blob: 68972e3d3f5cc75a9e63cc0f720d070203250654 [file] [log] [blame]
/*
* Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public Licens
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
*
*/
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/uio.h>
#include <linux/iocontext.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/mempool.h>
#include <linux/workqueue.h>
#include <linux/cgroup.h>
#include <trace/events/block.h>
/*
* Test patch to inline a certain number of bi_io_vec's inside the bio
* itself, to shrink a bio data allocation from two mempool calls to one
*/
#define BIO_INLINE_VECS 4
/*
* if you change this list, also change bvec_alloc or things will
* break badly! cannot be bigger than what you can fit into an
* unsigned short
*/
#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
};
#undef BV
/*
* fs_bio_set is the bio_set containing bio and iovec memory pools used by
* IO code that does not need private memory pools.
*/
struct bio_set *fs_bio_set;
EXPORT_SYMBOL(fs_bio_set);
/*
* Our slab pool management
*/
struct bio_slab {
struct kmem_cache *slab;
unsigned int slab_ref;
unsigned int slab_size;
char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static struct bio_slab *bio_slabs;
static unsigned int bio_slab_nr, bio_slab_max;
static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
{
unsigned int sz = sizeof(struct bio) + extra_size;
struct kmem_cache *slab = NULL;
struct bio_slab *bslab, *new_bio_slabs;
unsigned int new_bio_slab_max;
unsigned int i, entry = -1;
mutex_lock(&bio_slab_lock);
i = 0;
while (i < bio_slab_nr) {
bslab = &bio_slabs[i];
if (!bslab->slab && entry == -1)
entry = i;
else if (bslab->slab_size == sz) {
slab = bslab->slab;
bslab->slab_ref++;
break;
}
i++;
}
if (slab)
goto out_unlock;
if (bio_slab_nr == bio_slab_max && entry == -1) {
new_bio_slab_max = bio_slab_max << 1;
new_bio_slabs = krealloc(bio_slabs,
new_bio_slab_max * sizeof(struct bio_slab),
GFP_KERNEL);
if (!new_bio_slabs)
goto out_unlock;
bio_slab_max = new_bio_slab_max;
bio_slabs = new_bio_slabs;
}
if (entry == -1)
entry = bio_slab_nr++;
bslab = &bio_slabs[entry];
snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
SLAB_HWCACHE_ALIGN, NULL);
if (!slab)
goto out_unlock;
bslab->slab = slab;
bslab->slab_ref = 1;
bslab->slab_size = sz;
out_unlock:
mutex_unlock(&bio_slab_lock);
return slab;
}
static void bio_put_slab(struct bio_set *bs)
{
struct bio_slab *bslab = NULL;
unsigned int i;
mutex_lock(&bio_slab_lock);
for (i = 0; i < bio_slab_nr; i++) {
if (bs->bio_slab == bio_slabs[i].slab) {
bslab = &bio_slabs[i];
break;
}
}
if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
goto out;
WARN_ON(!bslab->slab_ref);
if (--bslab->slab_ref)
goto out;
kmem_cache_destroy(bslab->slab);
bslab->slab = NULL;
out:
mutex_unlock(&bio_slab_lock);
}
unsigned int bvec_nr_vecs(unsigned short idx)
{
return bvec_slabs[--idx].nr_vecs;
}
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
{
if (!idx)
return;
idx--;
BIO_BUG_ON(idx >= BVEC_POOL_NR);
if (idx == BVEC_POOL_MAX) {
mempool_free(bv, pool);
} else {
struct biovec_slab *bvs = bvec_slabs + idx;
kmem_cache_free(bvs->slab, bv);
}
}
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
mempool_t *pool)
{
struct bio_vec *bvl;
/*
* see comment near bvec_array define!
*/
switch (nr) {
case 1:
*idx = 0;
break;
case 2 ... 4:
*idx = 1;
break;
case 5 ... 16:
*idx = 2;
break;
case 17 ... 64:
*idx = 3;
break;
case 65 ... 128:
*idx = 4;
break;
case 129 ... BIO_MAX_PAGES:
*idx = 5;
break;
default:
return NULL;
}
/*
* idx now points to the pool we want to allocate from. only the
* 1-vec entry pool is mempool backed.
*/
if (*idx == BVEC_POOL_MAX) {
fallback:
bvl = mempool_alloc(pool, gfp_mask);
} else {
struct biovec_slab *bvs = bvec_slabs + *idx;
gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
/*
* Make this allocation restricted and don't dump info on
* allocation failures, since we'll fallback to the mempool
* in case of failure.
*/
__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
/*
* Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
* is set, retry with the 1-entry mempool
*/
bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
*idx = BVEC_POOL_MAX;
goto fallback;
}
}
(*idx)++;
return bvl;
}
static void __bio_free(struct bio *bio)
{
bio_disassociate_task(bio);
if (bio_integrity(bio))
bio_integrity_free(bio);
}
static void bio_free(struct bio *bio)
{
struct bio_set *bs = bio->bi_pool;
void *p;
__bio_free(bio);
if (bs) {
bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
/*
* If we have front padding, adjust the bio pointer before freeing
*/
p = bio;
p -= bs->front_pad;
mempool_free(p, bs->bio_pool);
} else {
/* Bio was allocated by bio_kmalloc() */
kfree(bio);
}
}
void bio_init(struct bio *bio)
{
memset(bio, 0, sizeof(*bio));
atomic_set(&bio->__bi_remaining, 1);
atomic_set(&bio->__bi_cnt, 1);
}
EXPORT_SYMBOL(bio_init);
/**
* bio_reset - reinitialize a bio
* @bio: bio to reset
*
* Description:
* After calling bio_reset(), @bio will be in the same state as a freshly
* allocated bio returned bio bio_alloc_bioset() - the only fields that are
* preserved are the ones that are initialized by bio_alloc_bioset(). See
* comment in struct bio.
*/
void bio_reset(struct bio *bio)
{
unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
__bio_free(bio);
memset(bio, 0, BIO_RESET_BYTES);
bio->bi_flags = flags;
atomic_set(&bio->__bi_remaining, 1);
}
EXPORT_SYMBOL(bio_reset);
static struct bio *__bio_chain_endio(struct bio *bio)
{
struct bio *parent = bio->bi_private;
if (!parent->bi_error)
parent->bi_error = bio->bi_error;
bio_put(bio);
return parent;
}
static void bio_chain_endio(struct bio *bio)
{
bio_endio(__bio_chain_endio(bio));
}
/**
* bio_chain - chain bio completions
* @bio: the target bio
* @parent: the @bio's parent bio
*
* The caller won't have a bi_end_io called when @bio completes - instead,
* @parent's bi_end_io won't be called until both @parent and @bio have
* completed; the chained bio will also be freed when it completes.
*
* The caller must not set bi_private or bi_end_io in @bio.
*/
void bio_chain(struct bio *bio, struct bio *parent)
{
BUG_ON(bio->bi_private || bio->bi_end_io);
bio->bi_private = parent;
bio->bi_end_io = bio_chain_endio;
bio_inc_remaining(parent);
}
EXPORT_SYMBOL(bio_chain);
static void bio_alloc_rescue(struct work_struct *work)
{
struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
struct bio *bio;
while (1) {
spin_lock(&bs->rescue_lock);
bio = bio_list_pop(&bs->rescue_list);
spin_unlock(&bs->rescue_lock);
if (!bio)
break;
generic_make_request(bio);
}
}
static void punt_bios_to_rescuer(struct bio_set *bs)
{
struct bio_list punt, nopunt;
struct bio *bio;
/*
* In order to guarantee forward progress we must punt only bios that
* were allocated from this bio_set; otherwise, if there was a bio on
* there for a stacking driver higher up in the stack, processing it
* could require allocating bios from this bio_set, and doing that from
* our own rescuer would be bad.
*
* Since bio lists are singly linked, pop them all instead of trying to
* remove from the middle of the list:
*/
bio_list_init(&punt);
bio_list_init(&nopunt);
while ((bio = bio_list_pop(&current->bio_list[0])))
bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
current->bio_list[0] = nopunt;
bio_list_init(&nopunt);
while ((bio = bio_list_pop(&current->bio_list[1])))
bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
current->bio_list[1] = nopunt;
spin_lock(&bs->rescue_lock);
bio_list_merge(&bs->rescue_list, &punt);
spin_unlock(&bs->rescue_lock);
queue_work(bs->rescue_workqueue, &bs->rescue_work);
}
/**
* bio_alloc_bioset - allocate a bio for I/O
* @gfp_mask: the GFP_ mask given to the slab allocator
* @nr_iovecs: number of iovecs to pre-allocate
* @bs: the bio_set to allocate from.
*
* Description:
* If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
* backed by the @bs's mempool.
*
* When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
* always be able to allocate a bio. This is due to the mempool guarantees.
* To make this work, callers must never allocate more than 1 bio at a time
* from this pool. Callers that need to allocate more than 1 bio must always
* submit the previously allocated bio for IO before attempting to allocate
* a new one. Failure to do so can cause deadlocks under memory pressure.
*
* Note that when running under generic_make_request() (i.e. any block
* driver), bios are not submitted until after you return - see the code in
* generic_make_request() that converts recursion into iteration, to prevent
* stack overflows.
*
* This would normally mean allocating multiple bios under
* generic_make_request() would be susceptible to deadlocks, but we have
* deadlock avoidance code that resubmits any blocked bios from a rescuer
* thread.
*
* However, we do not guarantee forward progress for allocations from other
* mempools. Doing multiple allocations from the same mempool under
* generic_make_request() should be avoided - instead, use bio_set's front_pad
* for per bio allocations.
*
* RETURNS:
* Pointer to new bio on success, NULL on failure.
*/
struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
{
gfp_t saved_gfp = gfp_mask;
unsigned front_pad;
unsigned inline_vecs;
struct bio_vec *bvl = NULL;
struct bio *bio;
void *p;
if (!bs) {
if (nr_iovecs > UIO_MAXIOV)
return NULL;
p = kmalloc(sizeof(struct bio) +
nr_iovecs * sizeof(struct bio_vec),
gfp_mask);
front_pad = 0;
inline_vecs = nr_iovecs;
} else {
/* should not use nobvec bioset for nr_iovecs > 0 */
if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
return NULL;
/*
* generic_make_request() converts recursion to iteration; this
* means if we're running beneath it, any bios we allocate and
* submit will not be submitted (and thus freed) until after we
* return.
*
* This exposes us to a potential deadlock if we allocate
* multiple bios from the same bio_set() while running
* underneath generic_make_request(). If we were to allocate
* multiple bios (say a stacking block driver that was splitting
* bios), we would deadlock if we exhausted the mempool's
* reserve.
*
* We solve this, and guarantee forward progress, with a rescuer
* workqueue per bio_set. If we go to allocate and there are
* bios on current->bio_list, we first try the allocation
* without __GFP_DIRECT_RECLAIM; if that fails, we punt those
* bios we would be blocking to the rescuer workqueue before
* we retry with the original gfp_flags.
*/
if (current->bio_list &&
(!bio_list_empty(&current->bio_list[0]) ||
!bio_list_empty(&current->bio_list[1])))
gfp_mask &= ~__GFP_DIRECT_RECLAIM;
p = mempool_alloc(bs->bio_pool, gfp_mask);
if (!p && gfp_mask != saved_gfp) {
punt_bios_to_rescuer(bs);
gfp_mask = saved_gfp;
p = mempool_alloc(bs->bio_pool, gfp_mask);
}
front_pad = bs->front_pad;
inline_vecs = BIO_INLINE_VECS;
}
if (unlikely(!p))
return NULL;
bio = p + front_pad;
bio_init(bio);
if (nr_iovecs > inline_vecs) {
unsigned long idx = 0;
bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
if (!bvl && gfp_mask != saved_gfp) {
punt_bios_to_rescuer(bs);
gfp_mask = saved_gfp;
bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
}
if (unlikely(!bvl))
goto err_free;
bio->bi_flags |= idx << BVEC_POOL_OFFSET;
} else if (nr_iovecs) {
bvl = bio->bi_inline_vecs;
}
bio->bi_pool = bs;
bio->bi_max_vecs = nr_iovecs;
bio->bi_io_vec = bvl;
return bio;
err_free:
mempool_free(p, bs->bio_pool);
return NULL;
}
EXPORT_SYMBOL(bio_alloc_bioset);
void zero_fill_bio(struct bio *bio)
{
unsigned long flags;
struct bio_vec bv;
struct bvec_iter iter;
bio_for_each_segment(bv, bio, iter) {
char *data = bvec_kmap_irq(&bv, &flags);
memset(data, 0, bv.bv_len);
flush_dcache_page(bv.bv_page);
bvec_kunmap_irq(data, &flags);
}
}
EXPORT_SYMBOL(zero_fill_bio);
/**
* bio_put - release a reference to a bio
* @bio: bio to release reference to
*
* Description:
* Put a reference to a &struct bio, either one you have gotten with
* bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
**/
void bio_put(struct bio *bio)
{
if (!bio_flagged(bio, BIO_REFFED))
bio_free(bio);
else {
BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
/*
* last put frees it
*/
if (atomic_dec_and_test(&bio->__bi_cnt))
bio_free(bio);
}
}
EXPORT_SYMBOL(bio_put);
inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
{
if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
blk_recount_segments(q, bio);
return bio->bi_phys_segments;
}
EXPORT_SYMBOL(bio_phys_segments);
/**
* __bio_clone_fast - clone a bio that shares the original bio's biovec
* @bio: destination bio
* @bio_src: bio to clone
*
* Clone a &bio. Caller will own the returned bio, but not
* the actual data it points to. Reference count of returned
* bio will be one.
*
* Caller must ensure that @bio_src is not freed before @bio.
*/
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
/*
* most users will be overriding ->bi_bdev with a new target,
* so we don't set nor calculate new physical/hw segment counts here
*/
bio->bi_bdev = bio_src->bi_bdev;
bio_set_flag(bio, BIO_CLONED);
bio->bi_opf = bio_src->bi_opf;
bio->bi_iter = bio_src->bi_iter;
bio->bi_io_vec = bio_src->bi_io_vec;
bio_clone_blkcg_association(bio, bio_src);
}
EXPORT_SYMBOL(__bio_clone_fast);
/**
* bio_clone_fast - clone a bio that shares the original bio's biovec
* @bio: bio to clone
* @gfp_mask: allocation priority
* @bs: bio_set to allocate from
*
* Like __bio_clone_fast, only also allocates the returned bio
*/
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
struct bio *b;
b = bio_alloc_bioset(gfp_mask, 0, bs);
if (!b)
return NULL;
__bio_clone_fast(b, bio);
if (bio_integrity(bio)) {
int ret;
ret = bio_integrity_clone(b, bio, gfp_mask);
if (ret < 0) {
bio_put(b);
return NULL;
}
}
return b;
}
EXPORT_SYMBOL(bio_clone_fast);
/**
* bio_clone_bioset - clone a bio
* @bio_src: bio to clone
* @gfp_mask: allocation priority
* @bs: bio_set to allocate from
*
* Clone bio. Caller will own the returned bio, but not the actual data it
* points to. Reference count of returned bio will be one.
*/
struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
struct bio_set *bs)
{
struct bvec_iter iter;
struct bio_vec bv;
struct bio *bio;
/*
* Pre immutable biovecs, __bio_clone() used to just do a memcpy from
* bio_src->bi_io_vec to bio->bi_io_vec.
*
* We can't do that anymore, because:
*
* - The point of cloning the biovec is to produce a bio with a biovec
* the caller can modify: bi_idx and bi_bvec_done should be 0.
*
* - The original bio could've had more than BIO_MAX_PAGES biovecs; if
* we tried to clone the whole thing bio_alloc_bioset() would fail.
* But the clone should succeed as long as the number of biovecs we
* actually need to allocate is fewer than BIO_MAX_PAGES.
*
* - Lastly, bi_vcnt should not be looked at or relied upon by code
* that does not own the bio - reason being drivers don't use it for
* iterating over the biovec anymore, so expecting it to be kept up
* to date (i.e. for clones that share the parent biovec) is just
* asking for trouble and would force extra work on
* __bio_clone_fast() anyways.
*/
bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
if (!bio)
return NULL;
bio->bi_bdev = bio_src->bi_bdev;
bio->bi_opf = bio_src->bi_opf;
bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
switch (bio_op(bio)) {
case REQ_OP_DISCARD:
case REQ_OP_SECURE_ERASE:
break;
case REQ_OP_WRITE_SAME:
bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
break;
default:
bio_for_each_segment(bv, bio_src, iter)
bio->bi_io_vec[bio->bi_vcnt++] = bv;
break;
}
if (bio_integrity(bio_src)) {
int ret;
ret = bio_integrity_clone(bio, bio_src, gfp_mask);
if (ret < 0) {
bio_put(bio);
return NULL;
}
}
bio_clone_blkcg_association(bio, bio_src);
return bio;
}
EXPORT_SYMBOL(bio_clone_bioset);
/**
* bio_add_pc_page - attempt to add page to bio
* @q: the target queue
* @bio: destination bio
* @page: page to add
* @len: vec entry length
* @offset: vec entry offset
*
* Attempt to add a page to the bio_vec maplist. This can fail for a
* number of reasons, such as the bio being full or target block device
* limitations. The target block device must allow bio's up to PAGE_SIZE,
* so it is always possible to add a single page to an empty bio.
*
* This should only be used by REQ_PC bios.
*/
int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
*page, unsigned int len, unsigned int offset)
{
int retried_segments = 0;
struct bio_vec *bvec;
/*
* cloned bio must not modify vec list
*/
if (unlikely(bio_flagged(bio, BIO_CLONED)))
return 0;
if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
return 0;
/*
* For filesystems with a blocksize smaller than the pagesize
* we will often be called with the same page as last time and
* a consecutive offset. Optimize this special case.
*/
if (bio->bi_vcnt > 0) {
struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
if (page == prev->bv_page &&
offset == prev->bv_offset + prev->bv_len) {
prev->bv_len += len;
bio->bi_iter.bi_size += len;
goto done;
}
/*
* If the queue doesn't support SG gaps and adding this
* offset would create a gap, disallow it.
*/
if (bvec_gap_to_prev(q, prev, offset))
return 0;
}
if (bio->bi_vcnt >= bio->bi_max_vecs)
return 0;
/*
* setup the new entry, we might clear it again later if we
* cannot add the page
*/
bvec = &bio->bi_io_vec[bio->bi_vcnt];
bvec->bv_page = page;
bvec->bv_len = len;
bvec->bv_offset = offset;
bio->bi_vcnt++;
bio->bi_phys_segments++;
bio->bi_iter.bi_size += len;
/*
* Perform a recount if the number of segments is greater
* than queue_max_segments(q).
*/
while (bio->bi_phys_segments > queue_max_segments(q)) {
if (retried_segments)
goto failed;
retried_segments = 1;
blk_recount_segments(q, bio);
}
/* If we may be able to merge these biovecs, force a recount */
if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
bio_clear_flag(bio, BIO_SEG_VALID);
done:
return len;
failed:
bvec->bv_page = NULL;
bvec->bv_len = 0;
bvec->bv_offset = 0;
bio->bi_vcnt--;
bio->bi_iter.bi_size -= len;
blk_recount_segments(q, bio);
return 0;
}
EXPORT_SYMBOL(bio_add_pc_page);
/**
* bio_add_page - attempt to add page to bio
* @bio: destination bio
* @page: page to add
* @len: vec entry length
* @offset: vec entry offset
*
* Attempt to add a page to the bio_vec maplist. This will only fail
* if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
*/
int bio_add_page(struct bio *bio, struct page *page,
unsigned int len, unsigned int offset)
{
struct bio_vec *bv;
/*
* cloned bio must not modify vec list
*/
if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
return 0;
/*
* For filesystems with a blocksize smaller than the pagesize
* we will often be called with the same page as last time and
* a consecutive offset. Optimize this special case.
*/
if (bio->bi_vcnt > 0) {
bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
if (page == bv->bv_page &&
offset == bv->bv_offset + bv->bv_len) {
bv->bv_len += len;
goto done;
}
}
if (bio->bi_vcnt >= bio->bi_max_vecs)
return 0;
bv = &bio->bi_io_vec[bio->bi_vcnt];
bv->bv_page = page;
bv->bv_len = len;
bv->bv_offset = offset;
bio->bi_vcnt++;
done:
bio->bi_iter.bi_size += len;
return len;
}
EXPORT_SYMBOL(bio_add_page);
struct submit_bio_ret {
struct completion event;
int error;
};
static void submit_bio_wait_endio(struct bio *bio)
{
struct submit_bio_ret *ret = bio->bi_private;
ret->error = bio->bi_error;
complete(&ret->event);
}
/**
* submit_bio_wait - submit a bio, and wait until it completes
* @bio: The &struct bio which describes the I/O
*
* Simple wrapper around submit_bio(). Returns 0 on success, or the error from
* bio_endio() on failure.
*/
int submit_bio_wait(struct bio *bio)
{
struct submit_bio_ret ret;
init_completion(&ret.event);
bio->bi_private = &ret;
bio->bi_end_io = submit_bio_wait_endio;
bio->bi_opf |= REQ_SYNC;
submit_bio(bio);
wait_for_completion_io(&ret.event);
return ret.error;
}
EXPORT_SYMBOL(submit_bio_wait);
/**
* bio_advance - increment/complete a bio by some number of bytes
* @bio: bio to advance
* @bytes: number of bytes to complete
*
* This updates bi_sector, bi_size and bi_idx; if the number of bytes to
* complete doesn't align with a bvec boundary, then bv_len and bv_offset will
* be updated on the last bvec as well.
*
* @bio will then represent the remaining, uncompleted portion of the io.
*/
void bio_advance(struct bio *bio, unsigned bytes)
{
if (bio_integrity(bio))
bio_integrity_advance(bio, bytes);
bio_advance_iter(bio, &bio->bi_iter, bytes);
}
EXPORT_SYMBOL(bio_advance);
/**
* bio_alloc_pages - allocates a single page for each bvec in a bio
* @bio: bio to allocate pages for
* @gfp_mask: flags for allocation
*
* Allocates pages up to @bio->bi_vcnt.
*
* Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
* freed.
*/
int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
{
int i;
struct bio_vec *bv;
bio_for_each_segment_all(bv, bio, i) {
bv->bv_page = alloc_page(gfp_mask);
if (!bv->bv_page) {
while (--bv >= bio->bi_io_vec)
__free_page(bv->bv_page);
return -ENOMEM;
}
}
return 0;
}
EXPORT_SYMBOL(bio_alloc_pages);
/**
* bio_copy_data - copy contents of data buffers from one chain of bios to
* another
* @src: source bio list
* @dst: destination bio list
*
* If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
* @src and @dst as linked lists of bios.
*
* Stops when it reaches the end of either @src or @dst - that is, copies
* min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
*/
void bio_copy_data(struct bio *dst, struct bio *src)
{
struct bvec_iter src_iter, dst_iter;
struct bio_vec src_bv, dst_bv;
void *src_p, *dst_p;
unsigned bytes;
src_iter = src->bi_iter;
dst_iter = dst->bi_iter;
while (1) {
if (!src_iter.bi_size) {
src = src->bi_next;
if (!src)
break;
src_iter = src->bi_iter;
}
if (!dst_iter.bi_size) {
dst = dst->bi_next;
if (!dst)
break;
dst_iter = dst->bi_iter;
}
src_bv = bio_iter_iovec(src, src_iter);
dst_bv = bio_iter_iovec(dst, dst_iter);
bytes = min(src_bv.bv_len, dst_bv.bv_len);
src_p = kmap_atomic(src_bv.bv_page);
dst_p = kmap_atomic(dst_bv.bv_page);
memcpy(dst_p + dst_bv.bv_offset,
src_p + src_bv.bv_offset,
bytes);
kunmap_atomic(dst_p);
kunmap_atomic(src_p);
bio_advance_iter(src, &src_iter, bytes);
bio_advance_iter(dst, &dst_iter, bytes);
}
}
EXPORT_SYMBOL(bio_copy_data);
struct bio_map_data {
int is_our_pages;
struct iov_iter iter;
struct iovec iov[];
};
static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
gfp_t gfp_mask)
{
if (iov_count > UIO_MAXIOV)
return NULL;
return kmalloc(sizeof(struct bio_map_data) +
sizeof(struct iovec) * iov_count, gfp_mask);
}
/**
* bio_copy_from_iter - copy all pages from iov_iter to bio
* @bio: The &struct bio which describes the I/O as destination
* @iter: iov_iter as source
*
* Copy all pages from iov_iter to bio.
* Returns 0 on success, or error on failure.
*/
static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
{
int i;
struct bio_vec *bvec;
bio_for_each_segment_all(bvec, bio, i) {
ssize_t ret;
ret = copy_page_from_iter(bvec->bv_page,
bvec->bv_offset,
bvec->bv_len,
&iter);
if (!iov_iter_count(&iter))
break;
if (ret < bvec->bv_len)
return -EFAULT;
}
return 0;
}
/**
* bio_copy_to_iter - copy all pages from bio to iov_iter
* @bio: The &struct bio which describes the I/O as source
* @iter: iov_iter as destination
*
* Copy all pages from bio to iov_iter.
* Returns 0 on success, or error on failure.
*/
static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
{
int i;
struct bio_vec *bvec;
bio_for_each_segment_all(bvec, bio, i) {
ssize_t ret;
ret = copy_page_to_iter(bvec->bv_page,
bvec->bv_offset,
bvec->bv_len,
&iter);
if (!iov_iter_count(&iter))
break;
if (ret < bvec->bv_len)
return -EFAULT;
}
return 0;
}
void bio_free_pages(struct bio *bio)
{
struct bio_vec *bvec;
int i;
bio_for_each_segment_all(bvec, bio, i)
__free_page(bvec->bv_page);
}
EXPORT_SYMBOL(bio_free_pages);
/**
* bio_uncopy_user - finish previously mapped bio
* @bio: bio being terminated
*
* Free pages allocated from bio_copy_user_iov() and write back data
* to user space in case of a read.
*/
int bio_uncopy_user(struct bio *bio)
{
struct bio_map_data *bmd = bio->bi_private;
int ret = 0;
if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
/*
* if we're in a workqueue, the request is orphaned, so
* don't copy into a random user address space, just free
* and return -EINTR so user space doesn't expect any data.
*/
if (!current->mm)
ret = -EINTR;
else if (bio_data_dir(bio) == READ)
ret = bio_copy_to_iter(bio, bmd->iter);
if (bmd->is_our_pages)
bio_free_pages(bio);
}
kfree(bmd);
bio_put(bio);
return ret;
}
/**
* bio_copy_user_iov - copy user data to bio
* @q: destination block queue
* @map_data: pointer to the rq_map_data holding pages (if necessary)
* @iter: iovec iterator
* @gfp_mask: memory allocation flags
*
* Prepares and returns a bio for indirect user io, bouncing data
* to/from kernel pages as necessary. Must be paired with
* call bio_uncopy_user() on io completion.
*/
struct bio *bio_copy_user_iov(struct request_queue *q,
struct rq_map_data *map_data,
const struct iov_iter *iter,
gfp_t gfp_mask)
{
struct bio_map_data *bmd;
struct page *page;
struct bio *bio;
int i, ret;
int nr_pages = 0;
unsigned int len = iter->count;
unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
for (i = 0; i < iter->nr_segs; i++) {
unsigned long uaddr;
unsigned long end;
unsigned long start;
uaddr = (unsigned long) iter->iov[i].iov_base;
end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
>> PAGE_SHIFT;
start = uaddr >> PAGE_SHIFT;
/*
* Overflow, abort
*/
if (end < start)
return ERR_PTR(-EINVAL);
nr_pages += end - start;
}
if (offset)
nr_pages++;
bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
if (!bmd)
return ERR_PTR(-ENOMEM);
/*
* We need to do a deep copy of the iov_iter including the iovecs.
* The caller provided iov might point to an on-stack or otherwise
* shortlived one.
*/
bmd->is_our_pages = map_data ? 0 : 1;
memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
bmd->iter = *iter;
bmd->iter.iov = bmd->iov;
ret = -ENOMEM;
bio = bio_kmalloc(gfp_mask, nr_pages);
if (!bio)
goto out_bmd;
if (iter->type & WRITE)
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
ret = 0;
if (map_data) {
nr_pages = 1 << map_data->page_order;
i = map_data->offset / PAGE_SIZE;
}
while (len) {
unsigned int bytes = PAGE_SIZE;
bytes -= offset;
if (bytes > len)
bytes = len;
if (map_data) {
if (i == map_data->nr_entries * nr_pages) {
ret = -ENOMEM;
break;
}
page = map_data->pages[i / nr_pages];
page += (i % nr_pages);
i++;
} else {
page = alloc_page(q->bounce_gfp | gfp_mask);
if (!page) {
ret = -ENOMEM;
break;
}
}
if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
break;
len -= bytes;
offset = 0;
}
if (ret)
goto cleanup;
/*
* success
*/
if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
(map_data && map_data->from_user)) {
ret = bio_copy_from_iter(bio, *iter);
if (ret)
goto cleanup;
}
bio->bi_private = bmd;
return bio;
cleanup:
if (!map_data)
bio_free_pages(bio);
bio_put(bio);
out_bmd:
kfree(bmd);
return ERR_PTR(ret);
}
/**
* bio_map_user_iov - map user iovec into bio
* @q: the struct request_queue for the bio
* @iter: iovec iterator
* @gfp_mask: memory allocation flags
*
* Map the user space address into a bio suitable for io to a block
* device. Returns an error pointer in case of error.
*/
struct bio *bio_map_user_iov(struct request_queue *q,
const struct iov_iter *iter,
gfp_t gfp_mask)
{
int j;
int nr_pages = 0;
struct page **pages;
struct bio *bio;
int cur_page = 0;
int ret, offset;
struct iov_iter i;
struct iovec iov;
struct bio_vec *bvec;
iov_for_each(iov, i, *iter) {
unsigned long uaddr = (unsigned long) iov.iov_base;
unsigned long len = iov.iov_len;
unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long start = uaddr >> PAGE_SHIFT;
/*
* Overflow, abort
*/
if (end < start)
return ERR_PTR(-EINVAL);
nr_pages += end - start;
/*
* buffer must be aligned to at least logical block size for now
*/
if (uaddr & queue_dma_alignment(q))
return ERR_PTR(-EINVAL);
}
if (!nr_pages)
return ERR_PTR(-EINVAL);
bio = bio_kmalloc(gfp_mask, nr_pages);
if (!bio)
return ERR_PTR(-ENOMEM);
ret = -ENOMEM;
pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
if (!pages)
goto out;
iov_for_each(iov, i, *iter) {
unsigned long uaddr = (unsigned long) iov.iov_base;
unsigned long len = iov.iov_len;
unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long start = uaddr >> PAGE_SHIFT;
const int local_nr_pages = end - start;
const int page_limit = cur_page + local_nr_pages;
ret = get_user_pages_fast(uaddr, local_nr_pages,
(iter->type & WRITE) != WRITE,
&pages[cur_page]);
if (unlikely(ret < local_nr_pages)) {
for (j = cur_page; j < page_limit; j++) {
if (!pages[j])
break;
put_page(pages[j]);
}
ret = -EFAULT;
goto out_unmap;
}
offset = offset_in_page(uaddr);
for (j = cur_page; j < page_limit; j++) {
unsigned int bytes = PAGE_SIZE - offset;
unsigned short prev_bi_vcnt = bio->bi_vcnt;
if (len <= 0)
break;
if (bytes > len)
bytes = len;
/*
* sorry...
*/
if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
bytes)
break;
/*
* check if vector was merged with previous
* drop page reference if needed
*/
if (bio->bi_vcnt == prev_bi_vcnt)
put_page(pages[j]);
len -= bytes;
offset = 0;
}
cur_page = j;
/*
* release the pages we didn't map into the bio, if any
*/
while (j < page_limit)
put_page(pages[j++]);
}
kfree(pages);
/*
* set data direction, and check if mapped pages need bouncing
*/
if (iter->type & WRITE)
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
bio_set_flag(bio, BIO_USER_MAPPED);
/*
* subtle -- if __bio_map_user() ended up bouncing a bio,
* it would normally disappear when its bi_end_io is run.
* however, we need it for the unmap, so grab an extra
* reference to it
*/
bio_get(bio);
return bio;
out_unmap:
bio_for_each_segment_all(bvec, bio, j) {
put_page(bvec->bv_page);
}
out:
kfree(pages);
bio_put(bio);
return ERR_PTR(ret);
}
static void __bio_unmap_user(struct bio *bio)
{
struct bio_vec *bvec;
int i;
/*
* make sure we dirty pages we wrote to
*/
bio_for_each_segment_all(bvec, bio, i) {
if (bio_data_dir(bio) == READ)
set_page_dirty_lock(bvec->bv_page);
put_page(bvec->bv_page);
}
bio_put(bio);
}
/**
* bio_unmap_user - unmap a bio
* @bio: the bio being unmapped
*
* Unmap a bio previously mapped by bio_map_user(). Must be called with
* a process context.
*
* bio_unmap_user() may sleep.
*/
void bio_unmap_user(struct bio *bio)
{
__bio_unmap_user(bio);
bio_put(bio);
}
static void bio_map_kern_endio(struct bio *bio)
{
bio_put(bio);
}
/**
* bio_map_kern - map kernel address into bio
* @q: the struct request_queue for the bio
* @data: pointer to buffer to map
* @len: length in bytes
* @gfp_mask: allocation flags for bio allocation
*
* Map the kernel address into a bio suitable for io to a block
* device. Returns an error pointer in case of error.
*/
struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
gfp_t gfp_mask)
{
unsigned long kaddr = (unsigned long)data;
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long start = kaddr >> PAGE_SHIFT;
const int nr_pages = end - start;
int offset, i;
struct bio *bio;
bio = bio_kmalloc(gfp_mask, nr_pages);
if (!bio)
return ERR_PTR(-ENOMEM);
offset = offset_in_page(kaddr);
for (i = 0; i < nr_pages; i++) {
unsigned int bytes = PAGE_SIZE - offset;
if (len <= 0)
break;
if (bytes > len)
bytes = len;
if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
offset) < bytes) {
/* we don't support partial mappings */
bio_put(bio);
return ERR_PTR(-EINVAL);
}
data += bytes;
len -= bytes;
offset = 0;
}
bio->bi_end_io = bio_map_kern_endio;
return bio;
}
EXPORT_SYMBOL(bio_map_kern);
static void bio_copy_kern_endio(struct bio *bio)
{
bio_free_pages(bio);
bio_put(bio);
}
static void bio_copy_kern_endio_read(struct bio *bio)
{
char *p = bio->bi_private;
struct bio_vec *bvec;
int i;
bio_for_each_segment_all(bvec, bio, i) {
memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
p += bvec->bv_len;
}
bio_copy_kern_endio(bio);
}
/**
* bio_copy_kern - copy kernel address into bio
* @q: the struct request_queue for the bio
* @data: pointer to buffer to copy
* @len: length in bytes
* @gfp_mask: allocation flags for bio and page allocation
* @reading: data direction is READ
*
* copy the kernel address into a bio suitable for io to a block
* device. Returns an error pointer in case of error.
*/
struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
gfp_t gfp_mask, int reading)
{
unsigned long kaddr = (unsigned long)data;
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long start = kaddr >> PAGE_SHIFT;
struct bio *bio;
void *p = data;
int nr_pages = 0;
/*
* Overflow, abort
*/
if (end < start)
return ERR_PTR(-EINVAL);
nr_pages = end - start;
bio = bio_kmalloc(gfp_mask, nr_pages);
if (!bio)
return ERR_PTR(-ENOMEM);
while (len) {
struct page *page;
unsigned int bytes = PAGE_SIZE;
if (bytes > len)
bytes = len;
page = alloc_page(q->bounce_gfp | gfp_mask);
if (!page)
goto cleanup;
if (!reading)
memcpy(page_address(page), p, bytes);
if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
break;
len -= bytes;
p += bytes;
}
if (reading) {
bio->bi_end_io = bio_copy_kern_endio_read;
bio->bi_private = data;
} else {
bio->bi_end_io = bio_copy_kern_endio;
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
}
return bio;
cleanup:
bio_free_pages(bio);
bio_put(bio);
return ERR_PTR(-ENOMEM);
}
/*
* bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
* for performing direct-IO in BIOs.
*
* The problem is that we cannot run set_page_dirty() from interrupt context
* because the required locks are not interrupt-safe. So what we can do is to
* mark the pages dirty _before_ performing IO. And in interrupt context,
* check that the pages are still dirty. If so, fine. If not, redirty them
* in process context.
*
* We special-case compound pages here: normally this means reads into hugetlb
* pages. The logic in here doesn't really work right for compound pages
* because the VM does not uniformly chase down the head page in all cases.
* But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
* handle them at all. So we skip compound pages here at an early stage.
*
* Note that this code is very hard to test under normal circumstances because
* direct-io pins the pages with get_user_pages(). This makes
* is_page_cache_freeable return false, and the VM will not clean the pages.
* But other code (eg, flusher threads) could clean the pages if they are mapped
* pagecache.
*
* Simply disabling the call to bio_set_pages_dirty() is a good way to test the
* deferred bio dirtying paths.
*/
/*
* bio_set_pages_dirty() will mark all the bio's pages as dirty.
*/
void bio_set_pages_dirty(struct bio *bio)
{
struct bio_vec *bvec;
int i;
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
if (page && !PageCompound(page))
set_page_dirty_lock(page);
}
}
static void bio_release_pages(struct bio *bio)
{
struct bio_vec *bvec;
int i;
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
if (page)
put_page(page);
}
}
/*
* bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
* If they are, then fine. If, however, some pages are clean then they must
* have been written out during the direct-IO read. So we take another ref on
* the BIO and the offending pages and re-dirty the pages in process context.
*
* It is expected that bio_check_pages_dirty() will wholly own the BIO from
* here on. It will run one put_page() against each page and will run one
* bio_put() against the BIO.
*/
static void bio_dirty_fn(struct work_struct *work);
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;
/*
* This runs in process context
*/
static void bio_dirty_fn(struct work_struct *work)
{
unsigned long flags;
struct bio *bio;
spin_lock_irqsave(&bio_dirty_lock, flags);
bio = bio_dirty_list;
bio_dirty_list = NULL;
spin_unlock_irqrestore(&bio_dirty_lock, flags);
while (bio) {
struct bio *next = bio->bi_private;
bio_set_pages_dirty(bio);
bio_release_pages(bio);
bio_put(bio);
bio = next;
}
}
void bio_check_pages_dirty(struct bio *bio)
{
struct bio_vec *bvec;
int nr_clean_pages = 0;
int i;
bio_for_each_segment_all(bvec, bio, i) {
struct page *page = bvec->bv_page;
if (PageDirty(page) || PageCompound(page)) {
put_page(page);
bvec->bv_page = NULL;
} else {
nr_clean_pages++;
}
}
if (nr_clean_pages) {
unsigned long flags;
spin_lock_irqsave(&bio_dirty_lock, flags);
bio->bi_private = bio_dirty_list;
bio_dirty_list = bio;
spin_unlock_irqrestore(&bio_dirty_lock, flags);
schedule_work(&bio_dirty_work);
} else {
bio_put(bio);
}
}
void generic_start_io_acct(int rw, unsigned long sectors,
struct hd_struct *part)
{
int cpu = part_stat_lock();
part_round_stats(cpu, part);
part_stat_inc(cpu, part, ios[rw]);
part_stat_add(cpu, part, sectors[rw], sectors);
part_inc_in_flight(part, rw);
part_stat_unlock();
}
EXPORT_SYMBOL(generic_start_io_acct);
void generic_end_io_acct(int rw, struct hd_struct *part,
unsigned long start_time)
{
unsigned long duration = jiffies - start_time;
int cpu = part_stat_lock();
part_stat_add(cpu, part, ticks[rw], duration);
part_round_stats(cpu, part);
part_dec_in_flight(part, rw);
part_stat_unlock();
}
EXPORT_SYMBOL(generic_end_io_acct);
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
void bio_flush_dcache_pages(struct bio *bi)
{
struct bio_vec bvec;
struct bvec_iter iter;
bio_for_each_segment(bvec, bi, iter)
flush_dcache_page(bvec.bv_page);
}
EXPORT_SYMBOL(bio_flush_dcache_pages);
#endif
static inline bool bio_remaining_done(struct bio *bio)
{
/*
* If we're not chaining, then ->__bi_remaining is always 1 and
* we always end io on the first invocation.
*/
if (!bio_flagged(bio, BIO_CHAIN))
return true;
BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
if (atomic_dec_and_test(&bio->__bi_remaining)) {
bio_clear_flag(bio, BIO_CHAIN);
return true;
}
return false;
}
/**
* bio_endio - end I/O on a bio
* @bio: bio
*
* Description:
* bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
* way to end I/O on a bio. No one should call bi_end_io() directly on a
* bio unless they own it and thus know that it has an end_io function.
**/
void bio_endio(struct bio *bio)
{
again:
if (!bio_remaining_done(bio))
return;
/*
* Need to have a real endio function for chained bios, otherwise
* various corner cases will break (like stacking block devices that
* save/restore bi_end_io) - however, we want to avoid unbounded
* recursion and blowing the stack. Tail call optimization would
* handle this, but compiling with frame pointers also disables
* gcc's sibling call optimization.
*/
if (bio->bi_end_io == bio_chain_endio) {
bio = __bio_chain_endio(bio);
goto again;
}
if (bio->bi_end_io)
bio->bi_end_io(bio);
}
EXPORT_SYMBOL(bio_endio);
/**
* bio_split - split a bio
* @bio: bio to split
* @sectors: number of sectors to split from the front of @bio
* @gfp: gfp mask
* @bs: bio set to allocate from
*
* Allocates and returns a new bio which represents @sectors from the start of
* @bio, and updates @bio to represent the remaining sectors.
*
* Unless this is a discard request the newly allocated bio will point
* to @bio's bi_io_vec; it is the caller's responsibility to ensure that
* @bio is not freed before the split.
*/
struct bio *bio_split(struct bio *bio, int sectors,
gfp_t gfp, struct bio_set *bs)
{
struct bio *split = NULL;
BUG_ON(sectors <= 0);
BUG_ON(sectors >= bio_sectors(bio));
/*
* Discards need a mutable bio_vec to accommodate the payload
* required by the DSM TRIM and UNMAP commands.
*/
if (bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE)
split = bio_clone_bioset(bio, gfp, bs);
else
split = bio_clone_fast(bio, gfp, bs);
if (!split)
return NULL;
split->bi_iter.bi_size = sectors << 9;
if (bio_integrity(split))
bio_integrity_trim(split, 0, sectors);
bio_advance(bio, split->bi_iter.bi_size);
return split;
}
EXPORT_SYMBOL(bio_split);
/**
* bio_trim - trim a bio
* @bio: bio to trim
* @offset: number of sectors to trim from the front of @bio
* @size: size we want to trim @bio to, in sectors
*/
void bio_trim(struct bio *bio, int offset, int size)
{
/* 'bio' is a cloned bio which we need to trim to match
* the given offset and size.
*/
size <<= 9;
if (offset == 0 && size == bio->bi_iter.bi_size)
return;
bio_clear_flag(bio, BIO_SEG_VALID);
bio_advance(bio, offset << 9);
bio->bi_iter.bi_size = size;
}
EXPORT_SYMBOL_GPL(bio_trim);
/*
* create memory pools for biovec's in a bio_set.
* use the global biovec slabs created for general use.
*/
mempool_t *biovec_create_pool(int pool_entries)
{
struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
return mempool_create_slab_pool(pool_entries, bp->slab);
}
void bioset_free(struct bio_set *bs)
{
if (bs->rescue_workqueue)
destroy_workqueue(bs->rescue_workqueue);
if (bs->bio_pool)
mempool_destroy(bs->bio_pool);
if (bs->bvec_pool)
mempool_destroy(bs->bvec_pool);
bioset_integrity_free(bs);
bio_put_slab(bs);
kfree(bs);
}
EXPORT_SYMBOL(bioset_free);
static struct bio_set *__bioset_create(unsigned int pool_size,
unsigned int front_pad,
bool create_bvec_pool)
{
unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
struct bio_set *bs;
bs = kzalloc(sizeof(*bs), GFP_KERNEL);
if (!bs)
return NULL;
bs->front_pad = front_pad;
spin_lock_init(&bs->rescue_lock);
bio_list_init(&bs->rescue_list);
INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
if (!bs->bio_slab) {
kfree(bs);
return NULL;
}
bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
if (!bs->bio_pool)
goto bad;
if (create_bvec_pool) {
bs->bvec_pool = biovec_create_pool(pool_size);
if (!bs->bvec_pool)
goto bad;
}
bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
if (!bs->rescue_workqueue)
goto bad;
return bs;
bad:
bioset_free(bs);
return NULL;
}
/**
* bioset_create - Create a bio_set
* @pool_size: Number of bio and bio_vecs to cache in the mempool
* @front_pad: Number of bytes to allocate in front of the returned bio
*
* Description:
* Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
* to ask for a number of bytes to be allocated in front of the bio.
* Front pad allocation is useful for embedding the bio inside
* another structure, to avoid allocating extra data to go with the bio.
* Note that the bio must be embedded at the END of that structure always,
* or things will break badly.
*/
struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
{
return __bioset_create(pool_size, front_pad, true);
}
EXPORT_SYMBOL(bioset_create);
/**
* bioset_create_nobvec - Create a bio_set without bio_vec mempool
* @pool_size: Number of bio to cache in the mempool
* @front_pad: Number of bytes to allocate in front of the returned bio
*
* Description:
* Same functionality as bioset_create() except that mempool is not
* created for bio_vecs. Saving some memory for bio_clone_fast() users.
*/
struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
{
return __bioset_create(pool_size, front_pad, false);
}
EXPORT_SYMBOL(bioset_create_nobvec);
#ifdef CONFIG_BLK_CGROUP
/**
* bio_associate_blkcg - associate a bio with the specified blkcg
* @bio: target bio
* @blkcg_css: css of the blkcg to associate
*
* Associate @bio with the blkcg specified by @blkcg_css. Block layer will
* treat @bio as if it were issued by a task which belongs to the blkcg.
*
* This function takes an extra reference of @blkcg_css which will be put
* when @bio is released. The caller must own @bio and is responsible for
* synchronizing calls to this function.
*/
int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
{
if (unlikely(bio->bi_css))
return -EBUSY;
css_get(blkcg_css);
bio->bi_css = blkcg_css;
return 0;
}
EXPORT_SYMBOL_GPL(bio_associate_blkcg);
/**
* bio_associate_current - associate a bio with %current
* @bio: target bio
*
* Associate @bio with %current if it hasn't been associated yet. Block
* layer will treat @bio as if it were issued by %current no matter which
* task actually issues it.
*
* This function takes an extra reference of @task's io_context and blkcg
* which will be put when @bio is released. The caller must own @bio,
* ensure %current->io_context exists, and is responsible for synchronizing
* calls to this function.
*/
int bio_associate_current(struct bio *bio)
{
struct io_context *ioc;
if (bio->bi_css)
return -EBUSY;
ioc = current->io_context;
if (!ioc)
return -ENOENT;
get_io_context_active(ioc);
bio->bi_ioc = ioc;
bio->bi_css = task_get_css(current, io_cgrp_id);
return 0;
}
EXPORT_SYMBOL_GPL(bio_associate_current);
/**
* bio_disassociate_task - undo bio_associate_current()
* @bio: target bio
*/
void bio_disassociate_task(struct bio *bio)
{
if (bio->bi_ioc) {
put_io_context(bio->bi_ioc);
bio->bi_ioc = NULL;
}
if (bio->bi_css) {
css_put(bio->bi_css);
bio->bi_css = NULL;
}
}
/**
* bio_clone_blkcg_association - clone blkcg association from src to dst bio
* @dst: destination bio
* @src: source bio
*/
void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
{
if (src->bi_css)
WARN_ON(bio_associate_blkcg(dst, src->bi_css));
}
#endif /* CONFIG_BLK_CGROUP */
static void __init biovec_init_slabs(void)
{
int i;
for (i = 0; i < BVEC_POOL_NR; i++) {
int size;
struct biovec_slab *bvs = bvec_slabs + i;
if (bvs->nr_vecs <= BIO_INLINE_VECS) {
bvs->slab = NULL;
continue;
}
size = bvs->nr_vecs * sizeof(struct bio_vec);
bvs->slab = kmem_cache_create(bvs->name, size, 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
}
}
static int __init init_bio(void)
{
bio_slab_max = 2;
bio_slab_nr = 0;
bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
if (!bio_slabs)
panic("bio: can't allocate bios\n");
bio_integrity_init();
biovec_init_slabs();
fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
if (!fs_bio_set)
panic("bio: can't allocate bios\n");
if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
panic("bio: can't create integrity pool\n");
return 0;
}
subsys_initcall(init_bio);