blob: e9de5dfd94ec339e5f5c0c7c15eaad1f5a7944c4 [file] [log] [blame]
/*
* arch/arm/mach-tegra/tegra30_clocks.c
*
* Copyright (c) 2010-2012 NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/syscore_ops.h>
#include <asm/clkdev.h>
#include <mach/iomap.h>
#include "clock.h"
#include "fuse.h"
#include "tegra_cpu_car.h"
#define USE_PLL_LOCK_BITS 0
#define RST_DEVICES_L 0x004
#define RST_DEVICES_H 0x008
#define RST_DEVICES_U 0x00C
#define RST_DEVICES_V 0x358
#define RST_DEVICES_W 0x35C
#define RST_DEVICES_SET_L 0x300
#define RST_DEVICES_CLR_L 0x304
#define RST_DEVICES_SET_V 0x430
#define RST_DEVICES_CLR_V 0x434
#define RST_DEVICES_NUM 5
#define CLK_OUT_ENB_L 0x010
#define CLK_OUT_ENB_H 0x014
#define CLK_OUT_ENB_U 0x018
#define CLK_OUT_ENB_V 0x360
#define CLK_OUT_ENB_W 0x364
#define CLK_OUT_ENB_SET_L 0x320
#define CLK_OUT_ENB_CLR_L 0x324
#define CLK_OUT_ENB_SET_V 0x440
#define CLK_OUT_ENB_CLR_V 0x444
#define CLK_OUT_ENB_NUM 5
#define RST_DEVICES_V_SWR_CPULP_RST_DIS (0x1 << 1)
#define CLK_OUT_ENB_V_CLK_ENB_CPULP_EN (0x1 << 1)
#define PERIPH_CLK_TO_BIT(c) (1 << (c->u.periph.clk_num % 32))
#define PERIPH_CLK_TO_RST_REG(c) \
periph_clk_to_reg((c), RST_DEVICES_L, RST_DEVICES_V, 4)
#define PERIPH_CLK_TO_RST_SET_REG(c) \
periph_clk_to_reg((c), RST_DEVICES_SET_L, RST_DEVICES_SET_V, 8)
#define PERIPH_CLK_TO_RST_CLR_REG(c) \
periph_clk_to_reg((c), RST_DEVICES_CLR_L, RST_DEVICES_CLR_V, 8)
#define PERIPH_CLK_TO_ENB_REG(c) \
periph_clk_to_reg((c), CLK_OUT_ENB_L, CLK_OUT_ENB_V, 4)
#define PERIPH_CLK_TO_ENB_SET_REG(c) \
periph_clk_to_reg((c), CLK_OUT_ENB_SET_L, CLK_OUT_ENB_SET_V, 8)
#define PERIPH_CLK_TO_ENB_CLR_REG(c) \
periph_clk_to_reg((c), CLK_OUT_ENB_CLR_L, CLK_OUT_ENB_CLR_V, 8)
#define CLK_MASK_ARM 0x44
#define MISC_CLK_ENB 0x48
#define OSC_CTRL 0x50
#define OSC_CTRL_OSC_FREQ_MASK (0xF<<28)
#define OSC_CTRL_OSC_FREQ_13MHZ (0x0<<28)
#define OSC_CTRL_OSC_FREQ_19_2MHZ (0x4<<28)
#define OSC_CTRL_OSC_FREQ_12MHZ (0x8<<28)
#define OSC_CTRL_OSC_FREQ_26MHZ (0xC<<28)
#define OSC_CTRL_OSC_FREQ_16_8MHZ (0x1<<28)
#define OSC_CTRL_OSC_FREQ_38_4MHZ (0x5<<28)
#define OSC_CTRL_OSC_FREQ_48MHZ (0x9<<28)
#define OSC_CTRL_MASK (0x3f2 | OSC_CTRL_OSC_FREQ_MASK)
#define OSC_CTRL_PLL_REF_DIV_MASK (3<<26)
#define OSC_CTRL_PLL_REF_DIV_1 (0<<26)
#define OSC_CTRL_PLL_REF_DIV_2 (1<<26)
#define OSC_CTRL_PLL_REF_DIV_4 (2<<26)
#define OSC_FREQ_DET 0x58
#define OSC_FREQ_DET_TRIG (1<<31)
#define OSC_FREQ_DET_STATUS 0x5C
#define OSC_FREQ_DET_BUSY (1<<31)
#define OSC_FREQ_DET_CNT_MASK 0xFFFF
#define PERIPH_CLK_SOURCE_I2S1 0x100
#define PERIPH_CLK_SOURCE_EMC 0x19c
#define PERIPH_CLK_SOURCE_OSC 0x1fc
#define PERIPH_CLK_SOURCE_NUM1 \
((PERIPH_CLK_SOURCE_OSC - PERIPH_CLK_SOURCE_I2S1) / 4)
#define PERIPH_CLK_SOURCE_G3D2 0x3b0
#define PERIPH_CLK_SOURCE_SE 0x42c
#define PERIPH_CLK_SOURCE_NUM2 \
((PERIPH_CLK_SOURCE_SE - PERIPH_CLK_SOURCE_G3D2) / 4 + 1)
#define AUDIO_DLY_CLK 0x49c
#define AUDIO_SYNC_CLK_SPDIF 0x4b4
#define PERIPH_CLK_SOURCE_NUM3 \
((AUDIO_SYNC_CLK_SPDIF - AUDIO_DLY_CLK) / 4 + 1)
#define PERIPH_CLK_SOURCE_NUM (PERIPH_CLK_SOURCE_NUM1 + \
PERIPH_CLK_SOURCE_NUM2 + \
PERIPH_CLK_SOURCE_NUM3)
#define CPU_SOFTRST_CTRL 0x380
#define PERIPH_CLK_SOURCE_DIVU71_MASK 0xFF
#define PERIPH_CLK_SOURCE_DIVU16_MASK 0xFFFF
#define PERIPH_CLK_SOURCE_DIV_SHIFT 0
#define PERIPH_CLK_SOURCE_DIVIDLE_SHIFT 8
#define PERIPH_CLK_SOURCE_DIVIDLE_VAL 50
#define PERIPH_CLK_UART_DIV_ENB (1<<24)
#define PERIPH_CLK_VI_SEL_EX_SHIFT 24
#define PERIPH_CLK_VI_SEL_EX_MASK (0x3<<PERIPH_CLK_VI_SEL_EX_SHIFT)
#define PERIPH_CLK_NAND_DIV_EX_ENB (1<<8)
#define PERIPH_CLK_DTV_POLARITY_INV (1<<25)
#define AUDIO_SYNC_SOURCE_MASK 0x0F
#define AUDIO_SYNC_DISABLE_BIT 0x10
#define AUDIO_SYNC_TAP_NIBBLE_SHIFT(c) ((c->reg_shift - 24) * 4)
#define PLL_BASE 0x0
#define PLL_BASE_BYPASS (1<<31)
#define PLL_BASE_ENABLE (1<<30)
#define PLL_BASE_REF_ENABLE (1<<29)
#define PLL_BASE_OVERRIDE (1<<28)
#define PLL_BASE_LOCK (1<<27)
#define PLL_BASE_DIVP_MASK (0x7<<20)
#define PLL_BASE_DIVP_SHIFT 20
#define PLL_BASE_DIVN_MASK (0x3FF<<8)
#define PLL_BASE_DIVN_SHIFT 8
#define PLL_BASE_DIVM_MASK (0x1F)
#define PLL_BASE_DIVM_SHIFT 0
#define PLL_OUT_RATIO_MASK (0xFF<<8)
#define PLL_OUT_RATIO_SHIFT 8
#define PLL_OUT_OVERRIDE (1<<2)
#define PLL_OUT_CLKEN (1<<1)
#define PLL_OUT_RESET_DISABLE (1<<0)
#define PLL_MISC(c) \
(((c)->flags & PLL_ALT_MISC_REG) ? 0x4 : 0xc)
#define PLL_MISC_LOCK_ENABLE(c) \
(((c)->flags & (PLLU | PLLD)) ? (1<<22) : (1<<18))
#define PLL_MISC_DCCON_SHIFT 20
#define PLL_MISC_CPCON_SHIFT 8
#define PLL_MISC_CPCON_MASK (0xF<<PLL_MISC_CPCON_SHIFT)
#define PLL_MISC_LFCON_SHIFT 4
#define PLL_MISC_LFCON_MASK (0xF<<PLL_MISC_LFCON_SHIFT)
#define PLL_MISC_VCOCON_SHIFT 0
#define PLL_MISC_VCOCON_MASK (0xF<<PLL_MISC_VCOCON_SHIFT)
#define PLLD_MISC_CLKENABLE (1<<30)
#define PLLU_BASE_POST_DIV (1<<20)
#define PLLD_BASE_DSIB_MUX_SHIFT 25
#define PLLD_BASE_DSIB_MUX_MASK (1<<PLLD_BASE_DSIB_MUX_SHIFT)
#define PLLD_BASE_CSI_CLKENABLE (1<<26)
#define PLLD_MISC_DSI_CLKENABLE (1<<30)
#define PLLD_MISC_DIV_RST (1<<23)
#define PLLD_MISC_DCCON_SHIFT 12
#define PLLDU_LFCON_SET_DIVN 600
/* FIXME: OUT_OF_TABLE_CPCON per pll */
#define OUT_OF_TABLE_CPCON 0x8
#define SUPER_CLK_MUX 0x00
#define SUPER_STATE_SHIFT 28
#define SUPER_STATE_MASK (0xF << SUPER_STATE_SHIFT)
#define SUPER_STATE_STANDBY (0x0 << SUPER_STATE_SHIFT)
#define SUPER_STATE_IDLE (0x1 << SUPER_STATE_SHIFT)
#define SUPER_STATE_RUN (0x2 << SUPER_STATE_SHIFT)
#define SUPER_STATE_IRQ (0x3 << SUPER_STATE_SHIFT)
#define SUPER_STATE_FIQ (0x4 << SUPER_STATE_SHIFT)
#define SUPER_LP_DIV2_BYPASS (0x1 << 16)
#define SUPER_SOURCE_MASK 0xF
#define SUPER_FIQ_SOURCE_SHIFT 12
#define SUPER_IRQ_SOURCE_SHIFT 8
#define SUPER_RUN_SOURCE_SHIFT 4
#define SUPER_IDLE_SOURCE_SHIFT 0
#define SUPER_CLK_DIVIDER 0x04
#define SUPER_CLOCK_DIV_U71_SHIFT 16
#define SUPER_CLOCK_DIV_U71_MASK (0xff << SUPER_CLOCK_DIV_U71_SHIFT)
/* guarantees safe cpu backup */
#define SUPER_CLOCK_DIV_U71_MIN 0x2
#define BUS_CLK_DISABLE (1<<3)
#define BUS_CLK_DIV_MASK 0x3
#define PMC_CTRL 0x0
#define PMC_CTRL_BLINK_ENB (1 << 7)
#define PMC_DPD_PADS_ORIDE 0x1c
#define PMC_DPD_PADS_ORIDE_BLINK_ENB (1 << 20)
#define PMC_BLINK_TIMER_DATA_ON_SHIFT 0
#define PMC_BLINK_TIMER_DATA_ON_MASK 0x7fff
#define PMC_BLINK_TIMER_ENB (1 << 15)
#define PMC_BLINK_TIMER_DATA_OFF_SHIFT 16
#define PMC_BLINK_TIMER_DATA_OFF_MASK 0xffff
#define PMC_PLLP_WB0_OVERRIDE 0xf8
#define PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE (1 << 12)
#define UTMIP_PLL_CFG2 0x488
#define UTMIP_PLL_CFG2_STABLE_COUNT(x) (((x) & 0xfff) << 6)
#define UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(x) (((x) & 0x3f) << 18)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN (1 << 0)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN (1 << 2)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERDOWN (1 << 4)
#define UTMIP_PLL_CFG1 0x484
#define UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(x) (((x) & 0x1f) << 27)
#define UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(x) (((x) & 0xfff) << 0)
#define UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN (1 << 14)
#define UTMIP_PLL_CFG1_FORCE_PLL_ACTIVE_POWERDOWN (1 << 12)
#define UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN (1 << 16)
#define PLLE_BASE_CML_ENABLE (1<<31)
#define PLLE_BASE_ENABLE (1<<30)
#define PLLE_BASE_DIVCML_SHIFT 24
#define PLLE_BASE_DIVCML_MASK (0xf<<PLLE_BASE_DIVCML_SHIFT)
#define PLLE_BASE_DIVP_SHIFT 16
#define PLLE_BASE_DIVP_MASK (0x3f<<PLLE_BASE_DIVP_SHIFT)
#define PLLE_BASE_DIVN_SHIFT 8
#define PLLE_BASE_DIVN_MASK (0xFF<<PLLE_BASE_DIVN_SHIFT)
#define PLLE_BASE_DIVM_SHIFT 0
#define PLLE_BASE_DIVM_MASK (0xFF<<PLLE_BASE_DIVM_SHIFT)
#define PLLE_BASE_DIV_MASK \
(PLLE_BASE_DIVCML_MASK | PLLE_BASE_DIVP_MASK | \
PLLE_BASE_DIVN_MASK | PLLE_BASE_DIVM_MASK)
#define PLLE_BASE_DIV(m, n, p, cml) \
(((cml)<<PLLE_BASE_DIVCML_SHIFT) | ((p)<<PLLE_BASE_DIVP_SHIFT) | \
((n)<<PLLE_BASE_DIVN_SHIFT) | ((m)<<PLLE_BASE_DIVM_SHIFT))
#define PLLE_MISC_SETUP_BASE_SHIFT 16
#define PLLE_MISC_SETUP_BASE_MASK (0xFFFF<<PLLE_MISC_SETUP_BASE_SHIFT)
#define PLLE_MISC_READY (1<<15)
#define PLLE_MISC_LOCK (1<<11)
#define PLLE_MISC_LOCK_ENABLE (1<<9)
#define PLLE_MISC_SETUP_EX_SHIFT 2
#define PLLE_MISC_SETUP_EX_MASK (0x3<<PLLE_MISC_SETUP_EX_SHIFT)
#define PLLE_MISC_SETUP_MASK \
(PLLE_MISC_SETUP_BASE_MASK | PLLE_MISC_SETUP_EX_MASK)
#define PLLE_MISC_SETUP_VALUE \
((0x7<<PLLE_MISC_SETUP_BASE_SHIFT) | (0x0<<PLLE_MISC_SETUP_EX_SHIFT))
#define PLLE_SS_CTRL 0x68
#define PLLE_SS_INCINTRV_SHIFT 24
#define PLLE_SS_INCINTRV_MASK (0x3f<<PLLE_SS_INCINTRV_SHIFT)
#define PLLE_SS_INC_SHIFT 16
#define PLLE_SS_INC_MASK (0xff<<PLLE_SS_INC_SHIFT)
#define PLLE_SS_MAX_SHIFT 0
#define PLLE_SS_MAX_MASK (0x1ff<<PLLE_SS_MAX_SHIFT)
#define PLLE_SS_COEFFICIENTS_MASK \
(PLLE_SS_INCINTRV_MASK | PLLE_SS_INC_MASK | PLLE_SS_MAX_MASK)
#define PLLE_SS_COEFFICIENTS_12MHZ \
((0x18<<PLLE_SS_INCINTRV_SHIFT) | (0x1<<PLLE_SS_INC_SHIFT) | \
(0x24<<PLLE_SS_MAX_SHIFT))
#define PLLE_SS_DISABLE ((1<<12) | (1<<11) | (1<<10))
#define PLLE_AUX 0x48c
#define PLLE_AUX_PLLP_SEL (1<<2)
#define PLLE_AUX_CML_SATA_ENABLE (1<<1)
#define PLLE_AUX_CML_PCIE_ENABLE (1<<0)
#define PMC_SATA_PWRGT 0x1ac
#define PMC_SATA_PWRGT_PLLE_IDDQ_VALUE (1<<5)
#define PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1<<4)
#define ROUND_DIVIDER_UP 0
#define ROUND_DIVIDER_DOWN 1
/* FIXME: recommended safety delay after lock is detected */
#define PLL_POST_LOCK_DELAY 100
/* Tegra CPU clock and reset control regs */
#define TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX 0x4c
#define TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET 0x340
#define TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_CLR 0x344
#define TEGRA30_CLK_RST_CONTROLLER_CLK_CPU_CMPLX_CLR 0x34c
#define TEGRA30_CLK_RST_CONTROLLER_CPU_CMPLX_STATUS 0x470
#define CPU_CLOCK(cpu) (0x1 << (8 + cpu))
#define CPU_RESET(cpu) (0x1111ul << (cpu))
/**
* Structure defining the fields for USB UTMI clocks Parameters.
*/
struct utmi_clk_param {
/* Oscillator Frequency in KHz */
u32 osc_frequency;
/* UTMIP PLL Enable Delay Count */
u8 enable_delay_count;
/* UTMIP PLL Stable count */
u8 stable_count;
/* UTMIP PLL Active delay count */
u8 active_delay_count;
/* UTMIP PLL Xtal frequency count */
u8 xtal_freq_count;
};
static const struct utmi_clk_param utmi_parameters[] = {
{
.osc_frequency = 13000000,
.enable_delay_count = 0x02,
.stable_count = 0x33,
.active_delay_count = 0x05,
.xtal_freq_count = 0x7F
},
{
.osc_frequency = 19200000,
.enable_delay_count = 0x03,
.stable_count = 0x4B,
.active_delay_count = 0x06,
.xtal_freq_count = 0xBB},
{
.osc_frequency = 12000000,
.enable_delay_count = 0x02,
.stable_count = 0x2F,
.active_delay_count = 0x04,
.xtal_freq_count = 0x76
},
{
.osc_frequency = 26000000,
.enable_delay_count = 0x04,
.stable_count = 0x66,
.active_delay_count = 0x09,
.xtal_freq_count = 0xFE
},
{
.osc_frequency = 16800000,
.enable_delay_count = 0x03,
.stable_count = 0x41,
.active_delay_count = 0x0A,
.xtal_freq_count = 0xA4
},
};
static void __iomem *reg_clk_base = IO_ADDRESS(TEGRA_CLK_RESET_BASE);
static void __iomem *reg_pmc_base = IO_ADDRESS(TEGRA_PMC_BASE);
static void __iomem *misc_gp_hidrev_base = IO_ADDRESS(TEGRA_APB_MISC_BASE);
#define MISC_GP_HIDREV 0x804
/*
* Some peripheral clocks share an enable bit, so refcount the enable bits
* in registers CLK_ENABLE_L, ... CLK_ENABLE_W
*/
static int tegra_periph_clk_enable_refcount[CLK_OUT_ENB_NUM * 32];
#define clk_writel(value, reg) \
__raw_writel(value, reg_clk_base + (reg))
#define clk_readl(reg) \
__raw_readl(reg_clk_base + (reg))
#define pmc_writel(value, reg) \
__raw_writel(value, reg_pmc_base + (reg))
#define pmc_readl(reg) \
__raw_readl(reg_pmc_base + (reg))
#define chipid_readl() \
__raw_readl(misc_gp_hidrev_base + MISC_GP_HIDREV)
#define clk_writel_delay(value, reg) \
do { \
__raw_writel((value), reg_clk_base + (reg)); \
udelay(2); \
} while (0)
static inline int clk_set_div(struct clk_tegra *c, u32 n)
{
struct clk *clk = c->hw.clk;
return clk_set_rate(clk,
(__clk_get_rate(__clk_get_parent(clk)) + n - 1) / n);
}
static inline u32 periph_clk_to_reg(
struct clk_tegra *c, u32 reg_L, u32 reg_V, int offs)
{
u32 reg = c->u.periph.clk_num / 32;
BUG_ON(reg >= RST_DEVICES_NUM);
if (reg < 3)
reg = reg_L + (reg * offs);
else
reg = reg_V + ((reg - 3) * offs);
return reg;
}
static unsigned long clk_measure_input_freq(void)
{
u32 clock_autodetect;
clk_writel(OSC_FREQ_DET_TRIG | 1, OSC_FREQ_DET);
do {} while (clk_readl(OSC_FREQ_DET_STATUS) & OSC_FREQ_DET_BUSY);
clock_autodetect = clk_readl(OSC_FREQ_DET_STATUS);
if (clock_autodetect >= 732 - 3 && clock_autodetect <= 732 + 3) {
return 12000000;
} else if (clock_autodetect >= 794 - 3 && clock_autodetect <= 794 + 3) {
return 13000000;
} else if (clock_autodetect >= 1172 - 3 && clock_autodetect <= 1172 + 3) {
return 19200000;
} else if (clock_autodetect >= 1587 - 3 && clock_autodetect <= 1587 + 3) {
return 26000000;
} else if (clock_autodetect >= 1025 - 3 && clock_autodetect <= 1025 + 3) {
return 16800000;
} else if (clock_autodetect >= 2344 - 3 && clock_autodetect <= 2344 + 3) {
return 38400000;
} else if (clock_autodetect >= 2928 - 3 && clock_autodetect <= 2928 + 3) {
return 48000000;
} else {
pr_err("%s: Unexpected clock autodetect value %d", __func__,
clock_autodetect);
BUG();
return 0;
}
}
static int clk_div71_get_divider(unsigned long parent_rate, unsigned long rate,
u32 flags, u32 round_mode)
{
s64 divider_u71 = parent_rate;
if (!rate)
return -EINVAL;
if (!(flags & DIV_U71_INT))
divider_u71 *= 2;
if (round_mode == ROUND_DIVIDER_UP)
divider_u71 += rate - 1;
do_div(divider_u71, rate);
if (flags & DIV_U71_INT)
divider_u71 *= 2;
if (divider_u71 - 2 < 0)
return 0;
if (divider_u71 - 2 > 255)
return -EINVAL;
return divider_u71 - 2;
}
static int clk_div16_get_divider(unsigned long parent_rate, unsigned long rate)
{
s64 divider_u16;
divider_u16 = parent_rate;
if (!rate)
return -EINVAL;
divider_u16 += rate - 1;
do_div(divider_u16, rate);
if (divider_u16 - 1 < 0)
return 0;
if (divider_u16 - 1 > 0xFFFF)
return -EINVAL;
return divider_u16 - 1;
}
static unsigned long tegra30_clk_fixed_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
return to_clk_tegra(hw)->fixed_rate;
}
struct clk_ops tegra30_clk_32k_ops = {
.recalc_rate = tegra30_clk_fixed_recalc_rate,
};
/* clk_m functions */
static unsigned long tegra30_clk_m_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
if (!to_clk_tegra(hw)->fixed_rate)
to_clk_tegra(hw)->fixed_rate = clk_measure_input_freq();
return to_clk_tegra(hw)->fixed_rate;
}
static void tegra30_clk_m_init(struct clk_hw *hw)
{
u32 osc_ctrl = clk_readl(OSC_CTRL);
u32 auto_clock_control = osc_ctrl & ~OSC_CTRL_OSC_FREQ_MASK;
u32 pll_ref_div = osc_ctrl & OSC_CTRL_PLL_REF_DIV_MASK;
switch (to_clk_tegra(hw)->fixed_rate) {
case 12000000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_12MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
break;
case 13000000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_13MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
break;
case 19200000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_19_2MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
break;
case 26000000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_26MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
break;
case 16800000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_16_8MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
break;
case 38400000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_38_4MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_2);
break;
case 48000000:
auto_clock_control |= OSC_CTRL_OSC_FREQ_48MHZ;
BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_4);
break;
default:
pr_err("%s: Unexpected clock rate %ld", __func__,
to_clk_tegra(hw)->fixed_rate);
BUG();
}
clk_writel(auto_clock_control, OSC_CTRL);
}
struct clk_ops tegra30_clk_m_ops = {
.init = tegra30_clk_m_init,
.recalc_rate = tegra30_clk_m_recalc_rate,
};
static unsigned long tegra30_clk_m_div_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = parent_rate;
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
struct clk_ops tegra_clk_m_div_ops = {
.recalc_rate = tegra30_clk_m_div_recalc_rate,
};
/* PLL reference divider functions */
static unsigned long tegra30_pll_ref_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long rate = parent_rate;
u32 pll_ref_div = clk_readl(OSC_CTRL) & OSC_CTRL_PLL_REF_DIV_MASK;
switch (pll_ref_div) {
case OSC_CTRL_PLL_REF_DIV_1:
c->div = 1;
break;
case OSC_CTRL_PLL_REF_DIV_2:
c->div = 2;
break;
case OSC_CTRL_PLL_REF_DIV_4:
c->div = 4;
break;
default:
pr_err("%s: Invalid pll ref divider %d", __func__, pll_ref_div);
BUG();
}
c->mul = 1;
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
struct clk_ops tegra_pll_ref_ops = {
.recalc_rate = tegra30_pll_ref_recalc_rate,
};
/* super clock functions */
/* "super clocks" on tegra30 have two-stage muxes, fractional 7.1 divider and
* clock skipping super divider. We will ignore the clock skipping divider,
* since we can't lower the voltage when using the clock skip, but we can if
* we lower the PLL frequency. We will use 7.1 divider for CPU super-clock
* only when its parent is a fixed rate PLL, since we can't change PLL rate
* in this case.
*/
static void tegra30_super_clk_init(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
struct clk_tegra *p =
to_clk_tegra(__clk_get_hw(__clk_get_parent(hw->clk)));
c->state = ON;
if (c->flags & DIV_U71) {
/* Init safe 7.1 divider value (does not affect PLLX path) */
clk_writel(SUPER_CLOCK_DIV_U71_MIN << SUPER_CLOCK_DIV_U71_SHIFT,
c->reg + SUPER_CLK_DIVIDER);
c->mul = 2;
c->div = 2;
if (!(p->flags & PLLX))
c->div += SUPER_CLOCK_DIV_U71_MIN;
} else
clk_writel(0, c->reg + SUPER_CLK_DIVIDER);
}
static u8 tegra30_super_clk_get_parent(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
int source;
int shift;
val = clk_readl(c->reg + SUPER_CLK_MUX);
BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) &&
((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE));
shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ?
SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT;
source = (val >> shift) & SUPER_SOURCE_MASK;
if (c->flags & DIV_2)
source |= val & SUPER_LP_DIV2_BYPASS;
return source;
}
static int tegra30_super_clk_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_tegra *c = to_clk_tegra(hw);
struct clk_tegra *p =
to_clk_tegra(__clk_get_hw(clk_get_parent(hw->clk)));
u32 val;
int shift;
val = clk_readl(c->reg + SUPER_CLK_MUX);
BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) &&
((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE));
shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ?
SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT;
/* For LP mode super-clock switch between PLLX direct
and divided-by-2 outputs is allowed only when other
than PLLX clock source is current parent */
if ((c->flags & DIV_2) && (p->flags & PLLX) &&
((index ^ val) & SUPER_LP_DIV2_BYPASS)) {
if (p->flags & PLLX)
return -EINVAL;
val ^= SUPER_LP_DIV2_BYPASS;
clk_writel_delay(val, c->reg);
}
val &= ~(SUPER_SOURCE_MASK << shift);
val |= (index & SUPER_SOURCE_MASK) << shift;
/* 7.1 divider for CPU super-clock does not affect
PLLX path */
if (c->flags & DIV_U71) {
u32 div = 0;
if (!(p->flags & PLLX)) {
div = clk_readl(c->reg +
SUPER_CLK_DIVIDER);
div &= SUPER_CLOCK_DIV_U71_MASK;
div >>= SUPER_CLOCK_DIV_U71_SHIFT;
}
c->div = div + 2;
c->mul = 2;
}
clk_writel_delay(val, c->reg);
return 0;
}
/*
* Do not use super clocks "skippers", since dividing using a clock skipper
* does not allow the voltage to be scaled down. Instead adjust the rate of
* the parent clock. This requires that the parent of a super clock have no
* other children, otherwise the rate will change underneath the other
* children. Special case: if fixed rate PLL is CPU super clock parent the
* rate of this PLL can't be changed, and it has many other children. In
* this case use 7.1 fractional divider to adjust the super clock rate.
*/
static int tegra30_super_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
struct clk *parent = __clk_get_parent(hw->clk);
struct clk_tegra *cparent = to_clk_tegra(__clk_get_hw(parent));
if ((c->flags & DIV_U71) && (cparent->flags & PLL_FIXED)) {
int div = clk_div71_get_divider(parent_rate,
rate, c->flags, ROUND_DIVIDER_DOWN);
div = max(div, SUPER_CLOCK_DIV_U71_MIN);
clk_writel(div << SUPER_CLOCK_DIV_U71_SHIFT,
c->reg + SUPER_CLK_DIVIDER);
c->div = div + 2;
c->mul = 2;
return 0;
}
return 0;
}
static unsigned long tegra30_super_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = parent_rate;
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
static long tegra30_super_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
struct clk *parent = __clk_get_parent(hw->clk);
struct clk_tegra *cparent = to_clk_tegra(__clk_get_hw(parent));
int mul = 2;
int div;
if ((c->flags & DIV_U71) && (cparent->flags & PLL_FIXED)) {
div = clk_div71_get_divider(*prate,
rate, c->flags, ROUND_DIVIDER_DOWN);
div = max(div, SUPER_CLOCK_DIV_U71_MIN) + 2;
rate = *prate * mul;
rate += div - 1; /* round up */
do_div(rate, c->div);
return rate;
}
return *prate;
}
struct clk_ops tegra30_super_ops = {
.init = tegra30_super_clk_init,
.set_parent = tegra30_super_clk_set_parent,
.get_parent = tegra30_super_clk_get_parent,
.recalc_rate = tegra30_super_clk_recalc_rate,
.round_rate = tegra30_super_clk_round_rate,
.set_rate = tegra30_super_clk_set_rate,
};
static unsigned long tegra30_twd_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = parent_rate;
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
struct clk_ops tegra30_twd_ops = {
.recalc_rate = tegra30_twd_clk_recalc_rate,
};
/* Blink output functions */
static int tegra30_blink_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
val = pmc_readl(PMC_CTRL);
c->state = (val & PMC_CTRL_BLINK_ENB) ? ON : OFF;
return c->state;
}
static int tegra30_blink_clk_enable(struct clk_hw *hw)
{
u32 val;
val = pmc_readl(PMC_DPD_PADS_ORIDE);
pmc_writel(val | PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE);
val = pmc_readl(PMC_CTRL);
pmc_writel(val | PMC_CTRL_BLINK_ENB, PMC_CTRL);
return 0;
}
static void tegra30_blink_clk_disable(struct clk_hw *hw)
{
u32 val;
val = pmc_readl(PMC_CTRL);
pmc_writel(val & ~PMC_CTRL_BLINK_ENB, PMC_CTRL);
val = pmc_readl(PMC_DPD_PADS_ORIDE);
pmc_writel(val & ~PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE);
}
static int tegra30_blink_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
if (rate >= parent_rate) {
c->div = 1;
pmc_writel(0, c->reg);
} else {
unsigned int on_off;
u32 val;
on_off = DIV_ROUND_UP(parent_rate / 8, rate);
c->div = on_off * 8;
val = (on_off & PMC_BLINK_TIMER_DATA_ON_MASK) <<
PMC_BLINK_TIMER_DATA_ON_SHIFT;
on_off &= PMC_BLINK_TIMER_DATA_OFF_MASK;
on_off <<= PMC_BLINK_TIMER_DATA_OFF_SHIFT;
val |= on_off;
val |= PMC_BLINK_TIMER_ENB;
pmc_writel(val, c->reg);
}
return 0;
}
static unsigned long tegra30_blink_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = parent_rate;
u32 val;
u32 mul;
u32 div;
u32 on_off;
mul = 1;
val = pmc_readl(c->reg);
if (val & PMC_BLINK_TIMER_ENB) {
on_off = (val >> PMC_BLINK_TIMER_DATA_ON_SHIFT) &
PMC_BLINK_TIMER_DATA_ON_MASK;
val >>= PMC_BLINK_TIMER_DATA_OFF_SHIFT;
val &= PMC_BLINK_TIMER_DATA_OFF_MASK;
on_off += val;
/* each tick in the blink timer is 4 32KHz clocks */
div = on_off * 4;
} else {
div = 1;
}
if (mul != 0 && div != 0) {
rate *= mul;
rate += div - 1; /* round up */
do_div(rate, div);
}
return rate;
}
static long tegra30_blink_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
int div;
int mul;
long round_rate = *prate;
mul = 1;
if (rate >= *prate) {
div = 1;
} else {
div = DIV_ROUND_UP(*prate / 8, rate);
div *= 8;
}
round_rate *= mul;
round_rate += div - 1;
do_div(round_rate, div);
return round_rate;
}
struct clk_ops tegra30_blink_clk_ops = {
.is_enabled = tegra30_blink_clk_is_enabled,
.enable = tegra30_blink_clk_enable,
.disable = tegra30_blink_clk_disable,
.recalc_rate = tegra30_blink_clk_recalc_rate,
.round_rate = tegra30_blink_clk_round_rate,
.set_rate = tegra30_blink_clk_set_rate,
};
static void tegra30_utmi_param_configure(struct clk_hw *hw)
{
unsigned long main_rate =
__clk_get_rate(__clk_get_parent(__clk_get_parent(hw->clk)));
u32 reg;
int i;
for (i = 0; i < ARRAY_SIZE(utmi_parameters); i++) {
if (main_rate == utmi_parameters[i].osc_frequency)
break;
}
if (i >= ARRAY_SIZE(utmi_parameters)) {
pr_err("%s: Unexpected main rate %lu\n", __func__, main_rate);
return;
}
reg = clk_readl(UTMIP_PLL_CFG2);
/* Program UTMIP PLL stable and active counts */
/* [FIXME] arclk_rst.h says WRONG! This should be 1ms -> 0x50 Check! */
reg &= ~UTMIP_PLL_CFG2_STABLE_COUNT(~0);
reg |= UTMIP_PLL_CFG2_STABLE_COUNT(
utmi_parameters[i].stable_count);
reg &= ~UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(~0);
reg |= UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(
utmi_parameters[i].active_delay_count);
/* Remove power downs from UTMIP PLL control bits */
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN;
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN;
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERDOWN;
clk_writel(reg, UTMIP_PLL_CFG2);
/* Program UTMIP PLL delay and oscillator frequency counts */
reg = clk_readl(UTMIP_PLL_CFG1);
reg &= ~UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(~0);
reg |= UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(
utmi_parameters[i].enable_delay_count);
reg &= ~UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(~0);
reg |= UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(
utmi_parameters[i].xtal_freq_count);
/* Remove power downs from UTMIP PLL control bits */
reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN;
reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ACTIVE_POWERDOWN;
reg &= ~UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN;
clk_writel(reg, UTMIP_PLL_CFG1);
}
/* PLL Functions */
static int tegra30_pll_clk_wait_for_lock(struct clk_tegra *c, u32 lock_reg,
u32 lock_bit)
{
int ret = 0;
#if USE_PLL_LOCK_BITS
int i;
for (i = 0; i < c->u.pll.lock_delay; i++) {
if (clk_readl(lock_reg) & lock_bit) {
udelay(PLL_POST_LOCK_DELAY);
return 0;
}
udelay(2); /* timeout = 2 * lock time */
}
pr_err("Timed out waiting for lock bit on pll %s",
__clk_get_name(hw->clk));
ret = -1;
#else
udelay(c->u.pll.lock_delay);
#endif
return ret;
}
static int tegra30_pll_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg + PLL_BASE);
c->state = (val & PLL_BASE_ENABLE) ? ON : OFF;
return c->state;
}
static void tegra30_pll_clk_init(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
if (c->flags & PLLU)
tegra30_utmi_param_configure(hw);
}
static int tegra30_pll_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
#if USE_PLL_LOCK_BITS
val = clk_readl(c->reg + PLL_MISC(c));
val |= PLL_MISC_LOCK_ENABLE(c);
clk_writel(val, c->reg + PLL_MISC(c));
#endif
val = clk_readl(c->reg + PLL_BASE);
val &= ~PLL_BASE_BYPASS;
val |= PLL_BASE_ENABLE;
clk_writel(val, c->reg + PLL_BASE);
if (c->flags & PLLM) {
val = pmc_readl(PMC_PLLP_WB0_OVERRIDE);
val |= PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE;
pmc_writel(val, PMC_PLLP_WB0_OVERRIDE);
}
tegra30_pll_clk_wait_for_lock(c, c->reg + PLL_BASE, PLL_BASE_LOCK);
return 0;
}
static void tegra30_pll_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
val = clk_readl(c->reg);
val &= ~(PLL_BASE_BYPASS | PLL_BASE_ENABLE);
clk_writel(val, c->reg);
if (c->flags & PLLM) {
val = pmc_readl(PMC_PLLP_WB0_OVERRIDE);
val &= ~PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE;
pmc_writel(val, PMC_PLLP_WB0_OVERRIDE);
}
}
static int tegra30_pll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val, p_div, old_base;
unsigned long input_rate;
const struct clk_pll_freq_table *sel;
struct clk_pll_freq_table cfg;
if (c->flags & PLL_FIXED) {
int ret = 0;
if (rate != c->u.pll.fixed_rate) {
pr_err("%s: Can not change %s fixed rate %lu to %lu\n",
__func__, __clk_get_name(hw->clk),
c->u.pll.fixed_rate, rate);
ret = -EINVAL;
}
return ret;
}
if (c->flags & PLLM) {
if (rate != __clk_get_rate(hw->clk)) {
pr_err("%s: Can not change memory %s rate in flight\n",
__func__, __clk_get_name(hw->clk));
return -EINVAL;
}
}
p_div = 0;
input_rate = parent_rate;
/* Check if the target rate is tabulated */
for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
if (sel->input_rate == input_rate && sel->output_rate == rate) {
if (c->flags & PLLU) {
BUG_ON(sel->p < 1 || sel->p > 2);
if (sel->p == 1)
p_div = PLLU_BASE_POST_DIV;
} else {
BUG_ON(sel->p < 1);
for (val = sel->p; val > 1; val >>= 1)
p_div++;
p_div <<= PLL_BASE_DIVP_SHIFT;
}
break;
}
}
/* Configure out-of-table rate */
if (sel->input_rate == 0) {
unsigned long cfreq;
BUG_ON(c->flags & PLLU);
sel = &cfg;
switch (input_rate) {
case 12000000:
case 26000000:
cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2000000;
break;
case 13000000:
cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2600000;
break;
case 16800000:
case 19200000:
cfreq = (rate <= 1200000 * 1000) ? 1200000 : 2400000;
break;
default:
pr_err("%s: Unexpected reference rate %lu\n",
__func__, input_rate);
BUG();
}
/* Raise VCO to guarantee 0.5% accuracy */
for (cfg.output_rate = rate; cfg.output_rate < 200 * cfreq;
cfg.output_rate <<= 1)
p_div++;
cfg.p = 0x1 << p_div;
cfg.m = input_rate / cfreq;
cfg.n = cfg.output_rate / cfreq;
cfg.cpcon = OUT_OF_TABLE_CPCON;
if ((cfg.m > (PLL_BASE_DIVM_MASK >> PLL_BASE_DIVM_SHIFT)) ||
(cfg.n > (PLL_BASE_DIVN_MASK >> PLL_BASE_DIVN_SHIFT)) ||
(p_div > (PLL_BASE_DIVP_MASK >> PLL_BASE_DIVP_SHIFT)) ||
(cfg.output_rate > c->u.pll.vco_max)) {
pr_err("%s: Failed to set %s out-of-table rate %lu\n",
__func__, __clk_get_name(hw->clk), rate);
return -EINVAL;
}
p_div <<= PLL_BASE_DIVP_SHIFT;
}
c->mul = sel->n;
c->div = sel->m * sel->p;
old_base = val = clk_readl(c->reg + PLL_BASE);
val &= ~(PLL_BASE_DIVM_MASK | PLL_BASE_DIVN_MASK |
((c->flags & PLLU) ? PLLU_BASE_POST_DIV : PLL_BASE_DIVP_MASK));
val |= (sel->m << PLL_BASE_DIVM_SHIFT) |
(sel->n << PLL_BASE_DIVN_SHIFT) | p_div;
if (val == old_base)
return 0;
if (c->state == ON) {
tegra30_pll_clk_disable(hw);
val &= ~(PLL_BASE_BYPASS | PLL_BASE_ENABLE);
}
clk_writel(val, c->reg + PLL_BASE);
if (c->flags & PLL_HAS_CPCON) {
val = clk_readl(c->reg + PLL_MISC(c));
val &= ~PLL_MISC_CPCON_MASK;
val |= sel->cpcon << PLL_MISC_CPCON_SHIFT;
if (c->flags & (PLLU | PLLD)) {
val &= ~PLL_MISC_LFCON_MASK;
if (sel->n >= PLLDU_LFCON_SET_DIVN)
val |= 0x1 << PLL_MISC_LFCON_SHIFT;
} else if (c->flags & (PLLX | PLLM)) {
val &= ~(0x1 << PLL_MISC_DCCON_SHIFT);
if (rate >= (c->u.pll.vco_max >> 1))
val |= 0x1 << PLL_MISC_DCCON_SHIFT;
}
clk_writel(val, c->reg + PLL_MISC(c));
}
if (c->state == ON)
tegra30_pll_clk_enable(hw);
c->u.pll.fixed_rate = rate;
return 0;
}
static long tegra30_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long input_rate = *prate;
u64 output_rate = *prate;
const struct clk_pll_freq_table *sel;
struct clk_pll_freq_table cfg;
int mul;
int div;
u32 p_div;
u32 val;
if (c->flags & PLL_FIXED)
return c->u.pll.fixed_rate;
if (c->flags & PLLM)
return __clk_get_rate(hw->clk);
p_div = 0;
/* Check if the target rate is tabulated */
for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
if (sel->input_rate == input_rate && sel->output_rate == rate) {
if (c->flags & PLLU) {
BUG_ON(sel->p < 1 || sel->p > 2);
if (sel->p == 1)
p_div = PLLU_BASE_POST_DIV;
} else {
BUG_ON(sel->p < 1);
for (val = sel->p; val > 1; val >>= 1)
p_div++;
p_div <<= PLL_BASE_DIVP_SHIFT;
}
break;
}
}
if (sel->input_rate == 0) {
unsigned long cfreq;
BUG_ON(c->flags & PLLU);
sel = &cfg;
switch (input_rate) {
case 12000000:
case 26000000:
cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2000000;
break;
case 13000000:
cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2600000;
break;
case 16800000:
case 19200000:
cfreq = (rate <= 1200000 * 1000) ? 1200000 : 2400000;
break;
default:
pr_err("%s: Unexpected reference rate %lu\n",
__func__, input_rate);
BUG();
}
/* Raise VCO to guarantee 0.5% accuracy */
for (cfg.output_rate = rate; cfg.output_rate < 200 * cfreq;
cfg.output_rate <<= 1)
p_div++;
cfg.p = 0x1 << p_div;
cfg.m = input_rate / cfreq;
cfg.n = cfg.output_rate / cfreq;
}
mul = sel->n;
div = sel->m * sel->p;
output_rate *= mul;
output_rate += div - 1; /* round up */
do_div(output_rate, div);
return output_rate;
}
static unsigned long tegra30_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = parent_rate;
u32 val = clk_readl(c->reg + PLL_BASE);
if (c->flags & PLL_FIXED && !(val & PLL_BASE_OVERRIDE)) {
const struct clk_pll_freq_table *sel;
for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
if (sel->input_rate == parent_rate &&
sel->output_rate == c->u.pll.fixed_rate) {
c->mul = sel->n;
c->div = sel->m * sel->p;
break;
}
}
pr_err("Clock %s has unknown fixed frequency\n",
__clk_get_name(hw->clk));
BUG();
} else if (val & PLL_BASE_BYPASS) {
c->mul = 1;
c->div = 1;
} else {
c->mul = (val & PLL_BASE_DIVN_MASK) >> PLL_BASE_DIVN_SHIFT;
c->div = (val & PLL_BASE_DIVM_MASK) >> PLL_BASE_DIVM_SHIFT;
if (c->flags & PLLU)
c->div *= (val & PLLU_BASE_POST_DIV) ? 1 : 2;
else
c->div *= (0x1 << ((val & PLL_BASE_DIVP_MASK) >>
PLL_BASE_DIVP_SHIFT));
}
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
struct clk_ops tegra30_pll_ops = {
.is_enabled = tegra30_pll_clk_is_enabled,
.init = tegra30_pll_clk_init,
.enable = tegra30_pll_clk_enable,
.disable = tegra30_pll_clk_disable,
.recalc_rate = tegra30_pll_recalc_rate,
.round_rate = tegra30_pll_round_rate,
.set_rate = tegra30_pll_clk_set_rate,
};
int tegra30_plld_clk_cfg_ex(struct clk_hw *hw,
enum tegra_clk_ex_param p, u32 setting)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val, mask, reg;
switch (p) {
case TEGRA_CLK_PLLD_CSI_OUT_ENB:
mask = PLLD_BASE_CSI_CLKENABLE;
reg = c->reg + PLL_BASE;
break;
case TEGRA_CLK_PLLD_DSI_OUT_ENB:
mask = PLLD_MISC_DSI_CLKENABLE;
reg = c->reg + PLL_MISC(c);
break;
case TEGRA_CLK_PLLD_MIPI_MUX_SEL:
if (!(c->flags & PLL_ALT_MISC_REG)) {
mask = PLLD_BASE_DSIB_MUX_MASK;
reg = c->reg + PLL_BASE;
break;
}
/* fall through - error since PLLD2 does not have MUX_SEL control */
default:
return -EINVAL;
}
val = clk_readl(reg);
if (setting)
val |= mask;
else
val &= ~mask;
clk_writel(val, reg);
return 0;
}
static int tegra30_plle_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
val = clk_readl(c->reg + PLL_BASE);
c->state = (val & PLLE_BASE_ENABLE) ? ON : OFF;
return c->state;
}
static void tegra30_plle_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
val = clk_readl(c->reg + PLL_BASE);
val &= ~(PLLE_BASE_CML_ENABLE | PLLE_BASE_ENABLE);
clk_writel(val, c->reg + PLL_BASE);
}
static void tegra30_plle_training(struct clk_tegra *c)
{
u32 val;
/* PLLE is already disabled, and setup cleared;
* create falling edge on PLLE IDDQ input */
val = pmc_readl(PMC_SATA_PWRGT);
val |= PMC_SATA_PWRGT_PLLE_IDDQ_VALUE;
pmc_writel(val, PMC_SATA_PWRGT);
val = pmc_readl(PMC_SATA_PWRGT);
val |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
pmc_writel(val, PMC_SATA_PWRGT);
val = pmc_readl(PMC_SATA_PWRGT);
val &= ~PMC_SATA_PWRGT_PLLE_IDDQ_VALUE;
pmc_writel(val, PMC_SATA_PWRGT);
do {
val = clk_readl(c->reg + PLL_MISC(c));
} while (!(val & PLLE_MISC_READY));
}
static int tegra30_plle_configure(struct clk_hw *hw, bool force_training)
{
struct clk_tegra *c = to_clk_tegra(hw);
struct clk *parent = __clk_get_parent(hw->clk);
const struct clk_pll_freq_table *sel;
u32 val;
unsigned long rate = c->u.pll.fixed_rate;
unsigned long input_rate = __clk_get_rate(parent);
for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
if (sel->input_rate == input_rate && sel->output_rate == rate)
break;
}
if (sel->input_rate == 0)
return -ENOSYS;
/* disable PLLE, clear setup fiels */
tegra30_plle_clk_disable(hw);
val = clk_readl(c->reg + PLL_MISC(c));
val &= ~(PLLE_MISC_LOCK_ENABLE | PLLE_MISC_SETUP_MASK);
clk_writel(val, c->reg + PLL_MISC(c));
/* training */
val = clk_readl(c->reg + PLL_MISC(c));
if (force_training || (!(val & PLLE_MISC_READY)))
tegra30_plle_training(c);
/* configure dividers, setup, disable SS */
val = clk_readl(c->reg + PLL_BASE);
val &= ~PLLE_BASE_DIV_MASK;
val |= PLLE_BASE_DIV(sel->m, sel->n, sel->p, sel->cpcon);
clk_writel(val, c->reg + PLL_BASE);
c->mul = sel->n;
c->div = sel->m * sel->p;
val = clk_readl(c->reg + PLL_MISC(c));
val |= PLLE_MISC_SETUP_VALUE;
val |= PLLE_MISC_LOCK_ENABLE;
clk_writel(val, c->reg + PLL_MISC(c));
val = clk_readl(PLLE_SS_CTRL);
val |= PLLE_SS_DISABLE;
clk_writel(val, PLLE_SS_CTRL);
/* enable and lock PLLE*/
val = clk_readl(c->reg + PLL_BASE);
val |= (PLLE_BASE_CML_ENABLE | PLLE_BASE_ENABLE);
clk_writel(val, c->reg + PLL_BASE);
tegra30_pll_clk_wait_for_lock(c, c->reg + PLL_MISC(c), PLLE_MISC_LOCK);
return 0;
}
static int tegra30_plle_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
return tegra30_plle_configure(hw, !c->set);
}
static unsigned long tegra30_plle_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long rate = parent_rate;
u32 val;
val = clk_readl(c->reg + PLL_BASE);
c->mul = (val & PLLE_BASE_DIVN_MASK) >> PLLE_BASE_DIVN_SHIFT;
c->div = (val & PLLE_BASE_DIVM_MASK) >> PLLE_BASE_DIVM_SHIFT;
c->div *= (val & PLLE_BASE_DIVP_MASK) >> PLLE_BASE_DIVP_SHIFT;
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
struct clk_ops tegra30_plle_ops = {
.is_enabled = tegra30_plle_clk_is_enabled,
.enable = tegra30_plle_clk_enable,
.disable = tegra30_plle_clk_disable,
.recalc_rate = tegra30_plle_clk_recalc_rate,
};
/* Clock divider ops */
static int tegra30_pll_div_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
if (c->flags & DIV_U71) {
u32 val = clk_readl(c->reg);
val >>= c->reg_shift;
c->state = (val & PLL_OUT_CLKEN) ? ON : OFF;
if (!(val & PLL_OUT_RESET_DISABLE))
c->state = OFF;
} else {
c->state = ON;
}
return c->state;
}
static int tegra30_pll_div_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
u32 new_val;
pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
if (c->flags & DIV_U71) {
val = clk_readl(c->reg);
new_val = val >> c->reg_shift;
new_val &= 0xFFFF;
new_val |= PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE;
val &= ~(0xFFFF << c->reg_shift);
val |= new_val << c->reg_shift;
clk_writel_delay(val, c->reg);
return 0;
} else if (c->flags & DIV_2) {
return 0;
}
return -EINVAL;
}
static void tegra30_pll_div_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
u32 new_val;
pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
if (c->flags & DIV_U71) {
val = clk_readl(c->reg);
new_val = val >> c->reg_shift;
new_val &= 0xFFFF;
new_val &= ~(PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE);
val &= ~(0xFFFF << c->reg_shift);
val |= new_val << c->reg_shift;
clk_writel_delay(val, c->reg);
}
}
static int tegra30_pll_div_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
u32 new_val;
int divider_u71;
if (c->flags & DIV_U71) {
divider_u71 = clk_div71_get_divider(
parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
if (divider_u71 >= 0) {
val = clk_readl(c->reg);
new_val = val >> c->reg_shift;
new_val &= 0xFFFF;
if (c->flags & DIV_U71_FIXED)
new_val |= PLL_OUT_OVERRIDE;
new_val &= ~PLL_OUT_RATIO_MASK;
new_val |= divider_u71 << PLL_OUT_RATIO_SHIFT;
val &= ~(0xFFFF << c->reg_shift);
val |= new_val << c->reg_shift;
clk_writel_delay(val, c->reg);
c->div = divider_u71 + 2;
c->mul = 2;
c->fixed_rate = rate;
return 0;
}
} else if (c->flags & DIV_2) {
c->fixed_rate = rate;
return 0;
}
return -EINVAL;
}
static unsigned long tegra30_pll_div_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = parent_rate;
if (c->flags & DIV_U71) {
u32 divu71;
u32 val = clk_readl(c->reg);
val >>= c->reg_shift;
divu71 = (val & PLL_OUT_RATIO_MASK) >> PLL_OUT_RATIO_SHIFT;
c->div = (divu71 + 2);
c->mul = 2;
} else if (c->flags & DIV_2) {
if (c->flags & (PLLD | PLLX)) {
c->div = 2;
c->mul = 1;
} else
BUG();
} else {
c->div = 1;
c->mul = 1;
}
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
static long tegra30_pll_div_clk_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long parent_rate = __clk_get_rate(__clk_get_parent(hw->clk));
int divider;
if (prate)
parent_rate = *prate;
if (c->flags & DIV_U71) {
divider = clk_div71_get_divider(
parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
if (divider < 0)
return divider;
return DIV_ROUND_UP(parent_rate * 2, divider + 2);
} else if (c->flags & DIV_2) {
*prate = rate * 2;
return rate;
}
return -EINVAL;
}
struct clk_ops tegra30_pll_div_ops = {
.is_enabled = tegra30_pll_div_clk_is_enabled,
.enable = tegra30_pll_div_clk_enable,
.disable = tegra30_pll_div_clk_disable,
.set_rate = tegra30_pll_div_clk_set_rate,
.recalc_rate = tegra30_pll_div_clk_recalc_rate,
.round_rate = tegra30_pll_div_clk_round_rate,
};
/* Periph clk ops */
static inline u32 periph_clk_source_mask(struct clk_tegra *c)
{
if (c->flags & MUX8)
return 7 << 29;
else if (c->flags & MUX_PWM)
return 3 << 28;
else if (c->flags & MUX_CLK_OUT)
return 3 << (c->u.periph.clk_num + 4);
else if (c->flags & PLLD)
return PLLD_BASE_DSIB_MUX_MASK;
else
return 3 << 30;
}
static inline u32 periph_clk_source_shift(struct clk_tegra *c)
{
if (c->flags & MUX8)
return 29;
else if (c->flags & MUX_PWM)
return 28;
else if (c->flags & MUX_CLK_OUT)
return c->u.periph.clk_num + 4;
else if (c->flags & PLLD)
return PLLD_BASE_DSIB_MUX_SHIFT;
else
return 30;
}
static int tegra30_periph_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
c->state = ON;
if (!(clk_readl(PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_BIT(c)))
c->state = OFF;
if (!(c->flags & PERIPH_NO_RESET))
if (clk_readl(PERIPH_CLK_TO_RST_REG(c)) & PERIPH_CLK_TO_BIT(c))
c->state = OFF;
return c->state;
}
static int tegra30_periph_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
tegra_periph_clk_enable_refcount[c->u.periph.clk_num]++;
if (tegra_periph_clk_enable_refcount[c->u.periph.clk_num] > 1)
return 0;
clk_writel_delay(PERIPH_CLK_TO_BIT(c), PERIPH_CLK_TO_ENB_SET_REG(c));
if (!(c->flags & PERIPH_NO_RESET) &&
!(c->flags & PERIPH_MANUAL_RESET)) {
if (clk_readl(PERIPH_CLK_TO_RST_REG(c)) &
PERIPH_CLK_TO_BIT(c)) {
udelay(5); /* reset propagation delay */
clk_writel(PERIPH_CLK_TO_BIT(c),
PERIPH_CLK_TO_RST_CLR_REG(c));
}
}
return 0;
}
static void tegra30_periph_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long val;
tegra_periph_clk_enable_refcount[c->u.periph.clk_num]--;
if (tegra_periph_clk_enable_refcount[c->u.periph.clk_num] > 0)
return;
/* If peripheral is in the APB bus then read the APB bus to
* flush the write operation in apb bus. This will avoid the
* peripheral access after disabling clock*/
if (c->flags & PERIPH_ON_APB)
val = chipid_readl();
clk_writel_delay(PERIPH_CLK_TO_BIT(c), PERIPH_CLK_TO_ENB_CLR_REG(c));
}
void tegra30_periph_clk_reset(struct clk_hw *hw, bool assert)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long val;
if (!(c->flags & PERIPH_NO_RESET)) {
if (assert) {
/* If peripheral is in the APB bus then read the APB
* bus to flush the write operation in apb bus. This
* will avoid the peripheral access after disabling
* clock */
if (c->flags & PERIPH_ON_APB)
val = chipid_readl();
clk_writel(PERIPH_CLK_TO_BIT(c),
PERIPH_CLK_TO_RST_SET_REG(c));
} else
clk_writel(PERIPH_CLK_TO_BIT(c),
PERIPH_CLK_TO_RST_CLR_REG(c));
}
}
static int tegra30_periph_clk_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
if (!(c->flags & MUX))
return (index == 0) ? 0 : (-EINVAL);
val = clk_readl(c->reg);
val &= ~periph_clk_source_mask(c);
val |= (index << periph_clk_source_shift(c));
clk_writel_delay(val, c->reg);
return 0;
}
static u8 tegra30_periph_clk_get_parent(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
int source = (val & periph_clk_source_mask(c)) >>
periph_clk_source_shift(c);
if (!(c->flags & MUX))
return 0;
return source;
}
static int tegra30_periph_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
int divider;
if (c->flags & DIV_U71) {
divider = clk_div71_get_divider(
parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
if (divider >= 0) {
val = clk_readl(c->reg);
val &= ~PERIPH_CLK_SOURCE_DIVU71_MASK;
val |= divider;
if (c->flags & DIV_U71_UART) {
if (divider)
val |= PERIPH_CLK_UART_DIV_ENB;
else
val &= ~PERIPH_CLK_UART_DIV_ENB;
}
clk_writel_delay(val, c->reg);
c->div = divider + 2;
c->mul = 2;
return 0;
}
} else if (c->flags & DIV_U16) {
divider = clk_div16_get_divider(parent_rate, rate);
if (divider >= 0) {
val = clk_readl(c->reg);
val &= ~PERIPH_CLK_SOURCE_DIVU16_MASK;
val |= divider;
clk_writel_delay(val, c->reg);
c->div = divider + 1;
c->mul = 1;
return 0;
}
} else if (parent_rate <= rate) {
c->div = 1;
c->mul = 1;
return 0;
}
return -EINVAL;
}
static long tegra30_periph_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_tegra *c = to_clk_tegra(hw);
unsigned long parent_rate = __clk_get_rate(__clk_get_parent(hw->clk));
int divider;
if (prate)
parent_rate = *prate;
if (c->flags & DIV_U71) {
divider = clk_div71_get_divider(
parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
if (divider < 0)
return divider;
return DIV_ROUND_UP(parent_rate * 2, divider + 2);
} else if (c->flags & DIV_U16) {
divider = clk_div16_get_divider(parent_rate, rate);
if (divider < 0)
return divider;
return DIV_ROUND_UP(parent_rate, divider + 1);
}
return -EINVAL;
}
static unsigned long tegra30_periph_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = parent_rate;
u32 val = clk_readl(c->reg);
if (c->flags & DIV_U71) {
u32 divu71 = val & PERIPH_CLK_SOURCE_DIVU71_MASK;
if ((c->flags & DIV_U71_UART) &&
(!(val & PERIPH_CLK_UART_DIV_ENB))) {
divu71 = 0;
}
if (c->flags & DIV_U71_IDLE) {
val &= ~(PERIPH_CLK_SOURCE_DIVU71_MASK <<
PERIPH_CLK_SOURCE_DIVIDLE_SHIFT);
val |= (PERIPH_CLK_SOURCE_DIVIDLE_VAL <<
PERIPH_CLK_SOURCE_DIVIDLE_SHIFT);
clk_writel(val, c->reg);
}
c->div = divu71 + 2;
c->mul = 2;
} else if (c->flags & DIV_U16) {
u32 divu16 = val & PERIPH_CLK_SOURCE_DIVU16_MASK;
c->div = divu16 + 1;
c->mul = 1;
} else {
c->div = 1;
c->mul = 1;
}
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
struct clk_ops tegra30_periph_clk_ops = {
.is_enabled = tegra30_periph_clk_is_enabled,
.enable = tegra30_periph_clk_enable,
.disable = tegra30_periph_clk_disable,
.set_parent = tegra30_periph_clk_set_parent,
.get_parent = tegra30_periph_clk_get_parent,
.set_rate = tegra30_periph_clk_set_rate,
.round_rate = tegra30_periph_clk_round_rate,
.recalc_rate = tegra30_periph_clk_recalc_rate,
};
static int tegra30_dsib_clk_set_parent(struct clk_hw *hw, u8 index)
{
struct clk *d = clk_get_sys(NULL, "pll_d");
/* The DSIB parent selection bit is in PLLD base
register - can not do direct r-m-w, must be
protected by PLLD lock */
tegra_clk_cfg_ex(
d, TEGRA_CLK_PLLD_MIPI_MUX_SEL, index);
return 0;
}
struct clk_ops tegra30_dsib_clk_ops = {
.is_enabled = tegra30_periph_clk_is_enabled,
.enable = &tegra30_periph_clk_enable,
.disable = &tegra30_periph_clk_disable,
.set_parent = &tegra30_dsib_clk_set_parent,
.get_parent = &tegra30_periph_clk_get_parent,
.set_rate = &tegra30_periph_clk_set_rate,
.round_rate = &tegra30_periph_clk_round_rate,
.recalc_rate = &tegra30_periph_clk_recalc_rate,
};
/* Periph extended clock configuration ops */
int tegra30_vi_clk_cfg_ex(struct clk_hw *hw,
enum tegra_clk_ex_param p, u32 setting)
{
struct clk_tegra *c = to_clk_tegra(hw);
if (p == TEGRA_CLK_VI_INP_SEL) {
u32 val = clk_readl(c->reg);
val &= ~PERIPH_CLK_VI_SEL_EX_MASK;
val |= (setting << PERIPH_CLK_VI_SEL_EX_SHIFT) &
PERIPH_CLK_VI_SEL_EX_MASK;
clk_writel(val, c->reg);
return 0;
}
return -EINVAL;
}
int tegra30_nand_clk_cfg_ex(struct clk_hw *hw,
enum tegra_clk_ex_param p, u32 setting)
{
struct clk_tegra *c = to_clk_tegra(hw);
if (p == TEGRA_CLK_NAND_PAD_DIV2_ENB) {
u32 val = clk_readl(c->reg);
if (setting)
val |= PERIPH_CLK_NAND_DIV_EX_ENB;
else
val &= ~PERIPH_CLK_NAND_DIV_EX_ENB;
clk_writel(val, c->reg);
return 0;
}
return -EINVAL;
}
int tegra30_dtv_clk_cfg_ex(struct clk_hw *hw,
enum tegra_clk_ex_param p, u32 setting)
{
struct clk_tegra *c = to_clk_tegra(hw);
if (p == TEGRA_CLK_DTV_INVERT) {
u32 val = clk_readl(c->reg);
if (setting)
val |= PERIPH_CLK_DTV_POLARITY_INV;
else
val &= ~PERIPH_CLK_DTV_POLARITY_INV;
clk_writel(val, c->reg);
return 0;
}
return -EINVAL;
}
/* Output clock ops */
static DEFINE_SPINLOCK(clk_out_lock);
static int tegra30_clk_out_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = pmc_readl(c->reg);
c->state = (val & (0x1 << c->u.periph.clk_num)) ? ON : OFF;
c->mul = 1;
c->div = 1;
return c->state;
}
static int tegra30_clk_out_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
unsigned long flags;
spin_lock_irqsave(&clk_out_lock, flags);
val = pmc_readl(c->reg);
val |= (0x1 << c->u.periph.clk_num);
pmc_writel(val, c->reg);
spin_unlock_irqrestore(&clk_out_lock, flags);
return 0;
}
static void tegra30_clk_out_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
unsigned long flags;
spin_lock_irqsave(&clk_out_lock, flags);
val = pmc_readl(c->reg);
val &= ~(0x1 << c->u.periph.clk_num);
pmc_writel(val, c->reg);
spin_unlock_irqrestore(&clk_out_lock, flags);
}
static int tegra30_clk_out_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
unsigned long flags;
spin_lock_irqsave(&clk_out_lock, flags);
val = pmc_readl(c->reg);
val &= ~periph_clk_source_mask(c);
val |= (index << periph_clk_source_shift(c));
pmc_writel(val, c->reg);
spin_unlock_irqrestore(&clk_out_lock, flags);
return 0;
}
static u8 tegra30_clk_out_get_parent(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = pmc_readl(c->reg);
int source;
source = (val & periph_clk_source_mask(c)) >>
periph_clk_source_shift(c);
return source;
}
struct clk_ops tegra_clk_out_ops = {
.is_enabled = tegra30_clk_out_is_enabled,
.enable = tegra30_clk_out_enable,
.disable = tegra30_clk_out_disable,
.set_parent = tegra30_clk_out_set_parent,
.get_parent = tegra30_clk_out_get_parent,
.recalc_rate = tegra30_clk_fixed_recalc_rate,
};
/* Clock doubler ops */
static int tegra30_clk_double_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
c->state = ON;
if (!(clk_readl(PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_BIT(c)))
c->state = OFF;
return c->state;
};
static int tegra30_clk_double_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
if (rate == parent_rate) {
val = clk_readl(c->reg) | (0x1 << c->reg_shift);
clk_writel(val, c->reg);
c->mul = 1;
c->div = 1;
return 0;
} else if (rate == 2 * parent_rate) {
val = clk_readl(c->reg) & (~(0x1 << c->reg_shift));
clk_writel(val, c->reg);
c->mul = 2;
c->div = 1;
return 0;
}
return -EINVAL;
}
static unsigned long tegra30_clk_double_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_tegra *c = to_clk_tegra(hw);
u64 rate = parent_rate;
u32 val = clk_readl(c->reg);
c->mul = val & (0x1 << c->reg_shift) ? 1 : 2;
c->div = 1;
if (c->mul != 0 && c->div != 0) {
rate *= c->mul;
rate += c->div - 1; /* round up */
do_div(rate, c->div);
}
return rate;
}
static long tegra30_clk_double_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
unsigned long output_rate = *prate;
do_div(output_rate, 2);
return output_rate;
}
struct clk_ops tegra30_clk_double_ops = {
.is_enabled = tegra30_clk_double_is_enabled,
.enable = tegra30_periph_clk_enable,
.disable = tegra30_periph_clk_disable,
.recalc_rate = tegra30_clk_double_recalc_rate,
.round_rate = tegra30_clk_double_round_rate,
.set_rate = tegra30_clk_double_set_rate,
};
/* Audio sync clock ops */
struct clk_ops tegra_sync_source_ops = {
.recalc_rate = tegra30_clk_fixed_recalc_rate,
};
static int tegra30_audio_sync_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
c->state = (val & AUDIO_SYNC_DISABLE_BIT) ? OFF : ON;
return c->state;
}
static int tegra30_audio_sync_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
clk_writel((val & (~AUDIO_SYNC_DISABLE_BIT)), c->reg);
return 0;
}
static void tegra30_audio_sync_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
clk_writel((val | AUDIO_SYNC_DISABLE_BIT), c->reg);
}
static int tegra30_audio_sync_clk_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val;
val = clk_readl(c->reg);
val &= ~AUDIO_SYNC_SOURCE_MASK;
val |= index;
clk_writel(val, c->reg);
return 0;
}
static u8 tegra30_audio_sync_clk_get_parent(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
int source;
source = val & AUDIO_SYNC_SOURCE_MASK;
return source;
}
struct clk_ops tegra30_audio_sync_clk_ops = {
.is_enabled = tegra30_audio_sync_clk_is_enabled,
.enable = tegra30_audio_sync_clk_enable,
.disable = tegra30_audio_sync_clk_disable,
.set_parent = tegra30_audio_sync_clk_set_parent,
.get_parent = tegra30_audio_sync_clk_get_parent,
.recalc_rate = tegra30_clk_fixed_recalc_rate,
};
/* cml0 (pcie), and cml1 (sata) clock ops */
static int tegra30_cml_clk_is_enabled(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
c->state = val & (0x1 << c->u.periph.clk_num) ? ON : OFF;
return c->state;
}
static int tegra30_cml_clk_enable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
val |= (0x1 << c->u.periph.clk_num);
clk_writel(val, c->reg);
return 0;
}
static void tegra30_cml_clk_disable(struct clk_hw *hw)
{
struct clk_tegra *c = to_clk_tegra(hw);
u32 val = clk_readl(c->reg);
val &= ~(0x1 << c->u.periph.clk_num);
clk_writel(val, c->reg);
}
struct clk_ops tegra_cml_clk_ops = {
.is_enabled = tegra30_cml_clk_is_enabled,
.enable = tegra30_cml_clk_enable,
.disable = tegra30_cml_clk_disable,
.recalc_rate = tegra30_clk_fixed_recalc_rate,
};
struct clk_ops tegra_pciex_clk_ops = {
.recalc_rate = tegra30_clk_fixed_recalc_rate,
};
/* Tegra30 CPU clock and reset control functions */
static void tegra30_wait_cpu_in_reset(u32 cpu)
{
unsigned int reg;
do {
reg = readl(reg_clk_base +
TEGRA30_CLK_RST_CONTROLLER_CPU_CMPLX_STATUS);
cpu_relax();
} while (!(reg & (1 << cpu))); /* check CPU been reset or not */
return;
}
static void tegra30_put_cpu_in_reset(u32 cpu)
{
writel(CPU_RESET(cpu),
reg_clk_base + TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET);
dmb();
}
static void tegra30_cpu_out_of_reset(u32 cpu)
{
writel(CPU_RESET(cpu),
reg_clk_base + TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_CLR);
wmb();
}
static void tegra30_enable_cpu_clock(u32 cpu)
{
unsigned int reg;
writel(CPU_CLOCK(cpu),
reg_clk_base + TEGRA30_CLK_RST_CONTROLLER_CLK_CPU_CMPLX_CLR);
reg = readl(reg_clk_base +
TEGRA30_CLK_RST_CONTROLLER_CLK_CPU_CMPLX_CLR);
}
static void tegra30_disable_cpu_clock(u32 cpu)
{
unsigned int reg;
reg = readl(reg_clk_base + TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX);
writel(reg | CPU_CLOCK(cpu),
reg_clk_base + TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX);
}
static struct tegra_cpu_car_ops tegra30_cpu_car_ops = {
.wait_for_reset = tegra30_wait_cpu_in_reset,
.put_in_reset = tegra30_put_cpu_in_reset,
.out_of_reset = tegra30_cpu_out_of_reset,
.enable_clock = tegra30_enable_cpu_clock,
.disable_clock = tegra30_disable_cpu_clock,
};
void __init tegra30_cpu_car_ops_init(void)
{
tegra_cpu_car_ops = &tegra30_cpu_car_ops;
}