| /* |
| * Copyright (C) 2012 ARM Ltd. |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| |
| #include <linux/irqchip/arm-gic.h> |
| |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_arm.h> |
| #include <asm/kvm_mmu.h> |
| |
| /* |
| * How the whole thing works (courtesy of Christoffer Dall): |
| * |
| * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if |
| * something is pending |
| * - VGIC pending interrupts are stored on the vgic.irq_state vgic |
| * bitmap (this bitmap is updated by both user land ioctls and guest |
| * mmio ops, and other in-kernel peripherals such as the |
| * arch. timers) and indicate the 'wire' state. |
| * - Every time the bitmap changes, the irq_pending_on_cpu oracle is |
| * recalculated |
| * - To calculate the oracle, we need info for each cpu from |
| * compute_pending_for_cpu, which considers: |
| * - PPI: dist->irq_state & dist->irq_enable |
| * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target |
| * - irq_spi_target is a 'formatted' version of the GICD_ICFGR |
| * registers, stored on each vcpu. We only keep one bit of |
| * information per interrupt, making sure that only one vcpu can |
| * accept the interrupt. |
| * - The same is true when injecting an interrupt, except that we only |
| * consider a single interrupt at a time. The irq_spi_cpu array |
| * contains the target CPU for each SPI. |
| * |
| * The handling of level interrupts adds some extra complexity. We |
| * need to track when the interrupt has been EOIed, so we can sample |
| * the 'line' again. This is achieved as such: |
| * |
| * - When a level interrupt is moved onto a vcpu, the corresponding |
| * bit in irq_active is set. As long as this bit is set, the line |
| * will be ignored for further interrupts. The interrupt is injected |
| * into the vcpu with the GICH_LR_EOI bit set (generate a |
| * maintenance interrupt on EOI). |
| * - When the interrupt is EOIed, the maintenance interrupt fires, |
| * and clears the corresponding bit in irq_active. This allow the |
| * interrupt line to be sampled again. |
| */ |
| |
| #define VGIC_ADDR_UNDEF (-1) |
| #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF) |
| |
| /* Physical address of vgic virtual cpu interface */ |
| static phys_addr_t vgic_vcpu_base; |
| |
| /* Virtual control interface base address */ |
| static void __iomem *vgic_vctrl_base; |
| |
| static struct device_node *vgic_node; |
| |
| #define ACCESS_READ_VALUE (1 << 0) |
| #define ACCESS_READ_RAZ (0 << 0) |
| #define ACCESS_READ_MASK(x) ((x) & (1 << 0)) |
| #define ACCESS_WRITE_IGNORED (0 << 1) |
| #define ACCESS_WRITE_SETBIT (1 << 1) |
| #define ACCESS_WRITE_CLEARBIT (2 << 1) |
| #define ACCESS_WRITE_VALUE (3 << 1) |
| #define ACCESS_WRITE_MASK(x) ((x) & (3 << 1)) |
| |
| static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu); |
| static void vgic_update_state(struct kvm *kvm); |
| static void vgic_kick_vcpus(struct kvm *kvm); |
| static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg); |
| static u32 vgic_nr_lr; |
| |
| static unsigned int vgic_maint_irq; |
| |
| static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, |
| int cpuid, u32 offset) |
| { |
| offset >>= 2; |
| if (!offset) |
| return x->percpu[cpuid].reg; |
| else |
| return x->shared.reg + offset - 1; |
| } |
| |
| static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x, |
| int cpuid, int irq) |
| { |
| if (irq < VGIC_NR_PRIVATE_IRQS) |
| return test_bit(irq, x->percpu[cpuid].reg_ul); |
| |
| return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul); |
| } |
| |
| static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, |
| int irq, int val) |
| { |
| unsigned long *reg; |
| |
| if (irq < VGIC_NR_PRIVATE_IRQS) { |
| reg = x->percpu[cpuid].reg_ul; |
| } else { |
| reg = x->shared.reg_ul; |
| irq -= VGIC_NR_PRIVATE_IRQS; |
| } |
| |
| if (val) |
| set_bit(irq, reg); |
| else |
| clear_bit(irq, reg); |
| } |
| |
| static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid) |
| { |
| if (unlikely(cpuid >= VGIC_MAX_CPUS)) |
| return NULL; |
| return x->percpu[cpuid].reg_ul; |
| } |
| |
| static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) |
| { |
| return x->shared.reg_ul; |
| } |
| |
| static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) |
| { |
| offset >>= 2; |
| BUG_ON(offset > (VGIC_NR_IRQS / 4)); |
| if (offset < 4) |
| return x->percpu[cpuid] + offset; |
| else |
| return x->shared + offset - 8; |
| } |
| |
| #define VGIC_CFG_LEVEL 0 |
| #define VGIC_CFG_EDGE 1 |
| |
| static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| int irq_val; |
| |
| irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq); |
| return irq_val == VGIC_CFG_EDGE; |
| } |
| |
| static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq); |
| } |
| |
| static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq); |
| } |
| |
| static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1); |
| } |
| |
| static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0); |
| } |
| |
| static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq); |
| } |
| |
| static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1); |
| } |
| |
| static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0); |
| } |
| |
| static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq) |
| { |
| if (irq < VGIC_NR_PRIVATE_IRQS) |
| set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); |
| else |
| set_bit(irq - VGIC_NR_PRIVATE_IRQS, |
| vcpu->arch.vgic_cpu.pending_shared); |
| } |
| |
| static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) |
| { |
| if (irq < VGIC_NR_PRIVATE_IRQS) |
| clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); |
| else |
| clear_bit(irq - VGIC_NR_PRIVATE_IRQS, |
| vcpu->arch.vgic_cpu.pending_shared); |
| } |
| |
| static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask) |
| { |
| return *((u32 *)mmio->data) & mask; |
| } |
| |
| static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) |
| { |
| *((u32 *)mmio->data) = value & mask; |
| } |
| |
| /** |
| * vgic_reg_access - access vgic register |
| * @mmio: pointer to the data describing the mmio access |
| * @reg: pointer to the virtual backing of vgic distributor data |
| * @offset: least significant 2 bits used for word offset |
| * @mode: ACCESS_ mode (see defines above) |
| * |
| * Helper to make vgic register access easier using one of the access |
| * modes defined for vgic register access |
| * (read,raz,write-ignored,setbit,clearbit,write) |
| */ |
| static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, |
| phys_addr_t offset, int mode) |
| { |
| int word_offset = (offset & 3) * 8; |
| u32 mask = (1UL << (mmio->len * 8)) - 1; |
| u32 regval; |
| |
| /* |
| * Any alignment fault should have been delivered to the guest |
| * directly (ARM ARM B3.12.7 "Prioritization of aborts"). |
| */ |
| |
| if (reg) { |
| regval = *reg; |
| } else { |
| BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED)); |
| regval = 0; |
| } |
| |
| if (mmio->is_write) { |
| u32 data = mmio_data_read(mmio, mask) << word_offset; |
| switch (ACCESS_WRITE_MASK(mode)) { |
| case ACCESS_WRITE_IGNORED: |
| return; |
| |
| case ACCESS_WRITE_SETBIT: |
| regval |= data; |
| break; |
| |
| case ACCESS_WRITE_CLEARBIT: |
| regval &= ~data; |
| break; |
| |
| case ACCESS_WRITE_VALUE: |
| regval = (regval & ~(mask << word_offset)) | data; |
| break; |
| } |
| *reg = regval; |
| } else { |
| switch (ACCESS_READ_MASK(mode)) { |
| case ACCESS_READ_RAZ: |
| regval = 0; |
| /* fall through */ |
| |
| case ACCESS_READ_VALUE: |
| mmio_data_write(mmio, mask, regval >> word_offset); |
| } |
| } |
| } |
| |
| static bool handle_mmio_misc(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| { |
| u32 reg; |
| u32 word_offset = offset & 3; |
| |
| switch (offset & ~3) { |
| case 0: /* CTLR */ |
| reg = vcpu->kvm->arch.vgic.enabled; |
| vgic_reg_access(mmio, ®, word_offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| if (mmio->is_write) { |
| vcpu->kvm->arch.vgic.enabled = reg & 1; |
| vgic_update_state(vcpu->kvm); |
| return true; |
| } |
| break; |
| |
| case 4: /* TYPER */ |
| reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; |
| reg |= (VGIC_NR_IRQS >> 5) - 1; |
| vgic_reg_access(mmio, ®, word_offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| break; |
| |
| case 8: /* IIDR */ |
| reg = 0x4B00043B; |
| vgic_reg_access(mmio, ®, word_offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| break; |
| } |
| |
| return false; |
| } |
| |
| static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| { |
| vgic_reg_access(mmio, NULL, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, |
| vcpu->vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); |
| if (mmio->is_write) { |
| vgic_update_state(vcpu->kvm); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, |
| vcpu->vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); |
| if (mmio->is_write) { |
| if (offset < 4) /* Force SGI enabled */ |
| *reg |= 0xffff; |
| vgic_retire_disabled_irqs(vcpu); |
| vgic_update_state(vcpu->kvm); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state, |
| vcpu->vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); |
| if (mmio->is_write) { |
| vgic_update_state(vcpu->kvm); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state, |
| vcpu->vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); |
| if (mmio->is_write) { |
| vgic_update_state(vcpu->kvm); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, |
| vcpu->vcpu_id, offset); |
| vgic_reg_access(mmio, reg, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| return false; |
| } |
| |
| #define GICD_ITARGETSR_SIZE 32 |
| #define GICD_CPUTARGETS_BITS 8 |
| #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS) |
| static u32 vgic_get_target_reg(struct kvm *kvm, int irq) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct kvm_vcpu *vcpu; |
| int i, c; |
| unsigned long *bmap; |
| u32 val = 0; |
| |
| irq -= VGIC_NR_PRIVATE_IRQS; |
| |
| kvm_for_each_vcpu(c, vcpu, kvm) { |
| bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]); |
| for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) |
| if (test_bit(irq + i, bmap)) |
| val |= 1 << (c + i * 8); |
| } |
| |
| return val; |
| } |
| |
| static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct kvm_vcpu *vcpu; |
| int i, c; |
| unsigned long *bmap; |
| u32 target; |
| |
| irq -= VGIC_NR_PRIVATE_IRQS; |
| |
| /* |
| * Pick the LSB in each byte. This ensures we target exactly |
| * one vcpu per IRQ. If the byte is null, assume we target |
| * CPU0. |
| */ |
| for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) { |
| int shift = i * GICD_CPUTARGETS_BITS; |
| target = ffs((val >> shift) & 0xffU); |
| target = target ? (target - 1) : 0; |
| dist->irq_spi_cpu[irq + i] = target; |
| kvm_for_each_vcpu(c, vcpu, kvm) { |
| bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]); |
| if (c == target) |
| set_bit(irq + i, bmap); |
| else |
| clear_bit(irq + i, bmap); |
| } |
| } |
| } |
| |
| static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t offset) |
| { |
| u32 reg; |
| |
| /* We treat the banked interrupts targets as read-only */ |
| if (offset < 32) { |
| u32 roreg = 1 << vcpu->vcpu_id; |
| roreg |= roreg << 8; |
| roreg |= roreg << 16; |
| |
| vgic_reg_access(mmio, &roreg, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); |
| return false; |
| } |
| |
| reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U); |
| vgic_reg_access(mmio, ®, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| if (mmio->is_write) { |
| vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U); |
| vgic_update_state(vcpu->kvm); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static u32 vgic_cfg_expand(u16 val) |
| { |
| u32 res = 0; |
| int i; |
| |
| /* |
| * Turn a 16bit value like abcd...mnop into a 32bit word |
| * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is. |
| */ |
| for (i = 0; i < 16; i++) |
| res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1); |
| |
| return res; |
| } |
| |
| static u16 vgic_cfg_compress(u32 val) |
| { |
| u16 res = 0; |
| int i; |
| |
| /* |
| * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like |
| * abcd...mnop which is what we really care about. |
| */ |
| for (i = 0; i < 16; i++) |
| res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i; |
| |
| return res; |
| } |
| |
| /* |
| * The distributor uses 2 bits per IRQ for the CFG register, but the |
| * LSB is always 0. As such, we only keep the upper bit, and use the |
| * two above functions to compress/expand the bits |
| */ |
| static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| { |
| u32 val; |
| u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, |
| vcpu->vcpu_id, offset >> 1); |
| if (offset & 2) |
| val = *reg >> 16; |
| else |
| val = *reg & 0xffff; |
| |
| val = vgic_cfg_expand(val); |
| vgic_reg_access(mmio, &val, offset, |
| ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| if (mmio->is_write) { |
| if (offset < 4) { |
| *reg = ~0U; /* Force PPIs/SGIs to 1 */ |
| return false; |
| } |
| |
| val = vgic_cfg_compress(val); |
| if (offset & 2) { |
| *reg &= 0xffff; |
| *reg |= val << 16; |
| } else { |
| *reg &= 0xffff << 16; |
| *reg |= val; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, |
| struct kvm_exit_mmio *mmio, phys_addr_t offset) |
| { |
| u32 reg; |
| vgic_reg_access(mmio, ®, offset, |
| ACCESS_READ_RAZ | ACCESS_WRITE_VALUE); |
| if (mmio->is_write) { |
| vgic_dispatch_sgi(vcpu, reg); |
| vgic_update_state(vcpu->kvm); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * I would have liked to use the kvm_bus_io_*() API instead, but it |
| * cannot cope with banked registers (only the VM pointer is passed |
| * around, and we need the vcpu). One of these days, someone please |
| * fix it! |
| */ |
| struct mmio_range { |
| phys_addr_t base; |
| unsigned long len; |
| bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, |
| phys_addr_t offset); |
| }; |
| |
| static const struct mmio_range vgic_ranges[] = { |
| { |
| .base = GIC_DIST_CTRL, |
| .len = 12, |
| .handle_mmio = handle_mmio_misc, |
| }, |
| { |
| .base = GIC_DIST_IGROUP, |
| .len = VGIC_NR_IRQS / 8, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| .base = GIC_DIST_ENABLE_SET, |
| .len = VGIC_NR_IRQS / 8, |
| .handle_mmio = handle_mmio_set_enable_reg, |
| }, |
| { |
| .base = GIC_DIST_ENABLE_CLEAR, |
| .len = VGIC_NR_IRQS / 8, |
| .handle_mmio = handle_mmio_clear_enable_reg, |
| }, |
| { |
| .base = GIC_DIST_PENDING_SET, |
| .len = VGIC_NR_IRQS / 8, |
| .handle_mmio = handle_mmio_set_pending_reg, |
| }, |
| { |
| .base = GIC_DIST_PENDING_CLEAR, |
| .len = VGIC_NR_IRQS / 8, |
| .handle_mmio = handle_mmio_clear_pending_reg, |
| }, |
| { |
| .base = GIC_DIST_ACTIVE_SET, |
| .len = VGIC_NR_IRQS / 8, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| .base = GIC_DIST_ACTIVE_CLEAR, |
| .len = VGIC_NR_IRQS / 8, |
| .handle_mmio = handle_mmio_raz_wi, |
| }, |
| { |
| .base = GIC_DIST_PRI, |
| .len = VGIC_NR_IRQS, |
| .handle_mmio = handle_mmio_priority_reg, |
| }, |
| { |
| .base = GIC_DIST_TARGET, |
| .len = VGIC_NR_IRQS, |
| .handle_mmio = handle_mmio_target_reg, |
| }, |
| { |
| .base = GIC_DIST_CONFIG, |
| .len = VGIC_NR_IRQS / 4, |
| .handle_mmio = handle_mmio_cfg_reg, |
| }, |
| { |
| .base = GIC_DIST_SOFTINT, |
| .len = 4, |
| .handle_mmio = handle_mmio_sgi_reg, |
| }, |
| {} |
| }; |
| |
| static const |
| struct mmio_range *find_matching_range(const struct mmio_range *ranges, |
| struct kvm_exit_mmio *mmio, |
| phys_addr_t base) |
| { |
| const struct mmio_range *r = ranges; |
| phys_addr_t addr = mmio->phys_addr - base; |
| |
| while (r->len) { |
| if (addr >= r->base && |
| (addr + mmio->len) <= (r->base + r->len)) |
| return r; |
| r++; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * vgic_handle_mmio - handle an in-kernel MMIO access |
| * @vcpu: pointer to the vcpu performing the access |
| * @run: pointer to the kvm_run structure |
| * @mmio: pointer to the data describing the access |
| * |
| * returns true if the MMIO access has been performed in kernel space, |
| * and false if it needs to be emulated in user space. |
| */ |
| bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, |
| struct kvm_exit_mmio *mmio) |
| { |
| const struct mmio_range *range; |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| unsigned long base = dist->vgic_dist_base; |
| bool updated_state; |
| unsigned long offset; |
| |
| if (!irqchip_in_kernel(vcpu->kvm) || |
| mmio->phys_addr < base || |
| (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE)) |
| return false; |
| |
| /* We don't support ldrd / strd or ldm / stm to the emulated vgic */ |
| if (mmio->len > 4) { |
| kvm_inject_dabt(vcpu, mmio->phys_addr); |
| return true; |
| } |
| |
| range = find_matching_range(vgic_ranges, mmio, base); |
| if (unlikely(!range || !range->handle_mmio)) { |
| pr_warn("Unhandled access %d %08llx %d\n", |
| mmio->is_write, mmio->phys_addr, mmio->len); |
| return false; |
| } |
| |
| spin_lock(&vcpu->kvm->arch.vgic.lock); |
| offset = mmio->phys_addr - range->base - base; |
| updated_state = range->handle_mmio(vcpu, mmio, offset); |
| spin_unlock(&vcpu->kvm->arch.vgic.lock); |
| kvm_prepare_mmio(run, mmio); |
| kvm_handle_mmio_return(vcpu, run); |
| |
| if (updated_state) |
| vgic_kick_vcpus(vcpu->kvm); |
| |
| return true; |
| } |
| |
| static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| int nrcpus = atomic_read(&kvm->online_vcpus); |
| u8 target_cpus; |
| int sgi, mode, c, vcpu_id; |
| |
| vcpu_id = vcpu->vcpu_id; |
| |
| sgi = reg & 0xf; |
| target_cpus = (reg >> 16) & 0xff; |
| mode = (reg >> 24) & 3; |
| |
| switch (mode) { |
| case 0: |
| if (!target_cpus) |
| return; |
| |
| case 1: |
| target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff; |
| break; |
| |
| case 2: |
| target_cpus = 1 << vcpu_id; |
| break; |
| } |
| |
| kvm_for_each_vcpu(c, vcpu, kvm) { |
| if (target_cpus & 1) { |
| /* Flag the SGI as pending */ |
| vgic_dist_irq_set(vcpu, sgi); |
| dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id; |
| kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); |
| } |
| |
| target_cpus >>= 1; |
| } |
| } |
| |
| static int compute_pending_for_cpu(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| unsigned long *pending, *enabled, *pend_percpu, *pend_shared; |
| unsigned long pending_private, pending_shared; |
| int vcpu_id; |
| |
| vcpu_id = vcpu->vcpu_id; |
| pend_percpu = vcpu->arch.vgic_cpu.pending_percpu; |
| pend_shared = vcpu->arch.vgic_cpu.pending_shared; |
| |
| pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id); |
| enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id); |
| bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS); |
| |
| pending = vgic_bitmap_get_shared_map(&dist->irq_state); |
| enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled); |
| bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS); |
| bitmap_and(pend_shared, pend_shared, |
| vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]), |
| VGIC_NR_SHARED_IRQS); |
| |
| pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS); |
| pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS); |
| return (pending_private < VGIC_NR_PRIVATE_IRQS || |
| pending_shared < VGIC_NR_SHARED_IRQS); |
| } |
| |
| /* |
| * Update the interrupt state and determine which CPUs have pending |
| * interrupts. Must be called with distributor lock held. |
| */ |
| static void vgic_update_state(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct kvm_vcpu *vcpu; |
| int c; |
| |
| if (!dist->enabled) { |
| set_bit(0, &dist->irq_pending_on_cpu); |
| return; |
| } |
| |
| kvm_for_each_vcpu(c, vcpu, kvm) { |
| if (compute_pending_for_cpu(vcpu)) { |
| pr_debug("CPU%d has pending interrupts\n", c); |
| set_bit(c, &dist->irq_pending_on_cpu); |
| } |
| } |
| } |
| |
| #define LR_CPUID(lr) \ |
| (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT) |
| #define MK_LR_PEND(src, irq) \ |
| (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq)) |
| |
| /* |
| * An interrupt may have been disabled after being made pending on the |
| * CPU interface (the classic case is a timer running while we're |
| * rebooting the guest - the interrupt would kick as soon as the CPU |
| * interface gets enabled, with deadly consequences). |
| * |
| * The solution is to examine already active LRs, and check the |
| * interrupt is still enabled. If not, just retire it. |
| */ |
| static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| int lr; |
| |
| for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) { |
| int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID; |
| |
| if (!vgic_irq_is_enabled(vcpu, irq)) { |
| vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY; |
| clear_bit(lr, vgic_cpu->lr_used); |
| vgic_cpu->vgic_lr[lr] &= ~GICH_LR_STATE; |
| if (vgic_irq_is_active(vcpu, irq)) |
| vgic_irq_clear_active(vcpu, irq); |
| } |
| } |
| } |
| |
| /* |
| * Queue an interrupt to a CPU virtual interface. Return true on success, |
| * or false if it wasn't possible to queue it. |
| */ |
| static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| int lr; |
| |
| /* Sanitize the input... */ |
| BUG_ON(sgi_source_id & ~7); |
| BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS); |
| BUG_ON(irq >= VGIC_NR_IRQS); |
| |
| kvm_debug("Queue IRQ%d\n", irq); |
| |
| lr = vgic_cpu->vgic_irq_lr_map[irq]; |
| |
| /* Do we have an active interrupt for the same CPUID? */ |
| if (lr != LR_EMPTY && |
| (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) { |
| kvm_debug("LR%d piggyback for IRQ%d %x\n", |
| lr, irq, vgic_cpu->vgic_lr[lr]); |
| BUG_ON(!test_bit(lr, vgic_cpu->lr_used)); |
| vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT; |
| return true; |
| } |
| |
| /* Try to use another LR for this interrupt */ |
| lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used, |
| vgic_cpu->nr_lr); |
| if (lr >= vgic_cpu->nr_lr) |
| return false; |
| |
| kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id); |
| vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq); |
| vgic_cpu->vgic_irq_lr_map[irq] = lr; |
| set_bit(lr, vgic_cpu->lr_used); |
| |
| if (!vgic_irq_is_edge(vcpu, irq)) |
| vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI; |
| |
| return true; |
| } |
| |
| static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| unsigned long sources; |
| int vcpu_id = vcpu->vcpu_id; |
| int c; |
| |
| sources = dist->irq_sgi_sources[vcpu_id][irq]; |
| |
| for_each_set_bit(c, &sources, VGIC_MAX_CPUS) { |
| if (vgic_queue_irq(vcpu, c, irq)) |
| clear_bit(c, &sources); |
| } |
| |
| dist->irq_sgi_sources[vcpu_id][irq] = sources; |
| |
| /* |
| * If the sources bitmap has been cleared it means that we |
| * could queue all the SGIs onto link registers (see the |
| * clear_bit above), and therefore we are done with them in |
| * our emulated gic and can get rid of them. |
| */ |
| if (!sources) { |
| vgic_dist_irq_clear(vcpu, irq); |
| vgic_cpu_irq_clear(vcpu, irq); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq) |
| { |
| if (vgic_irq_is_active(vcpu, irq)) |
| return true; /* level interrupt, already queued */ |
| |
| if (vgic_queue_irq(vcpu, 0, irq)) { |
| if (vgic_irq_is_edge(vcpu, irq)) { |
| vgic_dist_irq_clear(vcpu, irq); |
| vgic_cpu_irq_clear(vcpu, irq); |
| } else { |
| vgic_irq_set_active(vcpu, irq); |
| } |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Fill the list registers with pending interrupts before running the |
| * guest. |
| */ |
| static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| int i, vcpu_id; |
| int overflow = 0; |
| |
| vcpu_id = vcpu->vcpu_id; |
| |
| /* |
| * We may not have any pending interrupt, or the interrupts |
| * may have been serviced from another vcpu. In all cases, |
| * move along. |
| */ |
| if (!kvm_vgic_vcpu_pending_irq(vcpu)) { |
| pr_debug("CPU%d has no pending interrupt\n", vcpu_id); |
| goto epilog; |
| } |
| |
| /* SGIs */ |
| for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) { |
| if (!vgic_queue_sgi(vcpu, i)) |
| overflow = 1; |
| } |
| |
| /* PPIs */ |
| for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) { |
| if (!vgic_queue_hwirq(vcpu, i)) |
| overflow = 1; |
| } |
| |
| /* SPIs */ |
| for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) { |
| if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS)) |
| overflow = 1; |
| } |
| |
| epilog: |
| if (overflow) { |
| vgic_cpu->vgic_hcr |= GICH_HCR_UIE; |
| } else { |
| vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE; |
| /* |
| * We're about to run this VCPU, and we've consumed |
| * everything the distributor had in store for |
| * us. Claim we don't have anything pending. We'll |
| * adjust that if needed while exiting. |
| */ |
| clear_bit(vcpu_id, &dist->irq_pending_on_cpu); |
| } |
| } |
| |
| static bool vgic_process_maintenance(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| bool level_pending = false; |
| |
| kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr); |
| |
| if (vgic_cpu->vgic_misr & GICH_MISR_EOI) { |
| /* |
| * Some level interrupts have been EOIed. Clear their |
| * active bit. |
| */ |
| int lr, irq; |
| |
| for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr, |
| vgic_cpu->nr_lr) { |
| irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID; |
| |
| vgic_irq_clear_active(vcpu, irq); |
| vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI; |
| |
| /* Any additional pending interrupt? */ |
| if (vgic_dist_irq_is_pending(vcpu, irq)) { |
| vgic_cpu_irq_set(vcpu, irq); |
| level_pending = true; |
| } else { |
| vgic_cpu_irq_clear(vcpu, irq); |
| } |
| |
| /* |
| * Despite being EOIed, the LR may not have |
| * been marked as empty. |
| */ |
| set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr); |
| vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT; |
| } |
| } |
| |
| if (vgic_cpu->vgic_misr & GICH_MISR_U) |
| vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE; |
| |
| return level_pending; |
| } |
| |
| /* |
| * Sync back the VGIC state after a guest run. The distributor lock is |
| * needed so we don't get preempted in the middle of the state processing. |
| */ |
| static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| int lr, pending; |
| bool level_pending; |
| |
| level_pending = vgic_process_maintenance(vcpu); |
| |
| /* Clear mappings for empty LRs */ |
| for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr, |
| vgic_cpu->nr_lr) { |
| int irq; |
| |
| if (!test_and_clear_bit(lr, vgic_cpu->lr_used)) |
| continue; |
| |
| irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID; |
| |
| BUG_ON(irq >= VGIC_NR_IRQS); |
| vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY; |
| } |
| |
| /* Check if we still have something up our sleeve... */ |
| pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr, |
| vgic_cpu->nr_lr); |
| if (level_pending || pending < vgic_cpu->nr_lr) |
| set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu); |
| } |
| |
| void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return; |
| |
| spin_lock(&dist->lock); |
| __kvm_vgic_flush_hwstate(vcpu); |
| spin_unlock(&dist->lock); |
| } |
| |
| void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return; |
| |
| spin_lock(&dist->lock); |
| __kvm_vgic_sync_hwstate(vcpu); |
| spin_unlock(&dist->lock); |
| } |
| |
| int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return 0; |
| |
| return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu); |
| } |
| |
| static void vgic_kick_vcpus(struct kvm *kvm) |
| { |
| struct kvm_vcpu *vcpu; |
| int c; |
| |
| /* |
| * We've injected an interrupt, time to find out who deserves |
| * a good kick... |
| */ |
| kvm_for_each_vcpu(c, vcpu, kvm) { |
| if (kvm_vgic_vcpu_pending_irq(vcpu)) |
| kvm_vcpu_kick(vcpu); |
| } |
| } |
| |
| static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level) |
| { |
| int is_edge = vgic_irq_is_edge(vcpu, irq); |
| int state = vgic_dist_irq_is_pending(vcpu, irq); |
| |
| /* |
| * Only inject an interrupt if: |
| * - edge triggered and we have a rising edge |
| * - level triggered and we change level |
| */ |
| if (is_edge) |
| return level > state; |
| else |
| return level != state; |
| } |
| |
| static bool vgic_update_irq_state(struct kvm *kvm, int cpuid, |
| unsigned int irq_num, bool level) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct kvm_vcpu *vcpu; |
| int is_edge, is_level; |
| int enabled; |
| bool ret = true; |
| |
| spin_lock(&dist->lock); |
| |
| vcpu = kvm_get_vcpu(kvm, cpuid); |
| is_edge = vgic_irq_is_edge(vcpu, irq_num); |
| is_level = !is_edge; |
| |
| if (!vgic_validate_injection(vcpu, irq_num, level)) { |
| ret = false; |
| goto out; |
| } |
| |
| if (irq_num >= VGIC_NR_PRIVATE_IRQS) { |
| cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS]; |
| vcpu = kvm_get_vcpu(kvm, cpuid); |
| } |
| |
| kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid); |
| |
| if (level) |
| vgic_dist_irq_set(vcpu, irq_num); |
| else |
| vgic_dist_irq_clear(vcpu, irq_num); |
| |
| enabled = vgic_irq_is_enabled(vcpu, irq_num); |
| |
| if (!enabled) { |
| ret = false; |
| goto out; |
| } |
| |
| if (is_level && vgic_irq_is_active(vcpu, irq_num)) { |
| /* |
| * Level interrupt in progress, will be picked up |
| * when EOId. |
| */ |
| ret = false; |
| goto out; |
| } |
| |
| if (level) { |
| vgic_cpu_irq_set(vcpu, irq_num); |
| set_bit(cpuid, &dist->irq_pending_on_cpu); |
| } |
| |
| out: |
| spin_unlock(&dist->lock); |
| |
| return ret; |
| } |
| |
| /** |
| * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic |
| * @kvm: The VM structure pointer |
| * @cpuid: The CPU for PPIs |
| * @irq_num: The IRQ number that is assigned to the device |
| * @level: Edge-triggered: true: to trigger the interrupt |
| * false: to ignore the call |
| * Level-sensitive true: activates an interrupt |
| * false: deactivates an interrupt |
| * |
| * The GIC is not concerned with devices being active-LOW or active-HIGH for |
| * level-sensitive interrupts. You can think of the level parameter as 1 |
| * being HIGH and 0 being LOW and all devices being active-HIGH. |
| */ |
| int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, |
| bool level) |
| { |
| if (vgic_update_irq_state(kvm, cpuid, irq_num, level)) |
| vgic_kick_vcpus(kvm); |
| |
| return 0; |
| } |
| |
| static irqreturn_t vgic_maintenance_handler(int irq, void *data) |
| { |
| /* |
| * We cannot rely on the vgic maintenance interrupt to be |
| * delivered synchronously. This means we can only use it to |
| * exit the VM, and we perform the handling of EOIed |
| * interrupts on the exit path (see vgic_process_maintenance). |
| */ |
| return IRQ_HANDLED; |
| } |
| |
| int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| int i; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return 0; |
| |
| if (vcpu->vcpu_id >= VGIC_MAX_CPUS) |
| return -EBUSY; |
| |
| for (i = 0; i < VGIC_NR_IRQS; i++) { |
| if (i < VGIC_NR_PPIS) |
| vgic_bitmap_set_irq_val(&dist->irq_enabled, |
| vcpu->vcpu_id, i, 1); |
| if (i < VGIC_NR_PRIVATE_IRQS) |
| vgic_bitmap_set_irq_val(&dist->irq_cfg, |
| vcpu->vcpu_id, i, VGIC_CFG_EDGE); |
| |
| vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY; |
| } |
| |
| /* |
| * By forcing VMCR to zero, the GIC will restore the binary |
| * points to their reset values. Anything else resets to zero |
| * anyway. |
| */ |
| vgic_cpu->vgic_vmcr = 0; |
| |
| vgic_cpu->nr_lr = vgic_nr_lr; |
| vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */ |
| |
| return 0; |
| } |
| |
| static void vgic_init_maintenance_interrupt(void *info) |
| { |
| enable_percpu_irq(vgic_maint_irq, 0); |
| } |
| |
| static int vgic_cpu_notify(struct notifier_block *self, |
| unsigned long action, void *cpu) |
| { |
| switch (action) { |
| case CPU_STARTING: |
| case CPU_STARTING_FROZEN: |
| vgic_init_maintenance_interrupt(NULL); |
| break; |
| case CPU_DYING: |
| case CPU_DYING_FROZEN: |
| disable_percpu_irq(vgic_maint_irq); |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block vgic_cpu_nb = { |
| .notifier_call = vgic_cpu_notify, |
| }; |
| |
| int kvm_vgic_hyp_init(void) |
| { |
| int ret; |
| struct resource vctrl_res; |
| struct resource vcpu_res; |
| |
| vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic"); |
| if (!vgic_node) { |
| kvm_err("error: no compatible vgic node in DT\n"); |
| return -ENODEV; |
| } |
| |
| vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0); |
| if (!vgic_maint_irq) { |
| kvm_err("error getting vgic maintenance irq from DT\n"); |
| ret = -ENXIO; |
| goto out; |
| } |
| |
| ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler, |
| "vgic", kvm_get_running_vcpus()); |
| if (ret) { |
| kvm_err("Cannot register interrupt %d\n", vgic_maint_irq); |
| goto out; |
| } |
| |
| ret = register_cpu_notifier(&vgic_cpu_nb); |
| if (ret) { |
| kvm_err("Cannot register vgic CPU notifier\n"); |
| goto out_free_irq; |
| } |
| |
| ret = of_address_to_resource(vgic_node, 2, &vctrl_res); |
| if (ret) { |
| kvm_err("Cannot obtain VCTRL resource\n"); |
| goto out_free_irq; |
| } |
| |
| vgic_vctrl_base = of_iomap(vgic_node, 2); |
| if (!vgic_vctrl_base) { |
| kvm_err("Cannot ioremap VCTRL\n"); |
| ret = -ENOMEM; |
| goto out_free_irq; |
| } |
| |
| vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR); |
| vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1; |
| |
| ret = create_hyp_io_mappings(vgic_vctrl_base, |
| vgic_vctrl_base + resource_size(&vctrl_res), |
| vctrl_res.start); |
| if (ret) { |
| kvm_err("Cannot map VCTRL into hyp\n"); |
| goto out_unmap; |
| } |
| |
| kvm_info("%s@%llx IRQ%d\n", vgic_node->name, |
| vctrl_res.start, vgic_maint_irq); |
| on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1); |
| |
| if (of_address_to_resource(vgic_node, 3, &vcpu_res)) { |
| kvm_err("Cannot obtain VCPU resource\n"); |
| ret = -ENXIO; |
| goto out_unmap; |
| } |
| vgic_vcpu_base = vcpu_res.start; |
| |
| goto out; |
| |
| out_unmap: |
| iounmap(vgic_vctrl_base); |
| out_free_irq: |
| free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus()); |
| out: |
| of_node_put(vgic_node); |
| return ret; |
| } |
| |
| int kvm_vgic_init(struct kvm *kvm) |
| { |
| int ret = 0, i; |
| |
| mutex_lock(&kvm->lock); |
| |
| if (vgic_initialized(kvm)) |
| goto out; |
| |
| if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) || |
| IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) { |
| kvm_err("Need to set vgic cpu and dist addresses first\n"); |
| ret = -ENXIO; |
| goto out; |
| } |
| |
| ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base, |
| vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE); |
| if (ret) { |
| kvm_err("Unable to remap VGIC CPU to VCPU\n"); |
| goto out; |
| } |
| |
| for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4) |
| vgic_set_target_reg(kvm, 0, i); |
| |
| kvm_timer_init(kvm); |
| kvm->arch.vgic.ready = true; |
| out: |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| |
| int kvm_vgic_create(struct kvm *kvm) |
| { |
| int ret = 0; |
| |
| mutex_lock(&kvm->lock); |
| |
| if (atomic_read(&kvm->online_vcpus) || kvm->arch.vgic.vctrl_base) { |
| ret = -EEXIST; |
| goto out; |
| } |
| |
| spin_lock_init(&kvm->arch.vgic.lock); |
| kvm->arch.vgic.vctrl_base = vgic_vctrl_base; |
| kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; |
| kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; |
| |
| out: |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| |
| static bool vgic_ioaddr_overlap(struct kvm *kvm) |
| { |
| phys_addr_t dist = kvm->arch.vgic.vgic_dist_base; |
| phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base; |
| |
| if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu)) |
| return 0; |
| if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) || |
| (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist)) |
| return -EBUSY; |
| return 0; |
| } |
| |
| static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr, |
| phys_addr_t addr, phys_addr_t size) |
| { |
| int ret; |
| |
| if (!IS_VGIC_ADDR_UNDEF(*ioaddr)) |
| return -EEXIST; |
| if (addr + size < addr) |
| return -EINVAL; |
| |
| ret = vgic_ioaddr_overlap(kvm); |
| if (ret) |
| return ret; |
| *ioaddr = addr; |
| return ret; |
| } |
| |
| int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr) |
| { |
| int r = 0; |
| struct vgic_dist *vgic = &kvm->arch.vgic; |
| |
| if (addr & ~KVM_PHYS_MASK) |
| return -E2BIG; |
| |
| if (addr & (SZ_4K - 1)) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->lock); |
| switch (type) { |
| case KVM_VGIC_V2_ADDR_TYPE_DIST: |
| r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base, |
| addr, KVM_VGIC_V2_DIST_SIZE); |
| break; |
| case KVM_VGIC_V2_ADDR_TYPE_CPU: |
| r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base, |
| addr, KVM_VGIC_V2_CPU_SIZE); |
| break; |
| default: |
| r = -ENODEV; |
| } |
| |
| mutex_unlock(&kvm->lock); |
| return r; |
| } |