| /* |
| * Modified to interface to the Linux kernel |
| * Copyright (c) 2009, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
| * Place - Suite 330, Boston, MA 02111-1307 USA. |
| */ |
| |
| /* -------------------------------------------------------------------------- |
| * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. |
| * This implementation is herby placed in the public domain. |
| * The authors offers no warranty. Use at your own risk. |
| * Please send bug reports to the authors. |
| * Last modified: 17 APR 08, 1700 PDT |
| * ----------------------------------------------------------------------- */ |
| |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/crypto.h> |
| #include <linux/module.h> |
| #include <linux/scatterlist.h> |
| #include <asm/byteorder.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/vmac.h> |
| #include <crypto/internal/hash.h> |
| |
| /* |
| * Constants and masks |
| */ |
| #define UINT64_C(x) x##ULL |
| static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ |
| static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ |
| static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ |
| static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ |
| static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ |
| |
| #define pe64_to_cpup le64_to_cpup /* Prefer little endian */ |
| |
| #ifdef __LITTLE_ENDIAN |
| #define INDEX_HIGH 1 |
| #define INDEX_LOW 0 |
| #else |
| #define INDEX_HIGH 0 |
| #define INDEX_LOW 1 |
| #endif |
| |
| /* |
| * The following routines are used in this implementation. They are |
| * written via macros to simulate zero-overhead call-by-reference. |
| * |
| * MUL64: 64x64->128-bit multiplication |
| * PMUL64: assumes top bits cleared on inputs |
| * ADD128: 128x128->128-bit addition |
| */ |
| |
| #define ADD128(rh, rl, ih, il) \ |
| do { \ |
| u64 _il = (il); \ |
| (rl) += (_il); \ |
| if ((rl) < (_il)) \ |
| (rh)++; \ |
| (rh) += (ih); \ |
| } while (0) |
| |
| #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2)) |
| |
| #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \ |
| do { \ |
| u64 _i1 = (i1), _i2 = (i2); \ |
| u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \ |
| rh = MUL32(_i1>>32, _i2>>32); \ |
| rl = MUL32(_i1, _i2); \ |
| ADD128(rh, rl, (m >> 32), (m << 32)); \ |
| } while (0) |
| |
| #define MUL64(rh, rl, i1, i2) \ |
| do { \ |
| u64 _i1 = (i1), _i2 = (i2); \ |
| u64 m1 = MUL32(_i1, _i2>>32); \ |
| u64 m2 = MUL32(_i1>>32, _i2); \ |
| rh = MUL32(_i1>>32, _i2>>32); \ |
| rl = MUL32(_i1, _i2); \ |
| ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \ |
| ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \ |
| } while (0) |
| |
| /* |
| * For highest performance the L1 NH and L2 polynomial hashes should be |
| * carefully implemented to take advantage of one's target architecture. |
| * Here these two hash functions are defined multiple time; once for |
| * 64-bit architectures, once for 32-bit SSE2 architectures, and once |
| * for the rest (32-bit) architectures. |
| * For each, nh_16 *must* be defined (works on multiples of 16 bytes). |
| * Optionally, nh_vmac_nhbytes can be defined (for multiples of |
| * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two |
| * NH computations at once). |
| */ |
| |
| #ifdef CONFIG_64BIT |
| |
| #define nh_16(mp, kp, nw, rh, rl) \ |
| do { \ |
| int i; u64 th, tl; \ |
| rh = rl = 0; \ |
| for (i = 0; i < nw; i += 2) { \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
| pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
| ADD128(rh, rl, th, tl); \ |
| } \ |
| } while (0) |
| |
| #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ |
| do { \ |
| int i; u64 th, tl; \ |
| rh1 = rl1 = rh = rl = 0; \ |
| for (i = 0; i < nw; i += 2) { \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
| pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
| ADD128(rh, rl, th, tl); \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
| pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ |
| ADD128(rh1, rl1, th, tl); \ |
| } \ |
| } while (0) |
| |
| #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ |
| #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ |
| do { \ |
| int i; u64 th, tl; \ |
| rh = rl = 0; \ |
| for (i = 0; i < nw; i += 8) { \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
| pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
| ADD128(rh, rl, th, tl); \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
| pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ |
| ADD128(rh, rl, th, tl); \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
| pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ |
| ADD128(rh, rl, th, tl); \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
| pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ |
| ADD128(rh, rl, th, tl); \ |
| } \ |
| } while (0) |
| |
| #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ |
| do { \ |
| int i; u64 th, tl; \ |
| rh1 = rl1 = rh = rl = 0; \ |
| for (i = 0; i < nw; i += 8) { \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
| pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
| ADD128(rh, rl, th, tl); \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
| pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ |
| ADD128(rh1, rl1, th, tl); \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
| pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ |
| ADD128(rh, rl, th, tl); \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \ |
| pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \ |
| ADD128(rh1, rl1, th, tl); \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
| pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ |
| ADD128(rh, rl, th, tl); \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \ |
| pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \ |
| ADD128(rh1, rl1, th, tl); \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
| pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ |
| ADD128(rh, rl, th, tl); \ |
| MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \ |
| pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \ |
| ADD128(rh1, rl1, th, tl); \ |
| } \ |
| } while (0) |
| #endif |
| |
| #define poly_step(ah, al, kh, kl, mh, ml) \ |
| do { \ |
| u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \ |
| /* compute ab*cd, put bd into result registers */ \ |
| PMUL64(t3h, t3l, al, kh); \ |
| PMUL64(t2h, t2l, ah, kl); \ |
| PMUL64(t1h, t1l, ah, 2*kh); \ |
| PMUL64(ah, al, al, kl); \ |
| /* add 2 * ac to result */ \ |
| ADD128(ah, al, t1h, t1l); \ |
| /* add together ad + bc */ \ |
| ADD128(t2h, t2l, t3h, t3l); \ |
| /* now (ah,al), (t2l,2*t2h) need summing */ \ |
| /* first add the high registers, carrying into t2h */ \ |
| ADD128(t2h, ah, z, t2l); \ |
| /* double t2h and add top bit of ah */ \ |
| t2h = 2 * t2h + (ah >> 63); \ |
| ah &= m63; \ |
| /* now add the low registers */ \ |
| ADD128(ah, al, mh, ml); \ |
| ADD128(ah, al, z, t2h); \ |
| } while (0) |
| |
| #else /* ! CONFIG_64BIT */ |
| |
| #ifndef nh_16 |
| #define nh_16(mp, kp, nw, rh, rl) \ |
| do { \ |
| u64 t1, t2, m1, m2, t; \ |
| int i; \ |
| rh = rl = t = 0; \ |
| for (i = 0; i < nw; i += 2) { \ |
| t1 = pe64_to_cpup(mp+i) + kp[i]; \ |
| t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \ |
| m2 = MUL32(t1 >> 32, t2); \ |
| m1 = MUL32(t1, t2 >> 32); \ |
| ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \ |
| MUL32(t1, t2)); \ |
| rh += (u64)(u32)(m1 >> 32) \ |
| + (u32)(m2 >> 32); \ |
| t += (u64)(u32)m1 + (u32)m2; \ |
| } \ |
| ADD128(rh, rl, (t >> 32), (t << 32)); \ |
| } while (0) |
| #endif |
| |
| static void poly_step_func(u64 *ahi, u64 *alo, |
| const u64 *kh, const u64 *kl, |
| const u64 *mh, const u64 *ml) |
| { |
| #define a0 (*(((u32 *)alo)+INDEX_LOW)) |
| #define a1 (*(((u32 *)alo)+INDEX_HIGH)) |
| #define a2 (*(((u32 *)ahi)+INDEX_LOW)) |
| #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) |
| #define k0 (*(((u32 *)kl)+INDEX_LOW)) |
| #define k1 (*(((u32 *)kl)+INDEX_HIGH)) |
| #define k2 (*(((u32 *)kh)+INDEX_LOW)) |
| #define k3 (*(((u32 *)kh)+INDEX_HIGH)) |
| |
| u64 p, q, t; |
| u32 t2; |
| |
| p = MUL32(a3, k3); |
| p += p; |
| p += *(u64 *)mh; |
| p += MUL32(a0, k2); |
| p += MUL32(a1, k1); |
| p += MUL32(a2, k0); |
| t = (u32)(p); |
| p >>= 32; |
| p += MUL32(a0, k3); |
| p += MUL32(a1, k2); |
| p += MUL32(a2, k1); |
| p += MUL32(a3, k0); |
| t |= ((u64)((u32)p & 0x7fffffff)) << 32; |
| p >>= 31; |
| p += (u64)(((u32 *)ml)[INDEX_LOW]); |
| p += MUL32(a0, k0); |
| q = MUL32(a1, k3); |
| q += MUL32(a2, k2); |
| q += MUL32(a3, k1); |
| q += q; |
| p += q; |
| t2 = (u32)(p); |
| p >>= 32; |
| p += (u64)(((u32 *)ml)[INDEX_HIGH]); |
| p += MUL32(a0, k1); |
| p += MUL32(a1, k0); |
| q = MUL32(a2, k3); |
| q += MUL32(a3, k2); |
| q += q; |
| p += q; |
| *(u64 *)(alo) = (p << 32) | t2; |
| p >>= 32; |
| *(u64 *)(ahi) = p + t; |
| |
| #undef a0 |
| #undef a1 |
| #undef a2 |
| #undef a3 |
| #undef k0 |
| #undef k1 |
| #undef k2 |
| #undef k3 |
| } |
| |
| #define poly_step(ah, al, kh, kl, mh, ml) \ |
| poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) |
| |
| #endif /* end of specialized NH and poly definitions */ |
| |
| /* At least nh_16 is defined. Defined others as needed here */ |
| #ifndef nh_16_2 |
| #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ |
| do { \ |
| nh_16(mp, kp, nw, rh, rl); \ |
| nh_16(mp, ((kp)+2), nw, rh2, rl2); \ |
| } while (0) |
| #endif |
| #ifndef nh_vmac_nhbytes |
| #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ |
| nh_16(mp, kp, nw, rh, rl) |
| #endif |
| #ifndef nh_vmac_nhbytes_2 |
| #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ |
| do { \ |
| nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ |
| nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ |
| } while (0) |
| #endif |
| |
| static void vhash_abort(struct vmac_ctx *ctx) |
| { |
| ctx->polytmp[0] = ctx->polykey[0] ; |
| ctx->polytmp[1] = ctx->polykey[1] ; |
| ctx->first_block_processed = 0; |
| } |
| |
| static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len) |
| { |
| u64 rh, rl, t, z = 0; |
| |
| /* fully reduce (p1,p2)+(len,0) mod p127 */ |
| t = p1 >> 63; |
| p1 &= m63; |
| ADD128(p1, p2, len, t); |
| /* At this point, (p1,p2) is at most 2^127+(len<<64) */ |
| t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); |
| ADD128(p1, p2, z, t); |
| p1 &= m63; |
| |
| /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ |
| t = p1 + (p2 >> 32); |
| t += (t >> 32); |
| t += (u32)t > 0xfffffffeu; |
| p1 += (t >> 32); |
| p2 += (p1 << 32); |
| |
| /* compute (p1+k1)%p64 and (p2+k2)%p64 */ |
| p1 += k1; |
| p1 += (0 - (p1 < k1)) & 257; |
| p2 += k2; |
| p2 += (0 - (p2 < k2)) & 257; |
| |
| /* compute (p1+k1)*(p2+k2)%p64 */ |
| MUL64(rh, rl, p1, p2); |
| t = rh >> 56; |
| ADD128(t, rl, z, rh); |
| rh <<= 8; |
| ADD128(t, rl, z, rh); |
| t += t << 8; |
| rl += t; |
| rl += (0 - (rl < t)) & 257; |
| rl += (0 - (rl > p64-1)) & 257; |
| return rl; |
| } |
| |
| static void vhash_update(const unsigned char *m, |
| unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ |
| struct vmac_ctx *ctx) |
| { |
| u64 rh, rl, *mptr; |
| const u64 *kptr = (u64 *)ctx->nhkey; |
| int i; |
| u64 ch, cl; |
| u64 pkh = ctx->polykey[0]; |
| u64 pkl = ctx->polykey[1]; |
| |
| if (!mbytes) |
| return; |
| |
| BUG_ON(mbytes % VMAC_NHBYTES); |
| |
| mptr = (u64 *)m; |
| i = mbytes / VMAC_NHBYTES; /* Must be non-zero */ |
| |
| ch = ctx->polytmp[0]; |
| cl = ctx->polytmp[1]; |
| |
| if (!ctx->first_block_processed) { |
| ctx->first_block_processed = 1; |
| nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
| rh &= m62; |
| ADD128(ch, cl, rh, rl); |
| mptr += (VMAC_NHBYTES/sizeof(u64)); |
| i--; |
| } |
| |
| while (i--) { |
| nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
| rh &= m62; |
| poly_step(ch, cl, pkh, pkl, rh, rl); |
| mptr += (VMAC_NHBYTES/sizeof(u64)); |
| } |
| |
| ctx->polytmp[0] = ch; |
| ctx->polytmp[1] = cl; |
| } |
| |
| static u64 vhash(unsigned char m[], unsigned int mbytes, |
| u64 *tagl, struct vmac_ctx *ctx) |
| { |
| u64 rh, rl, *mptr; |
| const u64 *kptr = (u64 *)ctx->nhkey; |
| int i, remaining; |
| u64 ch, cl; |
| u64 pkh = ctx->polykey[0]; |
| u64 pkl = ctx->polykey[1]; |
| |
| mptr = (u64 *)m; |
| i = mbytes / VMAC_NHBYTES; |
| remaining = mbytes % VMAC_NHBYTES; |
| |
| if (ctx->first_block_processed) { |
| ch = ctx->polytmp[0]; |
| cl = ctx->polytmp[1]; |
| } else if (i) { |
| nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl); |
| ch &= m62; |
| ADD128(ch, cl, pkh, pkl); |
| mptr += (VMAC_NHBYTES/sizeof(u64)); |
| i--; |
| } else if (remaining) { |
| nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl); |
| ch &= m62; |
| ADD128(ch, cl, pkh, pkl); |
| mptr += (VMAC_NHBYTES/sizeof(u64)); |
| goto do_l3; |
| } else {/* Empty String */ |
| ch = pkh; cl = pkl; |
| goto do_l3; |
| } |
| |
| while (i--) { |
| nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
| rh &= m62; |
| poly_step(ch, cl, pkh, pkl, rh, rl); |
| mptr += (VMAC_NHBYTES/sizeof(u64)); |
| } |
| if (remaining) { |
| nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl); |
| rh &= m62; |
| poly_step(ch, cl, pkh, pkl, rh, rl); |
| } |
| |
| do_l3: |
| vhash_abort(ctx); |
| remaining *= 8; |
| return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining); |
| } |
| |
| static u64 vmac(unsigned char m[], unsigned int mbytes, |
| const unsigned char n[16], u64 *tagl, |
| struct vmac_ctx_t *ctx) |
| { |
| u64 *in_n, *out_p; |
| u64 p, h; |
| int i; |
| |
| in_n = ctx->__vmac_ctx.cached_nonce; |
| out_p = ctx->__vmac_ctx.cached_aes; |
| |
| i = n[15] & 1; |
| if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) { |
| in_n[0] = *(u64 *)(n); |
| in_n[1] = *(u64 *)(n+8); |
| ((unsigned char *)in_n)[15] &= 0xFE; |
| crypto_cipher_encrypt_one(ctx->child, |
| (unsigned char *)out_p, (unsigned char *)in_n); |
| |
| ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); |
| } |
| p = be64_to_cpup(out_p + i); |
| h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx); |
| return le64_to_cpu(p + h); |
| } |
| |
| static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) |
| { |
| u64 in[2] = {0}, out[2]; |
| unsigned i; |
| int err = 0; |
| |
| err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN); |
| if (err) |
| return err; |
| |
| /* Fill nh key */ |
| ((unsigned char *)in)[0] = 0x80; |
| for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { |
| crypto_cipher_encrypt_one(ctx->child, |
| (unsigned char *)out, (unsigned char *)in); |
| ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); |
| ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); |
| ((unsigned char *)in)[15] += 1; |
| } |
| |
| /* Fill poly key */ |
| ((unsigned char *)in)[0] = 0xC0; |
| in[1] = 0; |
| for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { |
| crypto_cipher_encrypt_one(ctx->child, |
| (unsigned char *)out, (unsigned char *)in); |
| ctx->__vmac_ctx.polytmp[i] = |
| ctx->__vmac_ctx.polykey[i] = |
| be64_to_cpup(out) & mpoly; |
| ctx->__vmac_ctx.polytmp[i+1] = |
| ctx->__vmac_ctx.polykey[i+1] = |
| be64_to_cpup(out+1) & mpoly; |
| ((unsigned char *)in)[15] += 1; |
| } |
| |
| /* Fill ip key */ |
| ((unsigned char *)in)[0] = 0xE0; |
| in[1] = 0; |
| for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { |
| do { |
| crypto_cipher_encrypt_one(ctx->child, |
| (unsigned char *)out, (unsigned char *)in); |
| ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); |
| ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); |
| ((unsigned char *)in)[15] += 1; |
| } while (ctx->__vmac_ctx.l3key[i] >= p64 |
| || ctx->__vmac_ctx.l3key[i+1] >= p64); |
| } |
| |
| /* Invalidate nonce/aes cache and reset other elements */ |
| ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */ |
| ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */ |
| ctx->__vmac_ctx.first_block_processed = 0; |
| |
| return err; |
| } |
| |
| static int vmac_setkey(struct crypto_shash *parent, |
| const u8 *key, unsigned int keylen) |
| { |
| struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); |
| |
| if (keylen != VMAC_KEY_LEN) { |
| crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| return vmac_set_key((u8 *)key, ctx); |
| } |
| |
| static int vmac_init(struct shash_desc *pdesc) |
| { |
| return 0; |
| } |
| |
| static int vmac_update(struct shash_desc *pdesc, const u8 *p, |
| unsigned int len) |
| { |
| struct crypto_shash *parent = pdesc->tfm; |
| struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); |
| int expand; |
| int min; |
| |
| expand = VMAC_NHBYTES - ctx->partial_size > 0 ? |
| VMAC_NHBYTES - ctx->partial_size : 0; |
| |
| min = len < expand ? len : expand; |
| |
| memcpy(ctx->partial + ctx->partial_size, p, min); |
| ctx->partial_size += min; |
| |
| if (len < expand) |
| return 0; |
| |
| vhash_update(ctx->partial, VMAC_NHBYTES, &ctx->__vmac_ctx); |
| ctx->partial_size = 0; |
| |
| len -= expand; |
| p += expand; |
| |
| if (len % VMAC_NHBYTES) { |
| memcpy(ctx->partial, p + len - (len % VMAC_NHBYTES), |
| len % VMAC_NHBYTES); |
| ctx->partial_size = len % VMAC_NHBYTES; |
| } |
| |
| vhash_update(p, len - len % VMAC_NHBYTES, &ctx->__vmac_ctx); |
| |
| return 0; |
| } |
| |
| static int vmac_final(struct shash_desc *pdesc, u8 *out) |
| { |
| struct crypto_shash *parent = pdesc->tfm; |
| struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); |
| vmac_t mac; |
| u8 nonce[16] = {}; |
| |
| /* vmac() ends up accessing outside the array bounds that |
| * we specify. In appears to access up to the next 2-word |
| * boundary. We'll just be uber cautious and zero the |
| * unwritten bytes in the buffer. |
| */ |
| if (ctx->partial_size) { |
| memset(ctx->partial + ctx->partial_size, 0, |
| VMAC_NHBYTES - ctx->partial_size); |
| } |
| mac = vmac(ctx->partial, ctx->partial_size, nonce, NULL, ctx); |
| memcpy(out, &mac, sizeof(vmac_t)); |
| memzero_explicit(&mac, sizeof(vmac_t)); |
| memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); |
| ctx->partial_size = 0; |
| return 0; |
| } |
| |
| static int vmac_init_tfm(struct crypto_tfm *tfm) |
| { |
| struct crypto_cipher *cipher; |
| struct crypto_instance *inst = (void *)tfm->__crt_alg; |
| struct crypto_spawn *spawn = crypto_instance_ctx(inst); |
| struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); |
| |
| cipher = crypto_spawn_cipher(spawn); |
| if (IS_ERR(cipher)) |
| return PTR_ERR(cipher); |
| |
| ctx->child = cipher; |
| return 0; |
| } |
| |
| static void vmac_exit_tfm(struct crypto_tfm *tfm) |
| { |
| struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); |
| crypto_free_cipher(ctx->child); |
| } |
| |
| static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) |
| { |
| struct shash_instance *inst; |
| struct crypto_alg *alg; |
| int err; |
| |
| err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); |
| if (err) |
| return err; |
| |
| alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, |
| CRYPTO_ALG_TYPE_MASK); |
| if (IS_ERR(alg)) |
| return PTR_ERR(alg); |
| |
| inst = shash_alloc_instance("vmac", alg); |
| err = PTR_ERR(inst); |
| if (IS_ERR(inst)) |
| goto out_put_alg; |
| |
| err = crypto_init_spawn(shash_instance_ctx(inst), alg, |
| shash_crypto_instance(inst), |
| CRYPTO_ALG_TYPE_MASK); |
| if (err) |
| goto out_free_inst; |
| |
| inst->alg.base.cra_priority = alg->cra_priority; |
| inst->alg.base.cra_blocksize = alg->cra_blocksize; |
| inst->alg.base.cra_alignmask = alg->cra_alignmask; |
| |
| inst->alg.digestsize = sizeof(vmac_t); |
| inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t); |
| inst->alg.base.cra_init = vmac_init_tfm; |
| inst->alg.base.cra_exit = vmac_exit_tfm; |
| |
| inst->alg.init = vmac_init; |
| inst->alg.update = vmac_update; |
| inst->alg.final = vmac_final; |
| inst->alg.setkey = vmac_setkey; |
| |
| err = shash_register_instance(tmpl, inst); |
| if (err) { |
| out_free_inst: |
| shash_free_instance(shash_crypto_instance(inst)); |
| } |
| |
| out_put_alg: |
| crypto_mod_put(alg); |
| return err; |
| } |
| |
| static struct crypto_template vmac_tmpl = { |
| .name = "vmac", |
| .create = vmac_create, |
| .free = shash_free_instance, |
| .module = THIS_MODULE, |
| }; |
| |
| static int __init vmac_module_init(void) |
| { |
| return crypto_register_template(&vmac_tmpl); |
| } |
| |
| static void __exit vmac_module_exit(void) |
| { |
| crypto_unregister_template(&vmac_tmpl); |
| } |
| |
| module_init(vmac_module_init); |
| module_exit(vmac_module_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("VMAC hash algorithm"); |