blob: d4d9a7590943a623e1aac19d21afec8225d0b2fa [file] [log] [blame]
/* Copyright (c) 2011-2015, 2018-2019 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/rpm-smd-regulator.h>
#include <linux/wcnss_wlan.h>
#include <linux/semaphore.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/clk.h>
static void __iomem *msm_wcnss_base;
static LIST_HEAD(power_on_lock_list);
static DEFINE_MUTEX(list_lock);
static DEFINE_SEMAPHORE(wcnss_power_on_lock);
static int auto_detect;
static int is_power_on;
#define RIVA_PMU_OFFSET 0x28
#define RIVA_SPARE_OFFSET 0x0b4
#define PRONTO_SPARE_OFFSET 0x1088
#define NVBIN_DLND_BIT BIT(25)
#define PRONTO_IRIS_REG_READ_OFFSET 0x1134
#define PRONTO_IRIS_REG_CHIP_ID 0x04
#define PRONTO_IRIS_REG_CHIP_ID_MASK 0xffff
/* IRIS card chip ID's */
#define WCN3660 0x0200
#define WCN3660A 0x0300
#define WCN3660B 0x0400
#define WCN3620 0x5111
#define WCN3620A 0x5112
#define WCN3610 0x9101
#define WCN3610V1 0x9110
#define WCN3615 0x8110
#define WCNSS_PMU_CFG_IRIS_XO_CFG BIT(3)
#define WCNSS_PMU_CFG_IRIS_XO_EN BIT(4)
#define WCNSS_PMU_CFG_IRIS_XO_CFG_STS BIT(6) /* 1: in progress, 0: done */
#define WCNSS_PMU_CFG_IRIS_RESET BIT(7)
#define WCNSS_PMU_CFG_IRIS_RESET_STS BIT(8) /* 1: in progress, 0: done */
#define WCNSS_PMU_CFG_IRIS_XO_READ BIT(9)
#define WCNSS_PMU_CFG_IRIS_XO_READ_STS BIT(10)
#define WCNSS_PMU_CFG_IRIS_XO_MODE 0x6
#define WCNSS_PMU_CFG_IRIS_XO_MODE_48 (3 << 1)
#define VREG_NULL_CONFIG 0x0000
#define VREG_GET_REGULATOR_MASK 0x0001
#define VREG_SET_VOLTAGE_MASK 0x0002
#define VREG_OPTIMUM_MODE_MASK 0x0004
#define VREG_ENABLE_MASK 0x0008
#define VDD_PA "qcom,iris-vddpa"
#define WCNSS_INVALID_IRIS_REG 0xbaadbaad
struct vregs_info {
const char * const name;
const char * const curr;
const char * const volt;
int state;
bool required;
struct regulator *regulator;
};
/* IRIS regulators for Pronto hardware */
static struct vregs_info iris_vregs[] = {
{"qcom,iris-vddxo", "qcom,iris-vddxo-current",
"qcom,iris-vddxo-voltage-level", VREG_NULL_CONFIG, true, NULL},
{"qcom,iris-vddrfa", "qcom,iris-vddrfa-current",
"qcom,iris-vddrfa-voltage-level", VREG_NULL_CONFIG, true, NULL},
{"qcom,iris-vddpa", "qcom,iris-vddpa-current",
"qcom,iris-vddpa-voltage-level", VREG_NULL_CONFIG, false, NULL},
{"qcom,iris-vdddig", "qcom,iris-vdddig-current",
"qcom,iris-vdddig-voltage-level", VREG_NULL_CONFIG, true, NULL},
};
/* WCNSS regulators for Pronto hardware */
static struct vregs_info pronto_vregs[] = {
{"qcom,pronto-vddmx", "qcom,pronto-vddmx-current",
"qcom,vddmx-voltage-level", VREG_NULL_CONFIG, true, NULL},
{"qcom,pronto-vddcx", "qcom,pronto-vddcx-current",
"qcom,vddcx-voltage-level", VREG_NULL_CONFIG, true, NULL},
{"qcom,pronto-vddpx", "qcom,pronto-vddpx-current",
"qcom,vddpx-voltage-level", VREG_NULL_CONFIG, true, NULL},
};
struct host_driver {
char name[20];
struct list_head list;
};
enum {
IRIS_3660, /* also 3660A and 3680 */
IRIS_3620,
IRIS_3610,
IRIS_3615
};
int xo_auto_detect(u32 reg)
{
reg >>= 30;
switch (reg) {
case IRIS_3660:
return WCNSS_XO_48MHZ;
case IRIS_3620:
return WCNSS_XO_19MHZ;
case IRIS_3610:
return WCNSS_XO_19MHZ;
case IRIS_3615:
return WCNSS_XO_19MHZ;
default:
return WCNSS_XO_INVALID;
}
}
int wcnss_get_iris_name(char *iris_name)
{
struct wcnss_wlan_config *cfg = NULL;
u32 iris_id;
cfg = wcnss_get_wlan_config();
if (cfg) {
iris_id = cfg->iris_id;
iris_id = PRONTO_IRIS_REG_CHIP_ID_MASK & (iris_id >> 16);
} else {
return 1;
}
switch (iris_id) {
case WCN3660:
memcpy(iris_name, "WCN3660", sizeof("WCN3660"));
break;
case WCN3660A:
memcpy(iris_name, "WCN3660A", sizeof("WCN3660A"));
break;
case WCN3660B:
memcpy(iris_name, "WCN3660B", sizeof("WCN3660B"));
break;
case WCN3620:
memcpy(iris_name, "WCN3620", sizeof("WCN3620"));
break;
case WCN3620A:
memcpy(iris_name, "WCN3620A", sizeof("WCN3620A"));
break;
case WCN3610:
memcpy(iris_name, "WCN3610", sizeof("WCN3610"));
break;
case WCN3610V1:
memcpy(iris_name, "WCN3610V1", sizeof("WCN3610V1"));
break;
case WCN3615:
memcpy(iris_name, "WCN3615", sizeof("WCN3615"));
break;
default:
return 1;
}
return 0;
}
EXPORT_SYMBOL(wcnss_get_iris_name);
int validate_iris_chip_id(u32 reg)
{
u32 iris_id;
iris_id = PRONTO_IRIS_REG_CHIP_ID_MASK & (reg >> 16);
switch (iris_id) {
case WCN3660:
case WCN3660A:
case WCN3660B:
case WCN3620:
case WCN3620A:
case WCN3610:
case WCN3610V1:
case WCN3615:
return 0;
default:
return 1;
}
}
static int
wcnss_dt_parse_vreg_level(struct device *dev, int index,
const char *current_vreg_name, const char *vreg_name,
struct vregs_level *vlevel)
{
int ret = 0;
/* array used to store nominal, low and high voltage values */
u32 voltage_levels[3], current_vreg;
ret = of_property_read_u32_array(dev->of_node, vreg_name,
voltage_levels,
ARRAY_SIZE(voltage_levels));
if (ret) {
wcnss_log(ERR, "error reading %s property\n", vreg_name);
return ret;
}
vlevel[index].nominal_min = voltage_levels[0];
vlevel[index].low_power_min = voltage_levels[1];
vlevel[index].max_voltage = voltage_levels[2];
ret = of_property_read_u32(dev->of_node, current_vreg_name,
&current_vreg);
if (ret) {
wcnss_log(ERR, "error reading %s property\n",
current_vreg_name);
return ret;
}
vlevel[index].uA_load = current_vreg;
return ret;
}
int
wcnss_parse_voltage_regulator(struct wcnss_wlan_config *wlan_config,
struct device *dev)
{
int rc, vreg_i;
/* Parse pronto voltage regulators from device node */
for (vreg_i = 0; vreg_i < PRONTO_REGULATORS; vreg_i++) {
pronto_vregs[vreg_i].regulator =
devm_regulator_get_optional(dev,
pronto_vregs[vreg_i].name);
if (IS_ERR(pronto_vregs[vreg_i].regulator)) {
if (pronto_vregs[vreg_i].required) {
rc = PTR_ERR(pronto_vregs[vreg_i].regulator);
wcnss_log(ERR,
"regulator get of %s failed (%d)\n",
pronto_vregs[vreg_i].name, rc);
return rc;
} else {
wcnss_log(DBG,
"Skip optional regulator configuration: %s\n",
pronto_vregs[vreg_i].name);
continue;
}
}
rc = wcnss_dt_parse_vreg_level(dev, vreg_i,
pronto_vregs[vreg_i].curr,
pronto_vregs[vreg_i].volt,
wlan_config->pronto_vlevel);
if (rc) {
wcnss_log(ERR,
"error reading voltage-level property\n");
return rc;
}
pronto_vregs[vreg_i].state |= VREG_GET_REGULATOR_MASK;
}
/* Parse iris voltage regulators from device node */
for (vreg_i = 0; vreg_i < IRIS_REGULATORS; vreg_i++) {
iris_vregs[vreg_i].regulator =
devm_regulator_get_optional(dev,
iris_vregs[vreg_i].name);
if (IS_ERR(iris_vregs[vreg_i].regulator)) {
if (iris_vregs[vreg_i].required) {
rc = PTR_ERR(iris_vregs[vreg_i].regulator);
wcnss_log(ERR,
"regulator get of %s failed (%d)\n",
iris_vregs[vreg_i].name, rc);
return rc;
} else {
wcnss_log(DBG,
"Skip optional regulator configuration: %s\n",
iris_vregs[vreg_i].name);
continue;
}
}
rc = wcnss_dt_parse_vreg_level(dev, vreg_i,
iris_vregs[vreg_i].curr,
iris_vregs[vreg_i].volt,
wlan_config->iris_vlevel);
if (rc) {
wcnss_log(ERR,
"error reading voltage-level property\n");
return rc;
}
iris_vregs[vreg_i].state |= VREG_GET_REGULATOR_MASK;
}
return 0;
}
void wcnss_iris_reset(u32 reg, void __iomem *pmu_conf_reg)
{
/* Reset IRIS */
reg |= WCNSS_PMU_CFG_IRIS_RESET;
writel_relaxed(reg, pmu_conf_reg);
/* Wait for PMU_CFG.iris_reg_reset_sts */
while (readl_relaxed(pmu_conf_reg) &
WCNSS_PMU_CFG_IRIS_RESET_STS)
cpu_relax();
/* Reset iris reset bit */
reg &= ~WCNSS_PMU_CFG_IRIS_RESET;
writel_relaxed(reg, pmu_conf_reg);
}
static int
configure_iris_xo(struct device *dev,
struct wcnss_wlan_config *cfg,
int on, int *iris_xo_set)
{
u32 reg = 0, i = 0;
u32 iris_reg = WCNSS_INVALID_IRIS_REG;
int rc = 0;
int pmu_offset = 0;
int spare_offset = 0;
void __iomem *pmu_conf_reg;
void __iomem *spare_reg;
void __iomem *iris_read_reg;
struct clk *clk;
struct clk *clk_rf = NULL;
bool use_48mhz_xo;
use_48mhz_xo = cfg->use_48mhz_xo;
if (wcnss_hardware_type() == WCNSS_PRONTO_HW) {
pmu_offset = PRONTO_PMU_OFFSET;
spare_offset = PRONTO_SPARE_OFFSET;
clk = clk_get(dev, "xo");
if (IS_ERR(clk)) {
wcnss_log(ERR, "Couldn't get xo clock\n");
return PTR_ERR(clk);
}
} else {
pmu_offset = RIVA_PMU_OFFSET;
spare_offset = RIVA_SPARE_OFFSET;
clk = clk_get(dev, "cxo");
if (IS_ERR(clk)) {
wcnss_log(ERR, "Couldn't get cxo clock\n");
return PTR_ERR(clk);
}
}
if (on) {
msm_wcnss_base = cfg->msm_wcnss_base;
if (!msm_wcnss_base) {
wcnss_log(ERR, "ioremap wcnss physical failed\n");
goto fail;
}
/* Enable IRIS XO */
rc = clk_prepare_enable(clk);
if (rc) {
wcnss_log(ERR, "clk enable failed\n");
goto fail;
}
/* NV bit is set to indicate that platform driver is capable
* of doing NV download.
*/
wcnss_log(DBG, "Indicate NV bin download\n");
spare_reg = msm_wcnss_base + spare_offset;
reg = readl_relaxed(spare_reg);
reg |= NVBIN_DLND_BIT;
writel_relaxed(reg, spare_reg);
pmu_conf_reg = msm_wcnss_base + pmu_offset;
writel_relaxed(0, pmu_conf_reg);
reg = readl_relaxed(pmu_conf_reg);
reg |= WCNSS_PMU_CFG_GC_BUS_MUX_SEL_TOP |
WCNSS_PMU_CFG_IRIS_XO_EN;
writel_relaxed(reg, pmu_conf_reg);
if (wcnss_xo_auto_detect_enabled()) {
iris_read_reg = msm_wcnss_base +
PRONTO_IRIS_REG_READ_OFFSET;
iris_reg = readl_relaxed(iris_read_reg);
}
wcnss_iris_reset(reg, pmu_conf_reg);
if (iris_reg != WCNSS_INVALID_IRIS_REG) {
iris_reg &= 0xffff;
iris_reg |= PRONTO_IRIS_REG_CHIP_ID;
writel_relaxed(iris_reg, iris_read_reg);
do {
/* Iris read */
reg = readl_relaxed(pmu_conf_reg);
reg |= WCNSS_PMU_CFG_IRIS_XO_READ;
writel_relaxed(reg, pmu_conf_reg);
/* Wait for PMU_CFG.iris_reg_read_sts */
while (readl_relaxed(pmu_conf_reg) &
WCNSS_PMU_CFG_IRIS_XO_READ_STS)
cpu_relax();
iris_reg = readl_relaxed(iris_read_reg);
wcnss_log(INFO, "IRIS Reg: %08x\n", iris_reg);
if (validate_iris_chip_id(iris_reg) && i >= 4) {
wcnss_log(INFO,
"IRIS Card absent/invalid\n");
auto_detect = WCNSS_XO_INVALID;
/* Reset iris read bit */
reg &= ~WCNSS_PMU_CFG_IRIS_XO_READ;
/* Clear XO_MODE[b2:b1] bits.
* Clear implies 19.2 MHz TCXO
*/
reg &= ~(WCNSS_PMU_CFG_IRIS_XO_MODE);
goto xo_configure;
} else if (!validate_iris_chip_id(iris_reg)) {
wcnss_log(DBG,
"IRIS Card is present\n");
break;
}
reg &= ~WCNSS_PMU_CFG_IRIS_XO_READ;
writel_relaxed(reg, pmu_conf_reg);
wcnss_iris_reset(reg, pmu_conf_reg);
} while (i++ < 5);
auto_detect = xo_auto_detect(iris_reg);
/* Reset iris read bit */
reg &= ~WCNSS_PMU_CFG_IRIS_XO_READ;
} else if (wcnss_xo_auto_detect_enabled()) {
/* Default to 48 MHZ */
auto_detect = WCNSS_XO_48MHZ;
} else {
auto_detect = WCNSS_XO_INVALID;
}
cfg->iris_id = iris_reg;
/* Clear XO_MODE[b2:b1] bits. Clear implies 19.2 MHz TCXO */
reg &= ~(WCNSS_PMU_CFG_IRIS_XO_MODE);
if ((use_48mhz_xo && auto_detect == WCNSS_XO_INVALID) ||
auto_detect == WCNSS_XO_48MHZ) {
reg |= WCNSS_PMU_CFG_IRIS_XO_MODE_48;
if (iris_xo_set)
*iris_xo_set = WCNSS_XO_48MHZ;
}
xo_configure:
writel_relaxed(reg, pmu_conf_reg);
wcnss_iris_reset(reg, pmu_conf_reg);
/* Start IRIS XO configuration */
reg |= WCNSS_PMU_CFG_IRIS_XO_CFG;
writel_relaxed(reg, pmu_conf_reg);
/* Wait for XO configuration to finish */
while (readl_relaxed(pmu_conf_reg) &
WCNSS_PMU_CFG_IRIS_XO_CFG_STS)
cpu_relax();
/* Stop IRIS XO configuration */
reg &= ~(WCNSS_PMU_CFG_GC_BUS_MUX_SEL_TOP |
WCNSS_PMU_CFG_IRIS_XO_CFG);
writel_relaxed(reg, pmu_conf_reg);
clk_disable_unprepare(clk);
if ((!use_48mhz_xo && auto_detect == WCNSS_XO_INVALID) ||
auto_detect == WCNSS_XO_19MHZ) {
clk_rf = clk_get(dev, "rf_clk");
if (IS_ERR(clk_rf)) {
wcnss_log(ERR, "Couldn't get rf_clk\n");
goto fail;
}
rc = clk_prepare_enable(clk_rf);
if (rc) {
wcnss_log(ERR, "clk_rf enable failed\n");
goto fail;
}
if (iris_xo_set)
*iris_xo_set = WCNSS_XO_19MHZ;
}
} else if ((!use_48mhz_xo && auto_detect == WCNSS_XO_INVALID) ||
auto_detect == WCNSS_XO_19MHZ) {
clk_rf = clk_get(dev, "rf_clk");
if (IS_ERR(clk_rf)) {
wcnss_log(ERR, "Couldn't get rf_clk\n");
goto fail;
}
clk_disable_unprepare(clk_rf);
}
/* Add some delay for XO to settle */
msleep(20);
fail:
clk_put(clk);
if (clk_rf)
clk_put(clk_rf);
return rc;
}
/* Helper routine to turn off all WCNSS & IRIS vregs */
static void wcnss_vregs_off(struct vregs_info regulators[], uint size,
struct vregs_level *voltage_level)
{
int i, rc = 0;
struct wcnss_wlan_config *cfg;
cfg = wcnss_get_wlan_config();
if (!cfg) {
wcnss_log(ERR, "Failed to get WLAN configuration\n");
return;
}
/* Regulators need to be turned off in the reverse order */
for (i = (size - 1); i >= 0; i--) {
if (regulators[i].state == VREG_NULL_CONFIG)
continue;
/* Remove PWM mode */
if (regulators[i].state & VREG_OPTIMUM_MODE_MASK) {
rc = regulator_set_load(regulators[i].regulator, 0);
if (rc < 0) {
wcnss_log(ERR,
"regulator set load(%s) failed (%d)\n",
regulators[i].name, rc);
}
}
/* Set voltage to lowest level */
if (regulators[i].state & VREG_SET_VOLTAGE_MASK) {
if (cfg->is_pronto_vadc) {
if (cfg->vbatt < WCNSS_VBATT_THRESHOLD &&
!memcmp(regulators[i].name,
VDD_PA, sizeof(VDD_PA))) {
voltage_level[i].max_voltage =
WCNSS_VBATT_LOW;
}
}
rc = regulator_set_voltage(regulators[i].regulator,
voltage_level[i].
low_power_min,
voltage_level[i].
max_voltage);
if (rc)
wcnss_log(ERR,
"regulator_set_voltage(%s) failed (%d)\n",
regulators[i].name, rc);
}
/* Disable regulator */
if (regulators[i].state & VREG_ENABLE_MASK) {
rc = regulator_disable(regulators[i].regulator);
if (rc < 0)
wcnss_log(ERR, "vreg %s disable failed (%d)\n",
regulators[i].name, rc);
}
/* Free the regulator source */
if (regulators[i].state & VREG_GET_REGULATOR_MASK)
regulator_put(regulators[i].regulator);
regulators[i].state = VREG_NULL_CONFIG;
}
}
/* Common helper routine to turn on all WCNSS & IRIS vregs */
static int wcnss_vregs_on(struct device *dev,
struct vregs_info regulators[], uint size,
struct vregs_level *voltage_level)
{
int i, rc = 0, reg_cnt;
struct wcnss_wlan_config *cfg;
cfg = wcnss_get_wlan_config();
if (!cfg) {
wcnss_log(ERR, "Failed to get WLAN configuration\n");
return -EINVAL;
}
for (i = 0; i < size; i++) {
if (regulators[i].state == VREG_NULL_CONFIG)
continue;
reg_cnt = regulator_count_voltages(regulators[i].regulator);
/* Set voltage to nominal. Exclude swtiches e.g. LVS */
if ((voltage_level[i].nominal_min ||
voltage_level[i].max_voltage) && (reg_cnt > 0)) {
if (cfg->is_pronto_vadc) {
if (cfg->vbatt < WCNSS_VBATT_THRESHOLD &&
!memcmp(regulators[i].name,
VDD_PA, sizeof(VDD_PA))) {
voltage_level[i].nominal_min =
WCNSS_VBATT_INITIAL;
voltage_level[i].max_voltage =
WCNSS_VBATT_LOW;
}
}
rc = regulator_set_voltage(regulators[i].regulator,
voltage_level[i].nominal_min,
voltage_level[i].
max_voltage);
if (rc) {
wcnss_log(ERR,
"regulator_set_voltage(%s) failed (%d)\n",
regulators[i].name, rc);
goto fail;
}
regulators[i].state |= VREG_SET_VOLTAGE_MASK;
}
/* Vote for PWM/PFM mode if needed */
if (voltage_level[i].uA_load && (reg_cnt > 0)) {
rc = regulator_set_load(regulators[i].regulator,
voltage_level[i].uA_load);
if (rc < 0) {
wcnss_log(ERR,
"regulator set load(%s) failed (%d)\n",
regulators[i].name, rc);
goto fail;
}
regulators[i].state |= VREG_OPTIMUM_MODE_MASK;
}
/* Enable the regulator */
rc = regulator_enable(regulators[i].regulator);
if (rc) {
wcnss_log(ERR, "vreg %s enable failed (%d)\n",
regulators[i].name, rc);
goto fail;
}
regulators[i].state |= VREG_ENABLE_MASK;
}
return rc;
fail:
wcnss_vregs_off(regulators, size, voltage_level);
return rc;
}
static void wcnss_iris_vregs_off(enum wcnss_hw_type hw_type,
struct wcnss_wlan_config *cfg)
{
switch (hw_type) {
case WCNSS_PRONTO_HW:
wcnss_vregs_off(iris_vregs, ARRAY_SIZE(iris_vregs),
cfg->iris_vlevel);
break;
default:
wcnss_log(ERR, "%s invalid hardware %d\n", __func__, hw_type);
}
}
static int wcnss_iris_vregs_on(struct device *dev,
enum wcnss_hw_type hw_type,
struct wcnss_wlan_config *cfg)
{
int ret = -1;
switch (hw_type) {
case WCNSS_PRONTO_HW:
ret = wcnss_vregs_on(dev, iris_vregs, ARRAY_SIZE(iris_vregs),
cfg->iris_vlevel);
break;
default:
wcnss_log(ERR, "%s invalid hardware %d\n", __func__, hw_type);
}
return ret;
}
static void wcnss_core_vregs_off(enum wcnss_hw_type hw_type,
struct wcnss_wlan_config *cfg)
{
switch (hw_type) {
case WCNSS_PRONTO_HW:
wcnss_vregs_off(pronto_vregs,
ARRAY_SIZE(pronto_vregs), cfg->pronto_vlevel);
break;
default:
wcnss_log(ERR, "%s invalid hardware %d\n", __func__, hw_type);
}
}
static int wcnss_core_vregs_on(struct device *dev,
enum wcnss_hw_type hw_type,
struct wcnss_wlan_config *cfg)
{
int ret = -1;
switch (hw_type) {
case WCNSS_PRONTO_HW:
ret = wcnss_vregs_on(dev, pronto_vregs,
ARRAY_SIZE(pronto_vregs),
cfg->pronto_vlevel);
break;
default:
wcnss_log(ERR, "%s invalid hardware %d\n", __func__, hw_type);
}
return ret;
}
int wcnss_wlan_power(struct device *dev,
struct wcnss_wlan_config *cfg,
enum wcnss_opcode on, int *iris_xo_set)
{
int rc = 0;
enum wcnss_hw_type hw_type = wcnss_hardware_type();
down(&wcnss_power_on_lock);
if (on) {
/* RIVA regulator settings */
rc = wcnss_core_vregs_on(dev, hw_type,
cfg);
if (rc)
goto fail_wcnss_on;
/* IRIS regulator settings */
rc = wcnss_iris_vregs_on(dev, hw_type,
cfg);
if (rc)
goto fail_iris_on;
/* Configure IRIS XO */
rc = configure_iris_xo(dev, cfg,
WCNSS_WLAN_SWITCH_ON, iris_xo_set);
if (rc)
goto fail_iris_xo;
is_power_on = true;
} else if (is_power_on) {
is_power_on = false;
configure_iris_xo(dev, cfg,
WCNSS_WLAN_SWITCH_OFF, NULL);
wcnss_iris_vregs_off(hw_type, cfg);
wcnss_core_vregs_off(hw_type, cfg);
}
up(&wcnss_power_on_lock);
return rc;
fail_iris_xo:
wcnss_iris_vregs_off(hw_type, cfg);
fail_iris_on:
wcnss_core_vregs_off(hw_type, cfg);
fail_wcnss_on:
up(&wcnss_power_on_lock);
return rc;
}
EXPORT_SYMBOL(wcnss_wlan_power);
/*
* During SSR WCNSS should not be 'powered on' until all the host drivers
* finish their shutdown routines. Host drivers use below APIs to
* synchronize power-on. WCNSS will not be 'powered on' until all the
* requests(to lock power-on) are freed.
*/
int wcnss_req_power_on_lock(char *driver_name)
{
struct host_driver *node;
if (!driver_name)
goto err;
node = kmalloc(sizeof(*node), GFP_KERNEL);
if (!node)
goto err;
strlcpy(node->name, driver_name, sizeof(node->name));
mutex_lock(&list_lock);
/* Lock when the first request is added */
if (list_empty(&power_on_lock_list))
down(&wcnss_power_on_lock);
list_add(&node->list, &power_on_lock_list);
mutex_unlock(&list_lock);
return 0;
err:
return -EINVAL;
}
EXPORT_SYMBOL(wcnss_req_power_on_lock);
int wcnss_free_power_on_lock(char *driver_name)
{
int ret = -1;
struct host_driver *node;
mutex_lock(&list_lock);
list_for_each_entry(node, &power_on_lock_list, list) {
if (!strcmp(node->name, driver_name)) {
list_del(&node->list);
kfree(node);
ret = 0;
break;
}
}
/* unlock when the last host driver frees the lock */
if (list_empty(&power_on_lock_list))
up(&wcnss_power_on_lock);
mutex_unlock(&list_lock);
return ret;
}
EXPORT_SYMBOL(wcnss_free_power_on_lock);