UINT_MAX;
range_union.max = 0;
for (k = 0; k < count; k++) {
if (mask && !(mask & (1 << k)))
continue;
snd_interval_copy(&range, &ranges[k]);
if (snd_interval_refine(&range, i) < 0)
continue;
if (snd_interval_empty(&range))
continue;
if (range.min < range_union.min) {
range_union.min = range.min;
range_union.openmin = 1;
}
if (range.min == range_union.min && !range.openmin)
range_union.openmin = 0;
if (range.max > range_union.max) {
range_union.max = range.max;
range_union.openmax = 1;
}
if (range.max == range_union.max && !range.openmax)
range_union.openmax = 0;
}
return snd_interval_refine(i, &range_union);
}
EXPORT_SYMBOL(snd_interval_ranges);
static int snd_interval_step(struct snd_interval *i, unsigned int step)
{
unsigned int n;
int changed = 0;
n = i->min % step;
if (n != 0 || i->openmin) {
i->min += step - n;
i->openmin = 0;
changed = 1;
}
n = i->max % step;
if (n != 0 || i->openmax) {
i->max -= n;
i->openmax = 0;
changed = 1;
}
if (snd_interval_checkempty(i)) {
i->empty = 1;
return -EINVAL;
}
return changed;
}
/* Info constraints helpers */
/**
* snd_pcm_hw_rule_add - add the hw-constraint rule
* @runtime: the pcm runtime instance
* @cond: condition bits
* @var: the variable to evaluate
* @func: the evaluation function
* @private: the private data pointer passed to function
* @dep: the dependent variables
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
int var,
snd_pcm_hw_rule_func_t func, void *private,
int dep, ...)
{
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
struct snd_pcm_hw_rule *c;
unsigned int k;
va_list args;
va_start(args, dep);
if (constrs->rules_num >= constrs->rules_all) {
struct snd_pcm_hw_rule *new;
unsigned int new_rules = constrs->rules_all + 16;
new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
if (!new) {
va_end(args);
return -ENOMEM;
}
if (constrs->rules) {
memcpy(new, constrs->rules,
constrs->rules_num * sizeof(*c));
kfree(constrs->rules);
}
constrs->rules = new;
constrs->rules_all = new_rules;
}
c = &constrs->rules[constrs->rules_num];
c->cond = cond;
c->func = func;
c->var = var;
c->private = private;
k = 0;
while (1) {
if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
va_end(args);
return -EINVAL;
}
c->deps[k++] = dep;
if (dep < 0)
break;
dep = va_arg(args, int);
}
constrs->rules_num++;
va_end(args);
return 0;
}
EXPORT_SYMBOL(snd_pcm_hw_rule_add);
/**
* snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
* @runtime: PCM runtime instance
* @var: hw_params variable to apply the mask
* @mask: the bitmap mask
*
* Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
u_int32_t mask)
{
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
struct snd_mask *maskp = constrs_mask(constrs, var);
*maskp->bits &= mask;
memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
if (*maskp->bits == 0)
return -EINVAL;
return 0;
}
/**
* snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
* @runtime: PCM runtime instance
* @var: hw_params variable to apply the mask
* @mask: the 64bit bitmap mask
*
* Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
u_int64_t mask)
{
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
struct snd_mask *maskp = constrs_mask(constrs, var);
maskp->bits[0] &= (u_int32_t)mask;
maskp->bits[1] &= (u_int32_t)(mask >> 32);
memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
if (! maskp->bits[0] && ! maskp->bits[1])
return -EINVAL;
return 0;
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
/**
* snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
* @runtime: PCM runtime instance
* @var: hw_params variable to apply the integer constraint
*
* Apply the constraint of integer to an interval parameter.
*
* Return: Positive if the value is changed, zero if it's not changed, or a
* negative error code.
*/
int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
{
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
return snd_interval_setinteger(constrs_interval(constrs, var));
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
/**
* snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
* @runtime: PCM runtime instance
* @var: hw_params variable to apply the range
* @min: the minimal value
* @max: the maximal value
*
* Apply the min/max range constraint to an interval parameter.
*
* Return: Positive if the value is changed, zero if it's not changed, or a
* negative error code.
*/
int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
unsigned int min, unsigned int max)
{
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
struct snd_interval t;
t.min = min;
t.max = max;
t.openmin = t.openmax = 0;
t.integer = 0;
return snd_interval_refine(constrs_interval(constrs, var), &t);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_pcm_hw_constraint_list *list = rule->private;
return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
}
/**
* snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
* @runtime: PCM runtime instance
* @cond: condition bits
* @var: hw_params variable to apply the list constraint
* @l: list
*
* Apply the list of constraints to an interval parameter.
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_list *l)
{
return snd_pcm_hw_rule_add(runtime, cond, var,
snd_pcm_hw_rule_list, (void *)l,
var, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_pcm_hw_constraint_ranges *r = rule->private;
return snd_interval_ranges(hw_param_interval(params, rule->var),
r->count, r->ranges, r->mask);
}
/**
* snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
* @runtime: PCM runtime instance
* @cond: condition bits
* @var: hw_params variable to apply the list of range constraints
* @r: ranges
*
* Apply the list of range constraints to an interval parameter.
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_ranges *r)
{
return snd_pcm_hw_rule_add(runtime, cond, var,
snd_pcm_hw_rule_ranges, (void *)r,
var, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
unsigned int num = 0, den = 0;
int err;
err = snd_interval_ratnum(hw_param_interval(params, rule->var),
r->nrats, r->rats, &num, &den);
if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
params->rate_num = num;
params->rate_den = den;
}
return err;
}
/**
* snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
* @runtime: PCM runtime instance
* @cond: condition bits
* @var: hw_params variable to apply the ratnums constraint
* @r: struct snd_ratnums constriants
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_ratnums *r)
{
return snd_pcm_hw_rule_add(runtime, cond, var,
snd_pcm_hw_rule_ratnums, (void *)r,
var, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
unsigned int num = 0, den = 0;
int err = snd_interval_ratden(hw_param_interval(params, rule->var),
r->nrats, r->rats, &num, &den);
if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
params->rate_num = num;
params->rate_den = den;
}
return err;
}
/**
* snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
* @runtime: PCM runtime instance
* @cond: condition bits
* @var: hw_params variable to apply the ratdens constraint
* @r: struct snd_ratdens constriants
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_ratdens *r)
{
return snd_pcm_hw_rule_add(runtime, cond, var,
snd_pcm_hw_rule_ratdens, (void *)r,
var, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
unsigned int l = (unsigned long) rule->private;
int width = l & 0xffff;
unsigned int msbits = l >> 16;
struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
if (!snd_interval_single(i))
return 0;
if ((snd_interval_value(i) == width) ||
(width == 0 && snd_interval_value(i) > msbits))
params->msbits = min_not_zero(params->msbits, msbits);
return 0;
}
/**
* snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
* @runtime: PCM runtime instance
* @cond: condition bits
* @width: sample bits width
* @msbits: msbits width
*
* This constraint will set the number of most significant bits (msbits) if a
* sample format with the specified width has been select. If width is set to 0
* the msbits will be set for any sample format with a width larger than the
* specified msbits.
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
unsigned int cond,
unsigned int width,
unsigned int msbits)
{
unsigned long l = (msbits << 16) | width;
return snd_pcm_hw_rule_add(runtime, cond, -1,
snd_pcm_hw_rule_msbits,
(void*) l,
SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
unsigned long step = (unsigned long) rule->private;
return snd_interval_step(hw_param_interval(params, rule->var), step);
}
/**
* snd_pcm_hw_constraint_step - add a hw constraint step rule
* @runtime: PCM runtime instance
* @cond: condition bits
* @var: hw_params variable to apply the step constraint
* @step: step size
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
unsigned long step)
{
return snd_pcm_hw_rule_add(runtime, cond, var,
snd_pcm_hw_rule_step, (void *) step,
var, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
{
static unsigned int pow2_sizes[] = {
1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
};
return snd_interval_list(hw_param_interval(params, rule->var),
ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
}
/**
* snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
* @runtime: PCM runtime instance
* @cond: condition bits
* @var: hw_params variable to apply the power-of-2 constraint
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var)
{
return snd_pcm_hw_rule_add(runtime, cond, var,
snd_pcm_hw_rule_pow2, NULL,
var, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
struct snd_interval *rate;
rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
return snd_interval_list(rate, 1, &base_rate, 0);
}
/**
* snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
* @runtime: PCM runtime instance
* @base_rate: the rate at which the hardware does not resample
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
unsigned int base_rate)
{
return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
SNDRV_PCM_HW_PARAM_RATE,
snd_pcm_hw_rule_noresample_func,
(void *)(uintptr_t)base_rate,
SNDRV_PCM_HW_PARAM_RATE, -1);
}
EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
if (hw_is_mask(var)) {
snd_mask_any(hw_param_mask(params, var));
params->cmask |= 1 << var;
params->rmask |= 1 << var;
return;
}
if (hw_is_interval(var)) {
snd_interval_any(hw_param_interval(params, var));
params->cmask |= 1 << var;
params->rmask |= 1 << var;
return;
}
snd_BUG();
}
void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
{
unsigned int k;
memset(params, 0, sizeof(*params));
for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
_snd_pcm_hw_param_any(params, k);
for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
_snd_pcm_hw_param_any(params, k);
params->info = ~0U;
}
EXPORT_SYMBOL(_snd_pcm_hw_params_any);
/**
* snd_pcm_hw_param_value - return @params field @var value
* @params: the hw_params instance
* @var: parameter to retrieve
* @dir: pointer to the direction (-1,0,1) or %NULL
*
* Return: The value for field @var if it's fixed in configuration space
* defined by @params. -%EINVAL otherwise.
*/
int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var, int *dir)
{
if (hw_is_mask(var)) {
const struct snd_mask *mask = hw_param_mask_c(params, var);
if (!snd_mask_single(mask))
return -EINVAL;
if (dir)
*dir = 0;
return snd_mask_value(mask);
}
if (hw_is_interval(var)) {
const struct snd_interval *i = hw_param_interval_c(params, var);
if (!snd_interval_single(i))
return -EINVAL;
if (dir)
*dir = i->openmin;
return snd_interval_value(i);
}
return -EINVAL;
}
EXPORT_SYMBOL(snd_pcm_hw_param_value);
void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
if (hw_is_mask(var)) {
snd_mask_none(hw_param_mask(params, var));
params->cmask |= 1 << var;
params->rmask |= 1 << var;
} else if (hw_is_interval(var)) {
snd_interval_none(hw_param_interval(params, var));
params->cmask |= 1 << var;
params->rmask |= 1 << var;
} else {
snd_BUG();
}
}
EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
int changed;
if (hw_is_mask(var))
changed = snd_mask_refine_first(hw_param_mask(params, var));
else if (hw_is_interval(var))
changed = snd_interval_refine_first(hw_param_interval(params, var));
else
return -EINVAL;
if (changed) {
params->cmask |= 1 << var;
params->rmask |= 1 << var;
}
return changed;
}
/**
* snd_pcm_hw_param_first - refine config space and return minimum value
* @pcm: PCM instance
* @params: the hw_params instance
* @var: parameter to retrieve
* @dir: pointer to the direction (-1,0,1) or %NULL
*
* Inside configuration space defined by @params remove from @var all
* values > minimum. Reduce configuration space accordingly.
*
* Return: The minimum, or a negative error code on failure.
*/
int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var, int *dir)
{
int changed = _snd_pcm_hw_param_first(params, var);
if (changed < 0)
return changed;
if (params->rmask) {
int err = snd_pcm_hw_refine(pcm, params);
if (snd_BUG_ON(err < 0))
return err;
}
return snd_pcm_hw_param_value(params, var, dir);
}
EXPORT_SYMBOL(snd_pcm_hw_param_first);
static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
int changed;
if (hw_is_mask(var))
changed = snd_mask_refine_last(hw_param_mask(params, var));
else if (hw_is_interval(var))
changed = snd_interval_refine_last(hw_param_interval(params, var));
else
return -EINVAL;
if (changed) {
params->cmask |= 1 << var;
params->rmask |= 1 << var;
}
return changed;
}
/**
* snd_pcm_hw_param_last - refine config space and return maximum value
* @pcm: PCM instance
* @params: the hw_params instance
* @var: parameter to retrieve
* @dir: pointer to the direction (-1,0,1) or %NULL
*
* Inside configuration space defined by @params remove from @var all
* values < maximum. Reduce configuration space accordingly.
*
* Return: The maximum, or a negative error code on failure.
*/
int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var, int *dir)
{
int changed = _snd_pcm_hw_param_last(params, var);
if (changed < 0)
return changed;
if (params->rmask) {
int err = snd_pcm_hw_refine(pcm, params);
if (snd_BUG_ON(err < 0))
return err;
}
return snd_pcm_hw_param_value(params, var, dir);
}
EXPORT_SYMBOL(snd_pcm_hw_param_last);
/**
* snd_pcm_hw_param_choose - choose a configuration defined by @params
* @pcm: PCM instance
* @params: the hw_params instance
*
* Choose one configuration from configuration space defined by @params.
* The configuration chosen is that obtained fixing in this order:
* first access, first format, first subformat, min channels,
* min rate, min period time, max buffer size, min tick time
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
struct snd_pcm_hw_params *params)
{
static int vars[] = {
SNDRV_PCM_HW_PARAM_ACCESS,
SNDRV_PCM_HW_PARAM_FORMAT,
SNDRV_PCM_HW_PARAM_SUBFORMAT,
SNDRV_PCM_HW_PARAM_CHANNELS,
SNDRV_PCM_HW_PARAM_RATE,
SNDRV_PCM_HW_PARAM_PERIOD_TIME,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
SNDRV_PCM_HW_PARAM_TICK_TIME,
-1
};
int err, *v;
for (v = vars; *v != -1; v++) {
if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
else
err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
if (snd_BUG_ON(err < 0))
return err;
}
return 0;
}
static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
void *arg)
{
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned long flags;
snd_pcm_stream_lock_irqsave(substream, flags);
if (snd_pcm_running(substream) &&
snd_pcm_update_hw_ptr(substream) >= 0)
runtime->status->hw_ptr %= runtime->buffer_size;
else {
runtime->status->hw_ptr = 0;
runtime->hw_ptr_wrap = 0;
}
snd_pcm_stream_unlock_irqrestore(substream, flags);
return 0;
}
static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
void *arg)
{
struct snd_pcm_channel_info *info = arg;
struct snd_pcm_runtime *runtime = substream->runtime;
int width;
if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
info->offset = -1;
return 0;
}
width = snd_pcm_format_physical_width(runtime->format);
if (width < 0)
return width;
info->offset = 0;
switch (runtime->access) {
case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
if ((UINT_MAX/width) < info->channel) {
snd_printd("%s: integer overflow while multiply\n",
__func__);
return -EINVAL;
}
info->first = info->channel * width;
info->step = runtime->channels * width;
break;
case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
{
size_t size = runtime->dma_bytes / runtime->channels;
if ((size > 0) && ((UINT_MAX/(size * 8)) < info->channel)) {
snd_printd("%s: integer overflow while multiply\n",
__func__);
return -EINVAL;
}
info->first = info->channel * size * 8;
info->step = width;
break;
}
default:
snd_BUG();
break;
}
return 0;
}
static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
void *arg)
{
struct snd_pcm_hw_params *params = arg;
snd_pcm_format_t format;
int channels;
ssize_t frame_size;
params->fifo_size = substream->runtime->hw.fifo_size;
if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
format = params_format(params);
channels = params_channels(params);
frame_size = snd_pcm_format_size(format, channels);
if (frame_size > 0)
params->fifo_size /= (unsigned)frame_size;
}
return 0;
}
/**
* snd_pcm_lib_ioctl - a generic PCM ioctl callback
* @substream: the pcm substream instance
* @cmd: ioctl command
* @arg: ioctl argument
*
* Processes the generic ioctl commands for PCM.
* Can be passed as the ioctl callback for PCM ops.
*
* Return: Zero if successful, or a negative error code on failure.
*/
int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
unsigned int cmd, void *arg)
{
switch (cmd) {
case SNDRV_PCM_IOCTL1_RESET:
return snd_pcm_lib_ioctl_reset(substream, arg);
case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
return snd_pcm_lib_ioctl_channel_info(substream, arg);
case SNDRV_PCM_IOCTL1_FIFO_SIZE:
return snd_pcm_lib_ioctl_fifo_size(substream, arg);
}
return -ENXIO;
}
EXPORT_SYMBOL(snd_pcm_lib_ioctl);
/**
* snd_pcm_period_elapsed - update the pcm status for the next period
* @substream: the pcm substream instance
*
* This function is called from the interrupt handler when the
* PCM has processed the period size. It will update the current
* pointer, wake up sleepers, etc.
*
* Even if more than one periods have elapsed since the last call, you
* have to call this only once.
*/
void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime;
unsigned long flags;
if (PCM_RUNTIME_CHECK(substream))
return;
runtime = substream->runtime;
snd_pcm_stream_lock_irqsave(substream, flags);
if (!snd_pcm_running(substream) ||
snd_pcm_update_hw_ptr0(substream, 1) < 0)
goto _end;
#ifdef CONFIG_SND_PCM_TIMER
if (substream->timer_running)
snd_timer_interrupt(substream->timer, 1);
#endif
_end:
kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
snd_pcm_stream_unlock_irqrestore(substream, flags);
}
EXPORT_SYMBOL(snd_pcm_period_elapsed);
/*
* Wait until avail_min data becomes available
* Returns a negative error code if any error occurs during operation.
* The available space is stored on availp. When err = 0 and avail = 0
* on the capture stream, it indicates the stream is in DRAINING state.
*/
static int wait_for_avail(struct snd_pcm_substream *substream,
snd_pcm_uframes_t *availp)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
wait_queue_t wait;
int err = 0;
snd_pcm_uframes_t avail = 0;
long wait_time, tout;
init_waitqueue_entry(&wait, current);
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&runtime->tsleep, &wait);
if (runtime->no_period_wakeup)
wait_time = MAX_SCHEDULE_TIMEOUT;
else {
wait_time = 10;
if (runtime->rate) {
long t = runtime->period_size * 2 / runtime->rate;
wait_time = max(t, wait_time);
}
wait_time = msecs_to_jiffies(wait_time * 1000);
}
for (;;) {
if (signal_pending(current)) {
err = -ERESTARTSYS;
break;
}
/*
* We need to check if space became available already
* (and thus the wakeup happened already) first to close
* the race of space already having become available.
* This check must happen after been added to the waitqueue
* and having current state be INTERRUPTIBLE.
*/
if (is_playback)
avail = snd_pcm_playback_avail(runtime);
else
avail = snd_pcm_capture_avail(runtime);
if (avail >= runtime->twake)
break;
snd_pcm_stream_unlock_irq(substream);
tout = schedule_timeout(wait_time);
snd_pcm_stream_lock_irq(substream);
set_current_state(TASK_INTERRUPTIBLE);
switch (runtime->status->state) {
case SNDRV_PCM_STATE_SUSPENDED:
err = -ESTRPIPE;
goto _endloop;
case SNDRV_PCM_STATE_XRUN:
err = -EPIPE;
goto _endloop;
case SNDRV_PCM_STATE_DRAINING:
if (is_playback)
err = -EPIPE;
else
avail = 0; /* indicate draining */
goto _endloop;
case SNDRV_PCM_STATE_OPEN:
case SNDRV_PCM_STATE_SETUP:
case SNDRV_PCM_STATE_DISCONNECTED:
err = -EBADFD;
goto _endloop;
case SNDRV_PCM_STATE_PAUSED:
continue;
}
if (!tout) {
pcm_dbg(substream->pcm,
"%s write error (DMA or IRQ trouble?)\n",
is_playback ? "playback" : "capture");
err = -EIO;
break;
}
}
_endloop:
set_current_state(TASK_RUNNING);
remove_wait_queue(&runtime->tsleep, &wait);
*availp = avail;
return err;
}
static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
unsigned int hwoff,
unsigned long data, unsigned int off,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
if (substream->ops->copy) {
if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
return err;
} else {
char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
return -EFAULT;
}
return 0;
}
typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
unsigned long data, unsigned int off,
snd_pcm_uframes_t size);
static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
unsigned long data,
snd_pcm_uframes_t size,
int nonblock,
transfer_f transfer)
{
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t xfer = 0;
snd_pcm_uframes_t offset = 0;
snd_pcm_uframes_t avail;
int err = 0;
if (size == 0)
return 0;
snd_pcm_stream_lock_irq(substream);
switch (runtime->status->state) {
case SNDRV_PCM_STATE_PREPARED:
case SNDRV_PCM_STATE_RUNNING:
case SNDRV_PCM_STATE_PAUSED:
break;
case SNDRV_PCM_STATE_XRUN:
err = -EPIPE;
goto _end_unlock;
case SNDRV_PCM_STATE_SUSPENDED:
err = -ESTRPIPE;
goto _end_unlock;
default:
err = -EBADFD;
goto _end_unlock;
}
runtime->twake = runtime->control->avail_min ? : 1;
if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
snd_pcm_update_hw_ptr(substream);
avail = snd_pcm_playback_avail(runtime);
while (size > 0) {
snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
snd_pcm_uframes_t cont;
if (!avail) {
if (nonblock) {
err = -EAGAIN;
goto _end_unlock;
}
runtime->twake = min_t(snd_pcm_uframes_t, size,
runtime->control->avail_min ? : 1);
err = wait_for_avail(substream, &avail);
if (err < 0)
goto _end_unlock;
}
frames = size > avail ? avail : size;
cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
if (frames > cont)
frames = cont;
if (snd_BUG_ON(!frames)) {
runtime->twake = 0;
snd_pcm_stream_unlock_irq(substream);
return -EINVAL;
}
appl_ptr = runtime->control->appl_ptr;
appl_ofs = appl_ptr % runtime->buffer_size;
snd_pcm_stream_unlock_irq(substream);
err = transfer(substream, appl_ofs, data, offset, frames);
snd_pcm_stream_lock_irq(substream);
if (err < 0)
goto _end_unlock;
switch (runtime->status->state) {
case SNDRV_PCM_STATE_XRUN:
err = -EPIPE;
goto _end_unlock;
case SNDRV_PCM_STATE_SUSPENDED:
err = -ESTRPIPE;
goto _end_unlock;
default:
break;
}
appl_ptr += frames;
if (appl_ptr >= runtime->boundary)
appl_ptr -= runtime->boundary;
runtime->control->appl_ptr = appl_ptr;
if (substream->ops->ack)
substream->ops->ack(substream);
offset += frames;
size -= frames;
xfer += frames;
avail -= frames;
if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
err = snd_pcm_start(substream);
if (err < 0)
goto _end_unlock;
}
}
_end_unlock:
runtime->twake = 0;
if (xfer > 0 && err >= 0)
snd_pcm_update_state(substream, runtime);
snd_pcm_stream_unlock_irq(substream);
return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
}
/* sanity-check for read/write methods */
static int pcm_sanity_check(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime;
if (PCM_RUNTIME_CHECK(substream))
return -ENXIO;
/* TODO: consider and -EINVAL here */
if (substream->hw_no_buffer)
snd_printd("%s: warning this PCM is host less\n", __func__);
runtime = substream->runtime;
if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
return -EINVAL;
if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
return -EBADFD;
return 0;
}
snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
{
struct snd_pcm_runtime *runtime;
int nonblock;
int err;
err = pcm_sanity_check(substream);
if (err < 0)
return err;
runtime = substream->runtime;
nonblock = !!(substream->f_flags & O_NONBLOCK);
if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
runtime->channels > 1)
return -EINVAL;
return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
snd_pcm_lib_write_transfer);
}
EXPORT_SYMBOL(snd_pcm_lib_write);
static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
unsigned int hwoff,
unsigned long data, unsigned int off,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
void __user **bufs = (void __user **)data;
int channels = runtime->channels;
int c;
if (substream->ops->copy) {
if (snd_BUG_ON(!substream->ops->silence))
return -EINVAL;
for (c = 0; c < channels; ++c, ++bufs) {
if (*bufs == NULL) {
if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
return err;
} else {
char __user *buf = *bufs + samples_to_bytes(runtime, off);
if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
return err;
}
}
} else {
/* default transfer behaviour */
size_t dma_csize = runtime->dma_bytes / channels;
for (c = 0; c < channels; ++c, ++bufs) {
char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
if (*bufs == NULL) {
snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
} else {
char __user *buf = *bufs + samples_to_bytes(runtime, off);
if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
return -EFAULT;
}
}
}
return 0;
}
snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
void __user **bufs,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime;
int nonblock;
int err;
err = pcm_sanity_check(substream);
if (err < 0)
return err;
runtime = substream->runtime;
nonblock = !!(substream->f_flags & O_NONBLOCK);
if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
return -EINVAL;
return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
nonblock, snd_pcm_lib_writev_transfer);
}
EXPORT_SYMBOL(snd_pcm_lib_writev);
static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
unsigned int hwoff,
unsigned long data, unsigned int off,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
if (substream->ops->copy) {
if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
return err;
} else {
char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
return -EFAULT;
}
return 0;
}
static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
unsigned long data,
snd_pcm_uframes_t size,
int nonblock,
transfer_f transfer)
{
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_uframes_t xfer = 0;
snd_pcm_uframes_t offset = 0;
snd_pcm_uframes_t avail;
int err = 0;
if (size == 0)
return 0;
snd_pcm_stream_lock_irq(substream);
switch (runtime->status->state) {
case SNDRV_PCM_STATE_PREPARED:
if (size >= runtime->start_threshold) {
err = snd_pcm_start(substream);
if (err < 0)
goto _end_unlock;
}
break;
case SNDRV_PCM_STATE_DRAINING:
case SNDRV_PCM_STATE_RUNNING:
case SNDRV_PCM_STATE_PAUSED:
break;
case SNDRV_PCM_STATE_XRUN:
err = -EPIPE;
goto _end_unlock;
case SNDRV_PCM_STATE_SUSPENDED:
err = -ESTRPIPE;
goto _end_unlock;
default:
err = -EBADFD;
goto _end_unlock;
}
runtime->twake = runtime->control->avail_min ? : 1;
if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
snd_pcm_update_hw_ptr(substream);
avail = snd_pcm_capture_avail(runtime);
while (size > 0) {
snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
snd_pcm_uframes_t cont;
if (!avail) {
if (runtime->status->state ==
SNDRV_PCM_STATE_DRAINING) {
snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
goto _end_unlock;
}
if (nonblock) {
err = -EAGAIN;
goto _end_unlock;
}
runtime->twake = min_t(snd_pcm_uframes_t, size,
runtime->control->avail_min ? : 1);
err = wait_for_avail(substream, &avail);
if (err < 0)
goto _end_unlock;
if (!avail)
continue; /* draining */
}
frames = size > avail ? avail : size;
cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
if (frames > cont)
frames = cont;
if (snd_BUG_ON(!frames)) {
runtime->twake = 0;
snd_pcm_stream_unlock_irq(substream);
return -EINVAL;
}
appl_ptr = runtime->control->appl_ptr;
appl_ofs = appl_ptr % runtime->buffer_size;
snd_pcm_stream_unlock_irq(substream);
err = transfer(substream, appl_ofs, data, offset, frames);
snd_pcm_stream_lock_irq(substream);
if (err < 0)
goto _end_unlock;
switch (runtime->status->state) {
case SNDRV_PCM_STATE_XRUN:
err = -EPIPE;
goto _end_unlock;
case SNDRV_PCM_STATE_SUSPENDED:
err = -ESTRPIPE;
goto _end_unlock;
default:
break;
}
appl_ptr += frames;
if (appl_ptr >= runtime->boundary)
appl_ptr -= runtime->boundary;
runtime->control->appl_ptr = appl_ptr;
if (substream->ops->ack)
substream->ops->ack(substream);
offset += frames;
size -= frames;
xfer += frames;
avail -= frames;
}
_end_unlock:
runtime->twake = 0;
if (xfer > 0 && err >= 0)
snd_pcm_update_state(substream, runtime);
snd_pcm_stream_unlock_irq(substream);
return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
}
snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
{
struct snd_pcm_runtime *runtime;
int nonblock;
int err;
err = pcm_sanity_check(substream);
if (err < 0)
return err;
runtime = substream->runtime;
nonblock = !!(substream->f_flags & O_NONBLOCK);
if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
return -EINVAL;
return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
}
EXPORT_SYMBOL(snd_pcm_lib_read);
static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
unsigned int hwoff,
unsigned long data, unsigned int off,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime = substream->runtime;
int err;
void __user **bufs = (void __user **)data;
int channels = runtime->channels;
int c;
if (substream->ops->copy) {
for (c = 0; c < channels; ++c, ++bufs) {
char __user *buf;
if (*bufs == NULL)
continue;
buf = *bufs + samples_to_bytes(runtime, off);
if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
return err;
}
} else {
snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
for (c = 0; c < channels; ++c, ++bufs) {
char *hwbuf;
char __user *buf;
if (*bufs == NULL)
continue;
hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
buf = *bufs + samples_to_bytes(runtime, off);
if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
return -EFAULT;
}
}
return 0;
}
snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
void __user **bufs,
snd_pcm_uframes_t frames)
{
struct snd_pcm_runtime *runtime;
int nonblock;
int err;
err = pcm_sanity_check(substream);
if (err < 0)
return err;
runtime = substream->runtime;
if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
return -EBADFD;
nonblock = !!(substream->f_flags & O_NONBLOCK);
if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
return -EINVAL;
return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
}
EXPORT_SYMBOL(snd_pcm_lib_readv);
/*
* standard channel mapping helpers
*/
/* default channel maps for multi-channel playbacks, up to 8 channels */
const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
{ .channels = 1,
.map = { SNDRV_CHMAP_MONO } },
{ .channels = 2,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
{ .channels = 4,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
{ .channels = 6,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
{ .channels = 8,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
{ }
};
EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
{ .channels = 1,
.map = { SNDRV_CHMAP_MONO } },
{ .channels = 2,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
{ .channels = 4,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
{ .channels = 6,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
{ .channels = 8,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
{ }
};
EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
{
if (ch > info->max_channels)
return false;
return !info->channel_mask || (info->channel_mask & (1U << ch));
}
static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 0;
uinfo->count = info->max_channels;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = SNDRV_CHMAP_LAST;
return 0;
}
/* get callback for channel map ctl element
* stores the channel position firstly matching with the current channels
*/
static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
struct snd_pcm_substream *substream;
const struct snd_pcm_chmap_elem *map;
if (!info->chmap)
return -EINVAL;
substream = snd_pcm_chmap_substream(info, idx);
if (!substream)
return -ENODEV;
memset(ucontrol->value.integer.value, 0,
sizeof(ucontrol->value.integer.value));
if (!substream->runtime)
return 0; /* no channels set */
for (map = info->chmap; map->channels; map++) {
int i;
if (map->channels == substream->runtime->channels &&
valid_chmap_channels(info, map->channels)) {
for (i = 0; i < map->channels; i++)
ucontrol->value.integer.value[i] = map->map[i];
return 0;
}
}
return -EINVAL;
}
/* tlv callback for channel map ctl element
* expands the pre-defined channel maps in a form of TLV
*/
static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *tlv)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
const struct snd_pcm_chmap_elem *map;
unsigned int __user *dst;
int c, count = 0;
if (!info->chmap)
return -EINVAL;
if (size < 8)
return -ENOMEM;
if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
return -EFAULT;
size -= 8;
dst = tlv + 2;
for (map = info->chmap; map->channels; map++) {
int chs_bytes = map->channels * 4;
if (!valid_chmap_channels(info, map->channels))
continue;
if (size < 8)
return -ENOMEM;
if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
put_user(chs_bytes, dst + 1))
return -EFAULT;
dst += 2;
size -= 8;
count += 8;
if (size < chs_bytes)
return -ENOMEM;
size -= chs_bytes;
count += chs_bytes;
for (c = 0; c < map->channels; c++) {
if (put_user(map->map[c], dst))
return -EFAULT;
dst++;
}
}
if (put_user(count, tlv + 1))
return -EFAULT;
return 0;
}
static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
info->pcm->streams[info->stream].chmap_kctl = NULL;
kfree(info);
}
static int pcm_volume_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 0x2000;
return 0;
}
static void pcm_volume_ctl_private_free(struct snd_kcontrol *kcontrol)
{
struct snd_pcm_volume *info = snd_kcontrol_chip(kcontrol);
info->pcm->streams[info->stream].vol_kctl = NULL;
kfree(info);
}
/**
* snd_pcm_add_chmap_ctls - create channel-mapping control elements
* @pcm: the assigned PCM instance
* @stream: stream direction
* @chmap: channel map elements (for query)
* @max_channels: the max number of channels for the stream
* @private_value: the value passed to each kcontrol's private_value field
* @info_ret: store struct snd_pcm_chmap instance if non-NULL
*
* Create channel-mapping control elements assigned to the given PCM stream(s).
* Return: Zero if successful, or a negative error value.
*/
int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
const struct snd_pcm_chmap_elem *chmap,
int max_channels,
unsigned long private_value,
struct snd_pcm_chmap **info_ret)
{
struct snd_pcm_chmap *info;
struct snd_kcontrol_new knew = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.access = SNDRV_CTL_ELEM_ACCESS_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
.info = pcm_chmap_ctl_info,
.get = pcm_chmap_ctl_get,
.tlv.c = pcm_chmap_ctl_tlv,
};
int err;
if (WARN_ON(pcm->streams[stream].chmap_kctl))
return -EBUSY;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->pcm = pcm;
info->stream = stream;
info->chmap = chmap;
info->max_channels = max_channels;
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
knew.name = "Playback Channel Map";
else
knew.name = "Capture Channel Map";
knew.device = pcm->device;
knew.count = pcm->streams[stream].substream_count;
knew.private_value = private_value;
info->kctl = snd_ctl_new1(&knew, info);
if (!info->kctl) {
kfree(info);
return -ENOMEM;
}
info->kctl->private_free = pcm_chmap_ctl_private_free;
err = snd_ctl_add(pcm->card, info->kctl);
if (err < 0)
return err;
pcm->streams[stream].chmap_kctl = info->kctl;
if (info_ret)
*info_ret = info;
return 0;
}
EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
/**
* snd_pcm_add_volume_ctls - create volume control elements
* @pcm: the assigned PCM instance
* @stream: stream direction
* @max_length: the max length of the volume parameter of stream
* @private_value: the value passed to each kcontrol's private_value field
* @info_ret: store struct snd_pcm_volume instance if non-NULL
*
* Create volume control elements assigned to the given PCM stream(s).
* Returns zero if succeed, or a negative error value.
*/
int snd_pcm_add_volume_ctls(struct snd_pcm *pcm, int stream,
const struct snd_pcm_volume_elem *volume,
int max_length,
unsigned long private_value,
struct snd_pcm_volume **info_ret)
{
struct snd_pcm_volume *info;
struct snd_kcontrol_new knew = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = pcm_volume_ctl_info,
};
int err;
int size;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->pcm = pcm;
info->stream = stream;
info->volume = volume;
info->max_length = max_length;
size = sizeof("Playback ") + sizeof(" Volume") +
STRING_LENGTH_OF_INT*sizeof(char) + 1;
knew.name = kzalloc(size, GFP_KERNEL);
if (!knew.name) {
kfree(info);
return -ENOMEM;
}
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
snprintf((char *)knew.name, size, "%s %d %s",
"Playback", pcm->device, "Volume");
else
snprintf((char *)knew.name, size, "%s %d %s",
"Capture", pcm->device, "Volume");
knew.device = pcm->device;
knew.count = pcm->streams[stream].substream_count;
knew.private_value = private_value;
info->kctl = snd_ctl_new1(&knew, info);
if (!info->kctl) {
kfree(info);
kfree(knew.name);
return -ENOMEM;
}
info->kctl->private_free = pcm_volume_ctl_private_free;
err = snd_ctl_add(pcm->card, info->kctl);
if (err < 0) {
kfree(info);
kfree(knew.name);
return -ENOMEM;
}
pcm->streams[stream].vol_kctl = info->kctl;
if (info_ret)
*info_ret = info;
kfree(knew.name);
return 0;
}
EXPORT_SYMBOL(snd_pcm_add_volume_ctls);
static int pcm_usr_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = MAX_USR_CTRL_CNT;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = INT_MAX;
return 0;
}
static void pcm_usr_ctl_private_free(struct snd_kcontrol *kcontrol)
{
struct snd_pcm_usr *info = snd_kcontrol_chip(kcontrol);
info->pcm->streams[info->stream].usr_kctl = NULL;
kfree(info);
}
/**
* snd_pcm_add_usr_ctls - create user control elements
* @pcm: the assigned PCM instance
* @stream: stream direction
* @max_length: the max length of the user parameter of stream
* @private_value: the value passed to each kcontrol's private_value field
* @info_ret: store struct snd_pcm_usr instance if non-NULL
*
* Create usr control elements assigned to the given PCM stream(s).
* Returns zero if succeed, or a negative error value.
*/
int snd_pcm_add_usr_ctls(struct snd_pcm *pcm, int stream,
const struct snd_pcm_usr_elem *usr,
int max_length, int max_kctrl_str_len,
unsigned long private_value,
struct snd_pcm_usr **info_ret)
{
struct snd_pcm_usr *info;
struct snd_kcontrol_new knew = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = pcm_usr_ctl_info,
};
int err;
char *buf;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->pcm = pcm;
info->stream = stream;
info->usr = usr;
info->max_length = max_length;
buf = kzalloc(max_kctrl_str_len, GFP_KERNEL);
if (!buf) {
pr_err("%s: buffer allocation failed\n", __func__);
kfree(info);
return -ENOMEM;
}
knew.name = buf;
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
snprintf(buf, max_kctrl_str_len, "%s %d %s",
"Playback", pcm->device, "User kcontrol");
else
snprintf(buf, max_kctrl_str_len, "%s %d %s",
"Capture", pcm->device, "User kcontrol");
knew.device = pcm->device;
knew.count = pcm->streams[stream].substream_count;
knew.private_value = private_value;
info->kctl = snd_ctl_new1(&knew, info);
if (!info->kctl) {
kfree(info);
kfree(knew.name);
pr_err("%s: snd_ctl_new failed\n", __func__);
return -ENOMEM;
}
info->kctl->private_free = pcm_usr_ctl_private_free;
err = snd_ctl_add(pcm->card, info->kctl);
if (err < 0) {
kfree(info);
kfree(knew.name);
pr_err("%s: snd_ctl_add failed:%d\n", __func__,
err);
return -ENOMEM;
}
pcm->streams[stream].usr_kctl = info->kctl;
if (info_ret)
*info_ret = info;
kfree(knew.name);
return 0;
}
EXPORT_SYMBOL(snd_pcm_add_usr_ctls);