| /* |
| * Universal Host Controller Interface driver for USB. |
| * |
| * Maintainer: Alan Stern <stern@rowland.harvard.edu> |
| * |
| * (C) Copyright 1999 Linus Torvalds |
| * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com |
| * (C) Copyright 1999 Randy Dunlap |
| * (C) Copyright 1999 Georg Acher, acher@in.tum.de |
| * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de |
| * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch |
| * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at |
| * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface |
| * support from usb-ohci.c by Adam Richter, adam@yggdrasil.com). |
| * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c) |
| * (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu |
| * |
| * Intel documents this fairly well, and as far as I know there |
| * are no royalties or anything like that, but even so there are |
| * people who decided that they want to do the same thing in a |
| * completely different way. |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <linux/unistd.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock.h> |
| #include <linux/debugfs.h> |
| #include <linux/pm.h> |
| #include <linux/dmapool.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/usb.h> |
| #include <linux/usb/hcd.h> |
| #include <linux/bitops.h> |
| #include <linux/dmi.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/system.h> |
| |
| #include "uhci-hcd.h" |
| |
| /* |
| * Version Information |
| */ |
| #define DRIVER_AUTHOR \ |
| "Linus 'Frodo Rabbit' Torvalds, Johannes Erdfelt, " \ |
| "Randy Dunlap, Georg Acher, Deti Fliegl, Thomas Sailer, " \ |
| "Roman Weissgaerber, Alan Stern" |
| #define DRIVER_DESC "USB Universal Host Controller Interface driver" |
| |
| /* for flakey hardware, ignore overcurrent indicators */ |
| static int ignore_oc; |
| module_param(ignore_oc, bool, S_IRUGO); |
| MODULE_PARM_DESC(ignore_oc, "ignore hardware overcurrent indications"); |
| |
| /* |
| * debug = 0, no debugging messages |
| * debug = 1, dump failed URBs except for stalls |
| * debug = 2, dump all failed URBs (including stalls) |
| * show all queues in /sys/kernel/debug/uhci/[pci_addr] |
| * debug = 3, show all TDs in URBs when dumping |
| */ |
| #ifdef DEBUG |
| #define DEBUG_CONFIGURED 1 |
| static int debug = 1; |
| module_param(debug, int, S_IRUGO | S_IWUSR); |
| MODULE_PARM_DESC(debug, "Debug level"); |
| |
| #else |
| #define DEBUG_CONFIGURED 0 |
| #define debug 0 |
| #endif |
| |
| static char *errbuf; |
| #define ERRBUF_LEN (32 * 1024) |
| |
| static struct kmem_cache *uhci_up_cachep; /* urb_priv */ |
| |
| static void suspend_rh(struct uhci_hcd *uhci, enum uhci_rh_state new_state); |
| static void wakeup_rh(struct uhci_hcd *uhci); |
| static void uhci_get_current_frame_number(struct uhci_hcd *uhci); |
| |
| /* |
| * Calculate the link pointer DMA value for the first Skeleton QH in a frame. |
| */ |
| static __hc32 uhci_frame_skel_link(struct uhci_hcd *uhci, int frame) |
| { |
| int skelnum; |
| |
| /* |
| * The interrupt queues will be interleaved as evenly as possible. |
| * There's not much to be done about period-1 interrupts; they have |
| * to occur in every frame. But we can schedule period-2 interrupts |
| * in odd-numbered frames, period-4 interrupts in frames congruent |
| * to 2 (mod 4), and so on. This way each frame only has two |
| * interrupt QHs, which will help spread out bandwidth utilization. |
| * |
| * ffs (Find First bit Set) does exactly what we need: |
| * 1,3,5,... => ffs = 0 => use period-2 QH = skelqh[8], |
| * 2,6,10,... => ffs = 1 => use period-4 QH = skelqh[7], etc. |
| * ffs >= 7 => not on any high-period queue, so use |
| * period-1 QH = skelqh[9]. |
| * Add in UHCI_NUMFRAMES to insure at least one bit is set. |
| */ |
| skelnum = 8 - (int) __ffs(frame | UHCI_NUMFRAMES); |
| if (skelnum <= 1) |
| skelnum = 9; |
| return LINK_TO_QH(uhci, uhci->skelqh[skelnum]); |
| } |
| |
| #include "uhci-debug.c" |
| #include "uhci-q.c" |
| #include "uhci-hub.c" |
| |
| /* |
| * Finish up a host controller reset and update the recorded state. |
| */ |
| static void finish_reset(struct uhci_hcd *uhci) |
| { |
| int port; |
| |
| /* HCRESET doesn't affect the Suspend, Reset, and Resume Detect |
| * bits in the port status and control registers. |
| * We have to clear them by hand. |
| */ |
| for (port = 0; port < uhci->rh_numports; ++port) |
| uhci_writew(uhci, 0, USBPORTSC1 + (port * 2)); |
| |
| uhci->port_c_suspend = uhci->resuming_ports = 0; |
| uhci->rh_state = UHCI_RH_RESET; |
| uhci->is_stopped = UHCI_IS_STOPPED; |
| clear_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags); |
| } |
| |
| /* |
| * Last rites for a defunct/nonfunctional controller |
| * or one we don't want to use any more. |
| */ |
| static void uhci_hc_died(struct uhci_hcd *uhci) |
| { |
| uhci_get_current_frame_number(uhci); |
| uhci->reset_hc(uhci); |
| finish_reset(uhci); |
| uhci->dead = 1; |
| |
| /* The current frame may already be partway finished */ |
| ++uhci->frame_number; |
| } |
| |
| /* |
| * Initialize a controller that was newly discovered or has lost power |
| * or otherwise been reset while it was suspended. In none of these cases |
| * can we be sure of its previous state. |
| */ |
| static void check_and_reset_hc(struct uhci_hcd *uhci) |
| { |
| if (uhci->check_and_reset_hc(uhci)) |
| finish_reset(uhci); |
| } |
| |
| #if defined(CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC) |
| /* |
| * The two functions below are generic reset functions that are used on systems |
| * that do not have keyboard and mouse legacy support. We assume that we are |
| * running on such a system if CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC is defined. |
| */ |
| |
| /* |
| * Make sure the controller is completely inactive, unable to |
| * generate interrupts or do DMA. |
| */ |
| static void uhci_generic_reset_hc(struct uhci_hcd *uhci) |
| { |
| /* Reset the HC - this will force us to get a |
| * new notification of any already connected |
| * ports due to the virtual disconnect that it |
| * implies. |
| */ |
| uhci_writew(uhci, USBCMD_HCRESET, USBCMD); |
| mb(); |
| udelay(5); |
| if (uhci_readw(uhci, USBCMD) & USBCMD_HCRESET) |
| dev_warn(uhci_dev(uhci), "HCRESET not completed yet!\n"); |
| |
| /* Just to be safe, disable interrupt requests and |
| * make sure the controller is stopped. |
| */ |
| uhci_writew(uhci, 0, USBINTR); |
| uhci_writew(uhci, 0, USBCMD); |
| } |
| |
| /* |
| * Initialize a controller that was newly discovered or has just been |
| * resumed. In either case we can't be sure of its previous state. |
| * |
| * Returns: 1 if the controller was reset, 0 otherwise. |
| */ |
| static int uhci_generic_check_and_reset_hc(struct uhci_hcd *uhci) |
| { |
| unsigned int cmd, intr; |
| |
| /* |
| * When restarting a suspended controller, we expect all the |
| * settings to be the same as we left them: |
| * |
| * Controller is stopped and configured with EGSM set; |
| * No interrupts enabled except possibly Resume Detect. |
| * |
| * If any of these conditions are violated we do a complete reset. |
| */ |
| |
| cmd = uhci_readw(uhci, USBCMD); |
| if ((cmd & USBCMD_RS) || !(cmd & USBCMD_CF) || !(cmd & USBCMD_EGSM)) { |
| dev_dbg(uhci_dev(uhci), "%s: cmd = 0x%04x\n", |
| __func__, cmd); |
| goto reset_needed; |
| } |
| |
| intr = uhci_readw(uhci, USBINTR); |
| if (intr & (~USBINTR_RESUME)) { |
| dev_dbg(uhci_dev(uhci), "%s: intr = 0x%04x\n", |
| __func__, intr); |
| goto reset_needed; |
| } |
| return 0; |
| |
| reset_needed: |
| dev_dbg(uhci_dev(uhci), "Performing full reset\n"); |
| uhci_generic_reset_hc(uhci); |
| return 1; |
| } |
| #endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */ |
| |
| /* |
| * Store the basic register settings needed by the controller. |
| */ |
| static void configure_hc(struct uhci_hcd *uhci) |
| { |
| /* Set the frame length to the default: 1 ms exactly */ |
| uhci_writeb(uhci, USBSOF_DEFAULT, USBSOF); |
| |
| /* Store the frame list base address */ |
| uhci_writel(uhci, uhci->frame_dma_handle, USBFLBASEADD); |
| |
| /* Set the current frame number */ |
| uhci_writew(uhci, uhci->frame_number & UHCI_MAX_SOF_NUMBER, |
| USBFRNUM); |
| |
| /* perform any arch/bus specific configuration */ |
| if (uhci->configure_hc) |
| uhci->configure_hc(uhci); |
| } |
| |
| static int resume_detect_interrupts_are_broken(struct uhci_hcd *uhci) |
| { |
| /* If we have to ignore overcurrent events then almost by definition |
| * we can't depend on resume-detect interrupts. */ |
| if (ignore_oc) |
| return 1; |
| |
| return uhci->resume_detect_interrupts_are_broken ? |
| uhci->resume_detect_interrupts_are_broken(uhci) : 0; |
| } |
| |
| static int global_suspend_mode_is_broken(struct uhci_hcd *uhci) |
| { |
| return uhci->global_suspend_mode_is_broken ? |
| uhci->global_suspend_mode_is_broken(uhci) : 0; |
| } |
| |
| static void suspend_rh(struct uhci_hcd *uhci, enum uhci_rh_state new_state) |
| __releases(uhci->lock) |
| __acquires(uhci->lock) |
| { |
| int auto_stop; |
| int int_enable, egsm_enable, wakeup_enable; |
| struct usb_device *rhdev = uhci_to_hcd(uhci)->self.root_hub; |
| |
| auto_stop = (new_state == UHCI_RH_AUTO_STOPPED); |
| dev_dbg(&rhdev->dev, "%s%s\n", __func__, |
| (auto_stop ? " (auto-stop)" : "")); |
| |
| /* Start off by assuming Resume-Detect interrupts and EGSM work |
| * and that remote wakeups should be enabled. |
| */ |
| egsm_enable = USBCMD_EGSM; |
| int_enable = USBINTR_RESUME; |
| wakeup_enable = 1; |
| |
| /* |
| * In auto-stop mode, we must be able to detect new connections. |
| * The user can force us to poll by disabling remote wakeup; |
| * otherwise we will use the EGSM/RD mechanism. |
| */ |
| if (auto_stop) { |
| if (!device_may_wakeup(&rhdev->dev)) |
| egsm_enable = int_enable = 0; |
| } |
| |
| #ifdef CONFIG_PM |
| /* |
| * In bus-suspend mode, we use the wakeup setting specified |
| * for the root hub. |
| */ |
| else { |
| if (!rhdev->do_remote_wakeup) |
| wakeup_enable = 0; |
| } |
| #endif |
| |
| /* |
| * UHCI doesn't distinguish between wakeup requests from downstream |
| * devices and local connect/disconnect events. There's no way to |
| * enable one without the other; both are controlled by EGSM. Thus |
| * if wakeups are disallowed then EGSM must be turned off -- in which |
| * case remote wakeup requests from downstream during system sleep |
| * will be lost. |
| * |
| * In addition, if EGSM is broken then we can't use it. Likewise, |
| * if Resume-Detect interrupts are broken then we can't use them. |
| * |
| * Finally, neither EGSM nor RD is useful by itself. Without EGSM, |
| * the RD status bit will never get set. Without RD, the controller |
| * won't generate interrupts to tell the system about wakeup events. |
| */ |
| if (!wakeup_enable || global_suspend_mode_is_broken(uhci) || |
| resume_detect_interrupts_are_broken(uhci)) |
| egsm_enable = int_enable = 0; |
| |
| uhci->RD_enable = !!int_enable; |
| uhci_writew(uhci, int_enable, USBINTR); |
| uhci_writew(uhci, egsm_enable | USBCMD_CF, USBCMD); |
| mb(); |
| udelay(5); |
| |
| /* If we're auto-stopping then no devices have been attached |
| * for a while, so there shouldn't be any active URBs and the |
| * controller should stop after a few microseconds. Otherwise |
| * we will give the controller one frame to stop. |
| */ |
| if (!auto_stop && !(uhci_readw(uhci, USBSTS) & USBSTS_HCH)) { |
| uhci->rh_state = UHCI_RH_SUSPENDING; |
| spin_unlock_irq(&uhci->lock); |
| msleep(1); |
| spin_lock_irq(&uhci->lock); |
| if (uhci->dead) |
| return; |
| } |
| if (!(uhci_readw(uhci, USBSTS) & USBSTS_HCH)) |
| dev_warn(uhci_dev(uhci), "Controller not stopped yet!\n"); |
| |
| uhci_get_current_frame_number(uhci); |
| |
| uhci->rh_state = new_state; |
| uhci->is_stopped = UHCI_IS_STOPPED; |
| |
| /* |
| * If remote wakeup is enabled but either EGSM or RD interrupts |
| * doesn't work, then we won't get an interrupt when a wakeup event |
| * occurs. Thus the suspended root hub needs to be polled. |
| */ |
| if (wakeup_enable && (!int_enable || !egsm_enable)) |
| set_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags); |
| else |
| clear_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags); |
| |
| uhci_scan_schedule(uhci); |
| uhci_fsbr_off(uhci); |
| } |
| |
| static void start_rh(struct uhci_hcd *uhci) |
| { |
| uhci->is_stopped = 0; |
| |
| /* Mark it configured and running with a 64-byte max packet. |
| * All interrupts are enabled, even though RESUME won't do anything. |
| */ |
| uhci_writew(uhci, USBCMD_RS | USBCMD_CF | USBCMD_MAXP, USBCMD); |
| uhci_writew(uhci, USBINTR_TIMEOUT | USBINTR_RESUME | |
| USBINTR_IOC | USBINTR_SP, USBINTR); |
| mb(); |
| uhci->rh_state = UHCI_RH_RUNNING; |
| set_bit(HCD_FLAG_POLL_RH, &uhci_to_hcd(uhci)->flags); |
| } |
| |
| static void wakeup_rh(struct uhci_hcd *uhci) |
| __releases(uhci->lock) |
| __acquires(uhci->lock) |
| { |
| dev_dbg(&uhci_to_hcd(uhci)->self.root_hub->dev, |
| "%s%s\n", __func__, |
| uhci->rh_state == UHCI_RH_AUTO_STOPPED ? |
| " (auto-start)" : ""); |
| |
| /* If we are auto-stopped then no devices are attached so there's |
| * no need for wakeup signals. Otherwise we send Global Resume |
| * for 20 ms. |
| */ |
| if (uhci->rh_state == UHCI_RH_SUSPENDED) { |
| unsigned egsm; |
| |
| /* Keep EGSM on if it was set before */ |
| egsm = uhci_readw(uhci, USBCMD) & USBCMD_EGSM; |
| uhci->rh_state = UHCI_RH_RESUMING; |
| uhci_writew(uhci, USBCMD_FGR | USBCMD_CF | egsm, USBCMD); |
| spin_unlock_irq(&uhci->lock); |
| msleep(20); |
| spin_lock_irq(&uhci->lock); |
| if (uhci->dead) |
| return; |
| |
| /* End Global Resume and wait for EOP to be sent */ |
| uhci_writew(uhci, USBCMD_CF, USBCMD); |
| mb(); |
| udelay(4); |
| if (uhci_readw(uhci, USBCMD) & USBCMD_FGR) |
| dev_warn(uhci_dev(uhci), "FGR not stopped yet!\n"); |
| } |
| |
| start_rh(uhci); |
| |
| /* Restart root hub polling */ |
| mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies); |
| } |
| |
| static irqreturn_t uhci_irq(struct usb_hcd *hcd) |
| { |
| struct uhci_hcd *uhci = hcd_to_uhci(hcd); |
| unsigned short status; |
| |
| /* |
| * Read the interrupt status, and write it back to clear the |
| * interrupt cause. Contrary to the UHCI specification, the |
| * "HC Halted" status bit is persistent: it is RO, not R/WC. |
| */ |
| status = uhci_readw(uhci, USBSTS); |
| if (!(status & ~USBSTS_HCH)) /* shared interrupt, not mine */ |
| return IRQ_NONE; |
| uhci_writew(uhci, status, USBSTS); /* Clear it */ |
| |
| if (status & ~(USBSTS_USBINT | USBSTS_ERROR | USBSTS_RD)) { |
| if (status & USBSTS_HSE) |
| dev_err(uhci_dev(uhci), "host system error, " |
| "PCI problems?\n"); |
| if (status & USBSTS_HCPE) |
| dev_err(uhci_dev(uhci), "host controller process " |
| "error, something bad happened!\n"); |
| if (status & USBSTS_HCH) { |
| spin_lock(&uhci->lock); |
| if (uhci->rh_state >= UHCI_RH_RUNNING) { |
| dev_err(uhci_dev(uhci), |
| "host controller halted, " |
| "very bad!\n"); |
| if (debug > 1 && errbuf) { |
| /* Print the schedule for debugging */ |
| uhci_sprint_schedule(uhci, |
| errbuf, ERRBUF_LEN); |
| lprintk(errbuf); |
| } |
| uhci_hc_died(uhci); |
| usb_hc_died(hcd); |
| |
| /* Force a callback in case there are |
| * pending unlinks */ |
| mod_timer(&hcd->rh_timer, jiffies); |
| } |
| spin_unlock(&uhci->lock); |
| } |
| } |
| |
| if (status & USBSTS_RD) |
| usb_hcd_poll_rh_status(hcd); |
| else { |
| spin_lock(&uhci->lock); |
| uhci_scan_schedule(uhci); |
| spin_unlock(&uhci->lock); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Store the current frame number in uhci->frame_number if the controller |
| * is running. Expand from 11 bits (of which we use only 10) to a |
| * full-sized integer. |
| * |
| * Like many other parts of the driver, this code relies on being polled |
| * more than once per second as long as the controller is running. |
| */ |
| static void uhci_get_current_frame_number(struct uhci_hcd *uhci) |
| { |
| if (!uhci->is_stopped) { |
| unsigned delta; |
| |
| delta = (uhci_readw(uhci, USBFRNUM) - uhci->frame_number) & |
| (UHCI_NUMFRAMES - 1); |
| uhci->frame_number += delta; |
| } |
| } |
| |
| /* |
| * De-allocate all resources |
| */ |
| static void release_uhci(struct uhci_hcd *uhci) |
| { |
| int i; |
| |
| if (DEBUG_CONFIGURED) { |
| spin_lock_irq(&uhci->lock); |
| uhci->is_initialized = 0; |
| spin_unlock_irq(&uhci->lock); |
| |
| debugfs_remove(uhci->dentry); |
| } |
| |
| for (i = 0; i < UHCI_NUM_SKELQH; i++) |
| uhci_free_qh(uhci, uhci->skelqh[i]); |
| |
| uhci_free_td(uhci, uhci->term_td); |
| |
| dma_pool_destroy(uhci->qh_pool); |
| |
| dma_pool_destroy(uhci->td_pool); |
| |
| kfree(uhci->frame_cpu); |
| |
| dma_free_coherent(uhci_dev(uhci), |
| UHCI_NUMFRAMES * sizeof(*uhci->frame), |
| uhci->frame, uhci->frame_dma_handle); |
| } |
| |
| /* |
| * Allocate a frame list, and then setup the skeleton |
| * |
| * The hardware doesn't really know any difference |
| * in the queues, but the order does matter for the |
| * protocols higher up. The order in which the queues |
| * are encountered by the hardware is: |
| * |
| * - All isochronous events are handled before any |
| * of the queues. We don't do that here, because |
| * we'll create the actual TD entries on demand. |
| * - The first queue is the high-period interrupt queue. |
| * - The second queue is the period-1 interrupt and async |
| * (low-speed control, full-speed control, then bulk) queue. |
| * - The third queue is the terminating bandwidth reclamation queue, |
| * which contains no members, loops back to itself, and is present |
| * only when FSBR is on and there are no full-speed control or bulk QHs. |
| */ |
| static int uhci_start(struct usb_hcd *hcd) |
| { |
| struct uhci_hcd *uhci = hcd_to_uhci(hcd); |
| int retval = -EBUSY; |
| int i; |
| struct dentry __maybe_unused *dentry; |
| |
| hcd->uses_new_polling = 1; |
| |
| spin_lock_init(&uhci->lock); |
| setup_timer(&uhci->fsbr_timer, uhci_fsbr_timeout, |
| (unsigned long) uhci); |
| INIT_LIST_HEAD(&uhci->idle_qh_list); |
| init_waitqueue_head(&uhci->waitqh); |
| |
| #ifdef UHCI_DEBUG_OPS |
| dentry = debugfs_create_file(hcd->self.bus_name, |
| S_IFREG|S_IRUGO|S_IWUSR, uhci_debugfs_root, |
| uhci, &uhci_debug_operations); |
| if (!dentry) { |
| dev_err(uhci_dev(uhci), "couldn't create uhci debugfs entry\n"); |
| return -ENOMEM; |
| } |
| uhci->dentry = dentry; |
| #endif |
| |
| uhci->frame = dma_alloc_coherent(uhci_dev(uhci), |
| UHCI_NUMFRAMES * sizeof(*uhci->frame), |
| &uhci->frame_dma_handle, 0); |
| if (!uhci->frame) { |
| dev_err(uhci_dev(uhci), "unable to allocate " |
| "consistent memory for frame list\n"); |
| goto err_alloc_frame; |
| } |
| memset(uhci->frame, 0, UHCI_NUMFRAMES * sizeof(*uhci->frame)); |
| |
| uhci->frame_cpu = kcalloc(UHCI_NUMFRAMES, sizeof(*uhci->frame_cpu), |
| GFP_KERNEL); |
| if (!uhci->frame_cpu) { |
| dev_err(uhci_dev(uhci), "unable to allocate " |
| "memory for frame pointers\n"); |
| goto err_alloc_frame_cpu; |
| } |
| |
| uhci->td_pool = dma_pool_create("uhci_td", uhci_dev(uhci), |
| sizeof(struct uhci_td), 16, 0); |
| if (!uhci->td_pool) { |
| dev_err(uhci_dev(uhci), "unable to create td dma_pool\n"); |
| goto err_create_td_pool; |
| } |
| |
| uhci->qh_pool = dma_pool_create("uhci_qh", uhci_dev(uhci), |
| sizeof(struct uhci_qh), 16, 0); |
| if (!uhci->qh_pool) { |
| dev_err(uhci_dev(uhci), "unable to create qh dma_pool\n"); |
| goto err_create_qh_pool; |
| } |
| |
| uhci->term_td = uhci_alloc_td(uhci); |
| if (!uhci->term_td) { |
| dev_err(uhci_dev(uhci), "unable to allocate terminating TD\n"); |
| goto err_alloc_term_td; |
| } |
| |
| for (i = 0; i < UHCI_NUM_SKELQH; i++) { |
| uhci->skelqh[i] = uhci_alloc_qh(uhci, NULL, NULL); |
| if (!uhci->skelqh[i]) { |
| dev_err(uhci_dev(uhci), "unable to allocate QH\n"); |
| goto err_alloc_skelqh; |
| } |
| } |
| |
| /* |
| * 8 Interrupt queues; link all higher int queues to int1 = async |
| */ |
| for (i = SKEL_ISO + 1; i < SKEL_ASYNC; ++i) |
| uhci->skelqh[i]->link = LINK_TO_QH(uhci, uhci->skel_async_qh); |
| uhci->skel_async_qh->link = UHCI_PTR_TERM(uhci); |
| uhci->skel_term_qh->link = LINK_TO_QH(uhci, uhci->skel_term_qh); |
| |
| /* This dummy TD is to work around a bug in Intel PIIX controllers */ |
| uhci_fill_td(uhci, uhci->term_td, 0, uhci_explen(0) | |
| (0x7f << TD_TOKEN_DEVADDR_SHIFT) | USB_PID_IN, 0); |
| uhci->term_td->link = UHCI_PTR_TERM(uhci); |
| uhci->skel_async_qh->element = uhci->skel_term_qh->element = |
| LINK_TO_TD(uhci, uhci->term_td); |
| |
| /* |
| * Fill the frame list: make all entries point to the proper |
| * interrupt queue. |
| */ |
| for (i = 0; i < UHCI_NUMFRAMES; i++) { |
| |
| /* Only place we don't use the frame list routines */ |
| uhci->frame[i] = uhci_frame_skel_link(uhci, i); |
| } |
| |
| /* |
| * Some architectures require a full mb() to enforce completion of |
| * the memory writes above before the I/O transfers in configure_hc(). |
| */ |
| mb(); |
| |
| configure_hc(uhci); |
| uhci->is_initialized = 1; |
| spin_lock_irq(&uhci->lock); |
| start_rh(uhci); |
| spin_unlock_irq(&uhci->lock); |
| return 0; |
| |
| /* |
| * error exits: |
| */ |
| err_alloc_skelqh: |
| for (i = 0; i < UHCI_NUM_SKELQH; i++) { |
| if (uhci->skelqh[i]) |
| uhci_free_qh(uhci, uhci->skelqh[i]); |
| } |
| |
| uhci_free_td(uhci, uhci->term_td); |
| |
| err_alloc_term_td: |
| dma_pool_destroy(uhci->qh_pool); |
| |
| err_create_qh_pool: |
| dma_pool_destroy(uhci->td_pool); |
| |
| err_create_td_pool: |
| kfree(uhci->frame_cpu); |
| |
| err_alloc_frame_cpu: |
| dma_free_coherent(uhci_dev(uhci), |
| UHCI_NUMFRAMES * sizeof(*uhci->frame), |
| uhci->frame, uhci->frame_dma_handle); |
| |
| err_alloc_frame: |
| debugfs_remove(uhci->dentry); |
| |
| return retval; |
| } |
| |
| static void uhci_stop(struct usb_hcd *hcd) |
| { |
| struct uhci_hcd *uhci = hcd_to_uhci(hcd); |
| |
| spin_lock_irq(&uhci->lock); |
| if (HCD_HW_ACCESSIBLE(hcd) && !uhci->dead) |
| uhci_hc_died(uhci); |
| uhci_scan_schedule(uhci); |
| spin_unlock_irq(&uhci->lock); |
| synchronize_irq(hcd->irq); |
| |
| del_timer_sync(&uhci->fsbr_timer); |
| release_uhci(uhci); |
| } |
| |
| #ifdef CONFIG_PM |
| static int uhci_rh_suspend(struct usb_hcd *hcd) |
| { |
| struct uhci_hcd *uhci = hcd_to_uhci(hcd); |
| int rc = 0; |
| |
| spin_lock_irq(&uhci->lock); |
| if (!HCD_HW_ACCESSIBLE(hcd)) |
| rc = -ESHUTDOWN; |
| else if (uhci->dead) |
| ; /* Dead controllers tell no tales */ |
| |
| /* Once the controller is stopped, port resumes that are already |
| * in progress won't complete. Hence if remote wakeup is enabled |
| * for the root hub and any ports are in the middle of a resume or |
| * remote wakeup, we must fail the suspend. |
| */ |
| else if (hcd->self.root_hub->do_remote_wakeup && |
| uhci->resuming_ports) { |
| dev_dbg(uhci_dev(uhci), "suspend failed because a port " |
| "is resuming\n"); |
| rc = -EBUSY; |
| } else |
| suspend_rh(uhci, UHCI_RH_SUSPENDED); |
| spin_unlock_irq(&uhci->lock); |
| return rc; |
| } |
| |
| static int uhci_rh_resume(struct usb_hcd *hcd) |
| { |
| struct uhci_hcd *uhci = hcd_to_uhci(hcd); |
| int rc = 0; |
| |
| spin_lock_irq(&uhci->lock); |
| if (!HCD_HW_ACCESSIBLE(hcd)) |
| rc = -ESHUTDOWN; |
| else if (!uhci->dead) |
| wakeup_rh(uhci); |
| spin_unlock_irq(&uhci->lock); |
| return rc; |
| } |
| |
| #endif |
| |
| /* Wait until a particular device/endpoint's QH is idle, and free it */ |
| static void uhci_hcd_endpoint_disable(struct usb_hcd *hcd, |
| struct usb_host_endpoint *hep) |
| { |
| struct uhci_hcd *uhci = hcd_to_uhci(hcd); |
| struct uhci_qh *qh; |
| |
| spin_lock_irq(&uhci->lock); |
| qh = (struct uhci_qh *) hep->hcpriv; |
| if (qh == NULL) |
| goto done; |
| |
| while (qh->state != QH_STATE_IDLE) { |
| ++uhci->num_waiting; |
| spin_unlock_irq(&uhci->lock); |
| wait_event_interruptible(uhci->waitqh, |
| qh->state == QH_STATE_IDLE); |
| spin_lock_irq(&uhci->lock); |
| --uhci->num_waiting; |
| } |
| |
| uhci_free_qh(uhci, qh); |
| done: |
| spin_unlock_irq(&uhci->lock); |
| } |
| |
| static int uhci_hcd_get_frame_number(struct usb_hcd *hcd) |
| { |
| struct uhci_hcd *uhci = hcd_to_uhci(hcd); |
| unsigned frame_number; |
| unsigned delta; |
| |
| /* Minimize latency by avoiding the spinlock */ |
| frame_number = uhci->frame_number; |
| barrier(); |
| delta = (uhci_readw(uhci, USBFRNUM) - frame_number) & |
| (UHCI_NUMFRAMES - 1); |
| return frame_number + delta; |
| } |
| |
| /* Determines number of ports on controller */ |
| static int uhci_count_ports(struct usb_hcd *hcd) |
| { |
| struct uhci_hcd *uhci = hcd_to_uhci(hcd); |
| unsigned io_size = (unsigned) hcd->rsrc_len; |
| int port; |
| |
| /* The UHCI spec says devices must have 2 ports, and goes on to say |
| * they may have more but gives no way to determine how many there |
| * are. However according to the UHCI spec, Bit 7 of the port |
| * status and control register is always set to 1. So we try to |
| * use this to our advantage. Another common failure mode when |
| * a nonexistent register is addressed is to return all ones, so |
| * we test for that also. |
| */ |
| for (port = 0; port < (io_size - USBPORTSC1) / 2; port++) { |
| unsigned int portstatus; |
| |
| portstatus = uhci_readw(uhci, USBPORTSC1 + (port * 2)); |
| if (!(portstatus & 0x0080) || portstatus == 0xffff) |
| break; |
| } |
| if (debug) |
| dev_info(uhci_dev(uhci), "detected %d ports\n", port); |
| |
| /* Anything greater than 7 is weird so we'll ignore it. */ |
| if (port > UHCI_RH_MAXCHILD) { |
| dev_info(uhci_dev(uhci), "port count misdetected? " |
| "forcing to 2 ports\n"); |
| port = 2; |
| } |
| |
| return port; |
| } |
| |
| static const char hcd_name[] = "uhci_hcd"; |
| |
| #ifdef CONFIG_PCI |
| #include "uhci-pci.c" |
| #define PCI_DRIVER uhci_pci_driver |
| #endif |
| |
| #ifdef CONFIG_SPARC_LEON |
| #include "uhci-grlib.c" |
| #define PLATFORM_DRIVER uhci_grlib_driver |
| #endif |
| |
| #if !defined(PCI_DRIVER) && !defined(PLATFORM_DRIVER) |
| #error "missing bus glue for uhci-hcd" |
| #endif |
| |
| static int __init uhci_hcd_init(void) |
| { |
| int retval = -ENOMEM; |
| |
| if (usb_disabled()) |
| return -ENODEV; |
| |
| printk(KERN_INFO "uhci_hcd: " DRIVER_DESC "%s\n", |
| ignore_oc ? ", overcurrent ignored" : ""); |
| set_bit(USB_UHCI_LOADED, &usb_hcds_loaded); |
| |
| if (DEBUG_CONFIGURED) { |
| errbuf = kmalloc(ERRBUF_LEN, GFP_KERNEL); |
| if (!errbuf) |
| goto errbuf_failed; |
| uhci_debugfs_root = debugfs_create_dir("uhci", usb_debug_root); |
| if (!uhci_debugfs_root) |
| goto debug_failed; |
| } |
| |
| uhci_up_cachep = kmem_cache_create("uhci_urb_priv", |
| sizeof(struct urb_priv), 0, 0, NULL); |
| if (!uhci_up_cachep) |
| goto up_failed; |
| |
| #ifdef PLATFORM_DRIVER |
| retval = platform_driver_register(&PLATFORM_DRIVER); |
| if (retval < 0) |
| goto clean0; |
| #endif |
| |
| #ifdef PCI_DRIVER |
| retval = pci_register_driver(&PCI_DRIVER); |
| if (retval < 0) |
| goto clean1; |
| #endif |
| |
| return 0; |
| |
| #ifdef PCI_DRIVER |
| clean1: |
| #endif |
| #ifdef PLATFORM_DRIVER |
| platform_driver_unregister(&PLATFORM_DRIVER); |
| clean0: |
| #endif |
| kmem_cache_destroy(uhci_up_cachep); |
| |
| up_failed: |
| debugfs_remove(uhci_debugfs_root); |
| |
| debug_failed: |
| kfree(errbuf); |
| |
| errbuf_failed: |
| |
| clear_bit(USB_UHCI_LOADED, &usb_hcds_loaded); |
| return retval; |
| } |
| |
| static void __exit uhci_hcd_cleanup(void) |
| { |
| #ifdef PLATFORM_DRIVER |
| platform_driver_unregister(&PLATFORM_DRIVER); |
| #endif |
| #ifdef PCI_DRIVER |
| pci_unregister_driver(&PCI_DRIVER); |
| #endif |
| kmem_cache_destroy(uhci_up_cachep); |
| debugfs_remove(uhci_debugfs_root); |
| kfree(errbuf); |
| clear_bit(USB_UHCI_LOADED, &usb_hcds_loaded); |
| } |
| |
| module_init(uhci_hcd_init); |
| module_exit(uhci_hcd_cleanup); |
| |
| MODULE_AUTHOR(DRIVER_AUTHOR); |
| MODULE_DESCRIPTION(DRIVER_DESC); |
| MODULE_LICENSE("GPL"); |